Home | History | Annotate | Download | only in src
      1 
      2 /* @(#)e_asin.c 1.3 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  */
     13 
     14 #ifndef lint
     15 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_asin.c,v 1.11 2005/02/04 18:26:05 das Exp $";
     16 #endif
     17 
     18 /* __ieee754_asin(x)
     19  * Method :
     20  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
     21  *	we approximate asin(x) on [0,0.5] by
     22  *		asin(x) = x + x*x^2*R(x^2)
     23  *	where
     24  *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
     25  *	and its remez error is bounded by
     26  *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
     27  *
     28  *	For x in [0.5,1]
     29  *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
     30  *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
     31  *	then for x>0.98
     32  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
     33  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
     34  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
     35  *		f = hi part of s;
     36  *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
     37  *	and
     38  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
     39  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
     40  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
     41  *
     42  * Special cases:
     43  *	if x is NaN, return x itself;
     44  *	if |x|>1, return NaN with invalid signal.
     45  *
     46  */
     47 
     48 
     49 #include "math.h"
     50 #include "math_private.h"
     51 
     52 static const double
     53 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
     54 huge =  1.000e+300,
     55 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
     56 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
     57 pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
     58 	/* coefficient for R(x^2) */
     59 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
     60 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
     61 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
     62 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
     63 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
     64 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
     65 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
     66 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
     67 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
     68 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
     69 
     70 double
     71 __ieee754_asin(double x)
     72 {
     73 	double t=0.0,w,p,q,c,r,s;
     74 	int32_t hx,ix;
     75 	GET_HIGH_WORD(hx,x);
     76 	ix = hx&0x7fffffff;
     77 	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
     78 	    u_int32_t lx;
     79 	    GET_LOW_WORD(lx,x);
     80 	    if(((ix-0x3ff00000)|lx)==0)
     81 		    /* asin(1)=+-pi/2 with inexact */
     82 		return x*pio2_hi+x*pio2_lo;
     83 	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
     84 	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
     85 	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
     86 		if(huge+x>one) return x;/* return x with inexact if x!=0*/
     87 	    } else
     88 		t = x*x;
     89 		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
     90 		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
     91 		w = p/q;
     92 		return x+x*w;
     93 	}
     94 	/* 1> |x|>= 0.5 */
     95 	w = one-fabs(x);
     96 	t = w*0.5;
     97 	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
     98 	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
     99 	s = sqrt(t);
    100 	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
    101 	    w = p/q;
    102 	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
    103 	} else {
    104 	    w  = s;
    105 	    SET_LOW_WORD(w,0);
    106 	    c  = (t-w*w)/(s+w);
    107 	    r  = p/q;
    108 	    p  = 2.0*s*r-(pio2_lo-2.0*c);
    109 	    q  = pio4_hi-2.0*w;
    110 	    t  = pio4_hi-(p-q);
    111 	}
    112 	if(hx>0) return t; else return -t;
    113 }
    114