Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Decl nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CodeGenFunction.h"
     16 #include "CodeGenModule.h"
     17 #include "CGOpenCLRuntime.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/Basic/SourceManager.h"
     23 #include "clang/Basic/TargetInfo.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/GlobalVariable.h"
     26 #include "llvm/Intrinsics.h"
     27 #include "llvm/Target/TargetData.h"
     28 #include "llvm/Type.h"
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 
     33 void CodeGenFunction::EmitDecl(const Decl &D) {
     34   switch (D.getKind()) {
     35   case Decl::TranslationUnit:
     36   case Decl::Namespace:
     37   case Decl::UnresolvedUsingTypename:
     38   case Decl::ClassTemplateSpecialization:
     39   case Decl::ClassTemplatePartialSpecialization:
     40   case Decl::TemplateTypeParm:
     41   case Decl::UnresolvedUsingValue:
     42   case Decl::NonTypeTemplateParm:
     43   case Decl::CXXMethod:
     44   case Decl::CXXConstructor:
     45   case Decl::CXXDestructor:
     46   case Decl::CXXConversion:
     47   case Decl::Field:
     48   case Decl::IndirectField:
     49   case Decl::ObjCIvar:
     50   case Decl::ObjCAtDefsField:
     51   case Decl::ParmVar:
     52   case Decl::ImplicitParam:
     53   case Decl::ClassTemplate:
     54   case Decl::FunctionTemplate:
     55   case Decl::TypeAliasTemplate:
     56   case Decl::TemplateTemplateParm:
     57   case Decl::ObjCMethod:
     58   case Decl::ObjCCategory:
     59   case Decl::ObjCProtocol:
     60   case Decl::ObjCInterface:
     61   case Decl::ObjCCategoryImpl:
     62   case Decl::ObjCImplementation:
     63   case Decl::ObjCProperty:
     64   case Decl::ObjCCompatibleAlias:
     65   case Decl::AccessSpec:
     66   case Decl::LinkageSpec:
     67   case Decl::ObjCPropertyImpl:
     68   case Decl::ObjCClass:
     69   case Decl::ObjCForwardProtocol:
     70   case Decl::FileScopeAsm:
     71   case Decl::Friend:
     72   case Decl::FriendTemplate:
     73   case Decl::Block:
     74   case Decl::ClassScopeFunctionSpecialization:
     75     llvm_unreachable("Declaration should not be in declstmts!");
     76   case Decl::Function:  // void X();
     77   case Decl::Record:    // struct/union/class X;
     78   case Decl::Enum:      // enum X;
     79   case Decl::EnumConstant: // enum ? { X = ? }
     80   case Decl::CXXRecord: // struct/union/class X; [C++]
     81   case Decl::Using:          // using X; [C++]
     82   case Decl::UsingShadow:
     83   case Decl::UsingDirective: // using namespace X; [C++]
     84   case Decl::NamespaceAlias:
     85   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
     86   case Decl::Label:        // __label__ x;
     87     // None of these decls require codegen support.
     88     return;
     89 
     90   case Decl::Var: {
     91     const VarDecl &VD = cast<VarDecl>(D);
     92     assert(VD.isLocalVarDecl() &&
     93            "Should not see file-scope variables inside a function!");
     94     return EmitVarDecl(VD);
     95   }
     96 
     97   case Decl::Typedef:      // typedef int X;
     98   case Decl::TypeAlias: {  // using X = int; [C++0x]
     99     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
    100     QualType Ty = TD.getUnderlyingType();
    101 
    102     if (Ty->isVariablyModifiedType())
    103       EmitVariablyModifiedType(Ty);
    104   }
    105   }
    106 }
    107 
    108 /// EmitVarDecl - This method handles emission of any variable declaration
    109 /// inside a function, including static vars etc.
    110 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
    111   switch (D.getStorageClass()) {
    112   case SC_None:
    113   case SC_Auto:
    114   case SC_Register:
    115     return EmitAutoVarDecl(D);
    116   case SC_Static: {
    117     llvm::GlobalValue::LinkageTypes Linkage =
    118       llvm::GlobalValue::InternalLinkage;
    119 
    120     // If the function definition has some sort of weak linkage, its
    121     // static variables should also be weak so that they get properly
    122     // uniqued.  We can't do this in C, though, because there's no
    123     // standard way to agree on which variables are the same (i.e.
    124     // there's no mangling).
    125     if (getContext().getLangOptions().CPlusPlus)
    126       if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
    127         Linkage = CurFn->getLinkage();
    128 
    129     return EmitStaticVarDecl(D, Linkage);
    130   }
    131   case SC_Extern:
    132   case SC_PrivateExtern:
    133     // Don't emit it now, allow it to be emitted lazily on its first use.
