Home | History | Annotate | Download | only in src

Lines Matching full:asin

20  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
21 * we approximate asin(x) on [0,0.5] by
22 * asin(x) = x + x*x^2*R(x^2)
24 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
26 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
29 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
32 * asin(x) = pi/2 - 2*(s+s*z*R(z))
38 * asin(x) = pi/2 - 2*(s+s*z*R(z))
81 /* asin(1)=+-pi/2 with inexact */
83 return (x-x)/(x-x); /* asin(|x|>1) is NaN */