Home | History | Annotate | Download | only in runtime
      1 Compiler-RT
      2 ================================
      3 
      4 This directory and its subdirectories contain source code for the compiler
      5 support routines.
      6 
      7 Compiler-RT is open source software. You may freely distribute it under the
      8 terms of the license agreement found in LICENSE.txt.
      9 
     10 ================================
     11 
     12 This is a replacement library for libgcc.  Each function is contained
     13 in its own file.  Each function has a corresponding unit test under
     14 test/Unit.
     15 
     16 A rudimentary script to test each file is in the file called
     17 test/Unit/test.
     18 
     19 Here is the specification for this library:
     20 
     21 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
     22 
     23 Here is a synopsis of the contents of this library:
     24 
     25 typedef      int si_int;
     26 typedef unsigned su_int;
     27 
     28 typedef          long long di_int;
     29 typedef unsigned long long du_int;
     30 
     31 // Integral bit manipulation
     32 
     33 di_int __ashldi3(di_int a, si_int b);      // a << b
     34 ti_int __ashlti3(ti_int a, si_int b);      // a << b
     35 
     36 di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
     37 ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
     38 di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
     39 ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
     40 
     41 si_int __clzsi2(si_int a);  // count leading zeros
     42 si_int __clzdi2(di_int a);  // count leading zeros
     43 si_int __clzti2(ti_int a);  // count leading zeros
     44 si_int __ctzsi2(si_int a);  // count trailing zeros
     45 si_int __ctzdi2(di_int a);  // count trailing zeros
     46 si_int __ctzti2(ti_int a);  // count trailing zeros
     47 
     48 si_int __ffsdi2(di_int a);  // find least significant 1 bit
     49 si_int __ffsti2(ti_int a);  // find least significant 1 bit
     50 
     51 si_int __paritysi2(si_int a);  // bit parity
     52 si_int __paritydi2(di_int a);  // bit parity
     53 si_int __parityti2(ti_int a);  // bit parity
     54 
     55 si_int __popcountsi2(si_int a);  // bit population
     56 si_int __popcountdi2(di_int a);  // bit population
     57 si_int __popcountti2(ti_int a);  // bit population
     58 
     59 uint32_t __bswapsi2(uint32_t a);   // a byteswapped, arm only
     60 uint64_t __bswapdi2(uint64_t a);   // a byteswapped, arm only
     61 
     62 // Integral arithmetic
     63 
     64 di_int __negdi2    (di_int a);                         // -a
     65 ti_int __negti2    (ti_int a);                         // -a
     66 di_int __muldi3    (di_int a, di_int b);               // a * b
     67 ti_int __multi3    (ti_int a, ti_int b);               // a * b
     68 si_int __divsi3    (si_int a, si_int b);               // a / b   signed
     69 di_int __divdi3    (di_int a, di_int b);               // a / b   signed
     70 ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
     71 su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
     72 du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
     73 tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
     74 si_int __modsi3    (si_int a, si_int b);               // a % b   signed
     75 di_int __moddi3    (di_int a, di_int b);               // a % b   signed
     76 ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
     77 su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
     78 du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
     79 tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
     80 du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b
     81 tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b
     82 
     83 //  Integral arithmetic with trapping overflow
     84 
     85 si_int __absvsi2(si_int a);           // abs(a)
     86 di_int __absvdi2(di_int a);           // abs(a)
     87 ti_int __absvti2(ti_int a);           // abs(a)
     88 
     89 si_int __negvsi2(si_int a);           // -a
     90 di_int __negvdi2(di_int a);           // -a
     91 ti_int __negvti2(ti_int a);           // -a
     92 
     93 si_int __addvsi3(si_int a, si_int b);  // a + b
     94 di_int __addvdi3(di_int a, di_int b);  // a + b
     95 ti_int __addvti3(ti_int a, ti_int b);  // a + b
     96 
     97 si_int __subvsi3(si_int a, si_int b);  // a - b
     98 di_int __subvdi3(di_int a, di_int b);  // a - b
     99 ti_int __subvti3(ti_int a, ti_int b);  // a - b
    100 
    101 si_int __mulvsi3(si_int a, si_int b);  // a * b
    102 di_int __mulvdi3(di_int a, di_int b);  // a * b
    103 ti_int __mulvti3(ti_int a, ti_int b);  // a * b
    104 
    105 //  Integral comparison: a  < b -> 0
    106 //                       a == b -> 1
    107 //                       a  > b -> 2
    108 
    109 si_int __cmpdi2 (di_int a, di_int b);
    110 si_int __cmpti2 (ti_int a, ti_int b);
    111 si_int __ucmpdi2(du_int a, du_int b);