    134     return;
    135   case SC_OpenCLWorkGroupLocal:
    136     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
    137   }
    138 
    139   llvm_unreachable("Unknown storage class");
    140 }
    141 
    142 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
    143                                      const char *Separator) {
    144   CodeGenModule &CGM = CGF.CGM;
    145   if (CGF.getContext().getLangOptions().CPlusPlus) {
    146     StringRef Name = CGM.getMangledName(&D);
    147     return Name.str();
    148   }
    149 
    150   std::string ContextName;
    151   if (!CGF.CurFuncDecl) {
    152     // Better be in a block declared in global scope.
    153     const NamedDecl *ND = cast<NamedDecl>(&D);
    154     const DeclContext *DC = ND->getDeclContext();
    155     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
    156       MangleBuffer Name;
    157       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
    158       ContextName = Name.getString();
    159     }
    160     else
    161       llvm_unreachable("Unknown context for block static var decl");
    162   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
    163     StringRef Name = CGM.getMangledName(FD);
    164     ContextName = Name.str();
    165   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
    166     ContextName = CGF.CurFn->getName();
    167   else
    168     llvm_unreachable("Unknown context for static var decl");
    169 
    170   return ContextName + Separator + D.getNameAsString();
    171 }
    172 
    173 llvm::GlobalVariable *
    174 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
    175                                      const char *Separator,
    176                                      llvm::GlobalValue::LinkageTypes Linkage) {
    177   QualType Ty = D.getType();
    178   assert(Ty->isConstantSizeType() && "VLAs can't be static");
    179 
    180   std::string Name = GetStaticDeclName(*this, D, Separator);
    181 
    182   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
    183   llvm::GlobalVariable *GV =
    184     new llvm::GlobalVariable(CGM.getModule(), LTy,
    185                              Ty.isConstant(getContext()), Linkage,
    186                              CGM.EmitNullConstant(D.getType()), Name, 0,
    187                              D.isThreadSpecified(),
    188                              CGM.getContext().getTargetAddressSpace(Ty));
    189   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
    190   if (Linkage != llvm::GlobalValue::InternalLinkage)
    191     GV->setVisibility(CurFn->getVisibility());
    192   return GV;
    193 }
    194 
    195 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
    196 /// global variable that has already been created for it.  If the initializer
    197 /// has a different type than GV does, this may free GV and return a different
    198 /// one.  Otherwise it just returns GV.
    199 llvm::GlobalVariable *
    200 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
    201                                                llvm::GlobalVariable *GV) {
    202   llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
    203 
    204   // If constant emission failed, then this should be a C++ static
    205   // initializer.
    206   if (!Init) {
    207     if (!getContext().getLangOptions().CPlusPlus)
    208       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
    209     else if (Builder.GetInsertBlock()) {
    210       // Since we have a static initializer, this global variable can't
    211       // be constant.
    212       GV->setConstant(false);
    213 
    214       EmitCXXGuardedInit(D, GV);
    215     }
    216     return GV;
    217   }
    218 
    219   // The initializer may differ in type from the global. Rewrite
    220   // the global to match the initializer.  (We have to do this
    221   // because some types, like unions, can't be completely represented
    222   // in the LLVM type system.)
    223   if (GV->getType()->getElementType() != Init->getType()) {
    224     llvm::GlobalVariable *OldGV = GV;
    225 
    226     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
    227                                   OldGV->isConstant(),
    228                                   OldGV->getLinkage(), Init, "",
    229                                   /*InsertBefore*/ OldGV,
    230                                   D.isThreadSpecified(),
    231                            CGM.getContext().getTargetAddressSpace(D.getType()));
    232     GV->setVisibility(OldGV->getVisibility());
    233 
    234     // Steal the name of the old global
    235     GV->takeName(OldGV);
    236 
    237     // Replace all uses of the old global with the new global
    238     llvm::Constant *NewPtrForOldDecl =
    239     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
    240     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
    241 
    242     // Erase the old global, since it is no longer used.
    243     OldGV->eraseFromParent();
    244   }
    245 
    246   GV->setInitializer(Init);
    247   return GV;
    248 }
    249 
    250 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
    251                                       llvm::GlobalValue::LinkageTypes Linkage) {
    252   llvm::Value *&DMEntry = LocalDeclMap[&D];
    253   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
    254 
    255   llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
    256 
    257   // Store into LocalDeclMap before generating initializer to handle
    258   // circular references.
    259   DMEntry = GV;
    260 
    261   // We can't have a VLA here, but we can have a pointer to a VLA,
    262   // even though that doesn't really make any sense.
    263   // Make sure to evaluate VLA bounds now so that we have them for later.
    264   if (D.getType()->isVariablyModifiedType())
    265     EmitVariablyModifiedType(D.getType());
    266 
    267   // Local static block variables must be treated as globals as they may be
    268   // referenced in their RHS initializer block-literal expresion.
    269   CGM.setStaticLocalDeclAddress(&D, GV);
    270 
    271   // If this value has an initializer, emit it.