    112 si_int __ucmpti2(tu_int a, tu_int b);
    113 
    114 //  Integral / floating point conversion
    115 
    116 di_int __fixsfdi(      float a);
    117 di_int __fixdfdi(     double a);
    118 di_int __fixxfdi(long double a);
    119 
    120 ti_int __fixsfti(      float a);
    121 ti_int __fixdfti(     double a);
    122 ti_int __fixxfti(long double a);
    123 uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
    124 
    125 su_int __fixunssfsi(      float a);
    126 su_int __fixunsdfsi(     double a);
    127 su_int __fixunsxfsi(long double a);
    128 
    129 du_int __fixunssfdi(      float a);
    130 du_int __fixunsdfdi(     double a);
    131 du_int __fixunsxfdi(long double a);
    132 
    133 tu_int __fixunssfti(      float a);
    134 tu_int __fixunsdfti(     double a);
    135 tu_int __fixunsxfti(long double a);
    136 uint64_t __fixunstfdi(long double input);  // ppc only
    137 
    138 float       __floatdisf(di_int a);
    139 double      __floatdidf(di_int a);
    140 long double __floatdixf(di_int a);
    141 long double __floatditf(int64_t a);        // ppc only
    142 
    143 float       __floattisf(ti_int a);
    144 double      __floattidf(ti_int a);
    145 long double __floattixf(ti_int a);
    146 
    147 float       __floatundisf(du_int a);
    148 double      __floatundidf(du_int a);
    149 long double __floatundixf(du_int a);
    150 long double __floatunditf(uint64_t a);     // ppc only
    151 
    152 float       __floatuntisf(tu_int a);
    153 double      __floatuntidf(tu_int a);
    154 long double __floatuntixf(tu_int a);
    155 
    156 //  Floating point raised to integer power
    157 
    158 float       __powisf2(      float a, si_int b);  // a ^ b
    159 double      __powidf2(     double a, si_int b);  // a ^ b
    160 long double __powixf2(long double a, si_int b);  // a ^ b
    161 long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
    162 
    163 //  Complex arithmetic
    164 
    165 //  (a + ib) * (c + id)
    166 
    167       float _Complex __mulsc3( float a,  float b,  float c,  float d);
    168      double _Complex __muldc3(double a, double b, double c, double d);
    169 long double _Complex __mulxc3(long double a, long double b,
    170                               long double c, long double d);
    171 long double _Complex __multc3(long double a, long double b,
    172                               long double c, long double d); // ppc only
    173 
    174 //  (a + ib) / (c + id)
    175 
    176       float _Complex __divsc3( float a,  float b,  float c,  float d);
    177      double _Complex __divdc3(double a, double b, double c, double d);
    178 long double _Complex __divxc3(long double a, long double b,
    179                               long double c, long double d);
    180 long double _Complex __divtc3(long double a, long double b,
    181                               long double c, long double d);  // ppc only
    182 
    183 
    184 //         Runtime support
    185 
    186 // __clear_cache() is used to tell process that new instructions have been
    187 // written to an address range.  Necessary on processors that do not have
    188 // a unified instuction and data cache.
    189 void __clear_cache(void* start, void* end);
    190 
    191 // __enable_execute_stack() is used with nested functions when a trampoline
    192 // function is written onto the stack and that page range needs to be made
    193 // executable.
    194 void __enable_execute_stack(void* addr);
    195 
    196 // __gcc_personality_v0() is normally only called by the system unwinder.
    197 // C code (as opposed to C++) normally does not need a personality function
    198 // because there are no catch clauses or destructors to be run.  But there
    199 // is a C language extension __attribute__((cleanup(func))) which marks local
    200 // variables as needing the cleanup function "func" to be run when the
    201 // variable goes out of scope.  That includes when an exception is thrown,
    202 // so a personality handler is needed.  
    203 _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
    204          uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
    205          _Unwind_Context_t context);
    206 
    207 // for use with some implementations of assert() in <assert.h>
    208 void __eprintf(const char* format, const char* assertion_expression,
    209 				const char* line, const char* file);
    210 				
    211 
    212 
    213 //   Power PC specific functions
    214 
    215 // There is no C interface to the saveFP/restFP functions.  They are helper
    216 // functions called by the prolog and epilog of functions that need to save
    217 // a number of non-volatile float point registers.  
    218 saveFP
    219 restFP
    220 
    221 // PowerPC has a standard template for trampoline functions.  This function
    222 // generates a custom trampoline function with the specific realFunc
    223 // and localsPtr values.
    224 void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 
    225                                 const void* realFunc, void* localsPtr);
    226 
    227 // adds two 128-bit double-double precision values ( x + y )
    228 long double __gcc_qadd(long double x, long double y);  
    229 
    230 // subtracts two 128-bit double-double precision values ( x - y )
    231 long double __gcc_qsub(long double x, long double y); 
    232 
    233 // multiples two 128-bit double-double precision values ( x * y )
    234 long double __gcc_qmul(long double x, long double y);  
    235 
    236 // divides two 128-bit double-double precision values ( x / y )
    237 long double __gcc_qdiv(long double a, long double b);  
    238 
    239 
    240 //    ARM specific functions
    241 
    242 // There is no C interface to the switch* functions.  These helper functions
    243 // are only needed by Thumb1 code for efficient switch table generation.
    244 switch16
    245 switch32
    246 switch8
    247 switchu8
    248 
    249 // There is no C interface to the *_vfp_d8_d15_regs functions.  There are
    250 // called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
    251 // SJLJ for exceptions, each function with a catch clause or destuctors needs
    252 // to save and restore all registers in it prolog and epliog.  But there is 
    253 // no way to access vector and high float registers from thumb1 code, so the 
    254 // compiler must add call outs to these helper functions in the prolog and 
    255 // epilog.
    256 restore_vfp_d8_d15_regs
    257 save_vfp_d8_d15_regs
    258 
    259 
    260 // Note: long ago ARM processors did not have floating point hardware support.
    261 // Floating point was done in software and floating point parameters were 
    262 // passed in integer registers.  When hardware support was added for floating
    263 // point, new *vfp functions were added to do the same operations but with 
    264 // floating point parameters in floating point registers.
    265 
    266 
    267 // Undocumented functions
    268 
    269 float  __addsf3vfp(float a, float b);   // Appears to return a + b
    270 double __adddf3vfp(double a, double b); // Appears to return a + b
    271 float  __divsf3vfp(float a, float b);   // Appears to return a / b
    272 double __divdf3vfp(double a, double b); // Appears to return a / b
    273 int    __eqsf2vfp(float a, float b);    // Appears to return  one
    274                                         //     iff a == b and neither is NaN.
    275 int    __eqdf2vfp(double a, double b);  // Appears to return  one
    276                                         //     iff a == b and neither is NaN.
    277 double __extendsfdf2vfp(float a);       // Appears to convert from
    278                                         //     float to double.
    279 int    __fixdfsivfp(double a);          // Appears to convert from
    280                                         //     double to int.
    281 int    __fixsfsivfp(float a);           // Appears to convert from
    282                                         //     float to int.
    283 unsigned int __fixunssfsivfp(float a);  // Appears to convert from
    284                                         //     float to unsigned int.
    285 unsigned int __fixunsdfsivfp(double a); // Appears to convert from
    286                                         //     double to unsigned int.
    287 double __floatsidfvfp(int a);           // Appears to convert from
    288                                         //     int to double.
    289 float __floatsisfvfp(int a);            // Appears to convert from
    290                                         //     int to float.
    291 double __floatunssidfvfp(unsigned int a); // Appears to convert from
    292                                         //     unisgned int to double.
    293 float __floatunssisfvfp(unsigned int a); // Appears to convert from
    294                                         //     unisgned int to float.
    295 int __gedf2vfp(double a, double b);     // Appears to return __gedf2
    296                                         //     (a >= b)
    297 int __gesf2vfp(float a, float b);       // Appears to return __gesf2
    298                                         //     (a >= b)
    299 int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
    300                                         //     (a > b)
    301 int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
    302                                         //     (a > b)
    303 int __ledf2vfp(double a, double b);     // Appears to return __ledf2
    304                                         //     (a <= b)
    305 int __lesf2vfp(float a, float b);       // Appears to return __lesf2
    306                                         //     (a <= b)
    307 int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
    308                                         //     (a < b)
    309 int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
    310                                         //     (a < b)
    311 double __muldf3vfp(double a, double b); // Appears to return a * b
    312 float __mulsf3vfp(float a, float b);    // Appears to return a * b
    313 int __nedf2vfp(double a, double b);     // Appears to return __nedf2
    314                                         //     (a != b)
    315 double __negdf2vfp(double a);           // Appears to return -a
    316 float __negsf2vfp(float a);             // Appears to return -a
    317 float __negsf2vfp(float a);             // Appears to return -a
    318 double __subdf3vfp(double a, double b); // Appears to return a - b
    319 float __subsf3vfp(float a, float b);    // Appears to return a - b
    320 float __truncdfsf2vfp(double a);        // Appears to convert from
    321                                         //     double to float.
    322 int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
    323 int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
    324 
    325 
    326 Preconditions are listed for each function at the definition when there are any.
    327 Any preconditions reflect the specification at
    328 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
    329 
    330 Assumptions are listed in "int_lib.h", and in individual files.  Where possible
    331 assumptions are checked at compile time.
    332