    272   if (D.getInit())
    273     GV = AddInitializerToStaticVarDecl(D, GV);
    274 
    275   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
    276 
    277   if (D.hasAttr<AnnotateAttr>())
    278     CGM.AddGlobalAnnotations(&D, GV);
    279 
    280   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
    281     GV->setSection(SA->getName());
    282 
    283   if (D.hasAttr<UsedAttr>())
    284     CGM.AddUsedGlobal(GV);
    285 
    286   // We may have to cast the constant because of the initializer
    287   // mismatch above.
    288   //
    289   // FIXME: It is really dangerous to store this in the map; if anyone
    290   // RAUW's the GV uses of this constant will be invalid.
    291   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
    292   llvm::Type *LPtrTy =
    293     LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
    294   DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
    295 
    296   // Emit global variable debug descriptor for static vars.
    297   CGDebugInfo *DI = getDebugInfo();
    298   if (DI) {
    299     DI->setLocation(D.getLocation());
    300     DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
    301   }
    302 }
    303 
    304 namespace {
    305   struct DestroyObject : EHScopeStack::Cleanup {
    306     DestroyObject(llvm::Value *addr, QualType type,
    307                   CodeGenFunction::Destroyer *destroyer,
    308                   bool useEHCleanupForArray)
    309       : addr(addr), type(type), destroyer(*destroyer),
    310         useEHCleanupForArray(useEHCleanupForArray) {}
    311 
    312     llvm::Value *addr;
    313     QualType type;
    314     CodeGenFunction::Destroyer &destroyer;
    315     bool useEHCleanupForArray;
    316 
    317     void Emit(CodeGenFunction &CGF, Flags flags) {
    318       // Don't use an EH cleanup recursively from an EH cleanup.
    319       bool useEHCleanupForArray =
    320         flags.isForNormalCleanup() && this->useEHCleanupForArray;
    321 
    322       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
    323     }
    324   };
    325 
    326   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
    327     DestroyNRVOVariable(llvm::Value *addr,
    328                         const CXXDestructorDecl *Dtor,
    329                         llvm::Value *NRVOFlag)
    330       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
    331 
    332     const CXXDestructorDecl *Dtor;
    333     llvm::Value *NRVOFlag;
    334     llvm::Value *Loc;
    335 
    336     void Emit(CodeGenFunction &CGF, Flags flags) {
    337       // Along the exceptions path we always execute the dtor.
    338       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
    339 
    340       llvm::BasicBlock *SkipDtorBB = 0;
    341       if (NRVO) {
    342         // If we exited via NRVO, we skip the destructor call.
    343         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
    344         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
    345         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
    346         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
    347         CGF.EmitBlock(RunDtorBB);
    348       }
    349 
    350       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
    351                                 /*ForVirtualBase=*/false, Loc);
    352 
    353       if (NRVO) CGF.EmitBlock(SkipDtorBB);
    354     }
    355   };
    356 
    357   struct CallStackRestore : EHScopeStack::Cleanup {
    358     llvm::Value *Stack;
    359     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
    360     void Emit(CodeGenFunction &CGF, Flags flags) {
    361       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
    362       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
    363       CGF.Builder.CreateCall(F, V);
    364     }
    365   };
    366 
    367   struct ExtendGCLifetime : EHScopeStack::Cleanup {
    368     const VarDecl &Var;
    369     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
    370 
    371     void Emit(CodeGenFunction &CGF, Flags flags) {
    372       // Compute the address of the local variable, in case it's a
    373       // byref or something.
    374       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
    375                       SourceLocation());
    376       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
    377       CGF.EmitExtendGCLifetime(value);
    378     }
    379   };
    380 
    381   struct CallCleanupFunction : EHScopeStack::Cleanup {
    382     llvm::Constant *CleanupFn;
    383     const CGFunctionInfo &FnInfo;
    384     const VarDecl &Var;
    385 
    386     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
    387                         const VarDecl *Var)
    388       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
    389 
    390     void Emit(CodeGenFunction &CGF, Flags flags) {
    391       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
    392                       SourceLocation());
    393       // Compute the address of the local variable, in case it's a byref
    394       // or something.
    395       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
    396 
    397       // In some cases, the type of the function argument will be different from
    398       // the type of the pointer. An example of this is
    399       // void f(void* arg);
    400       // __attribute__((cleanup(f))) void *g;
    401       //
    402       // To fix this we insert a bitcast here.
    403       QualType ArgTy = FnInfo.arg_begin()->type;
    404       llvm::Value *Arg =
    405         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
    406 
    407       CallArgList Args;
    408       Args.add(RValue::get(Arg),
    409                CGF.getContext().getPointerType(Var.getType()));
    410       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
    411     }
    412   };
    413 }
    414 
    415 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
    416 /// variable with lifetime.
    417 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
    418                                     llvm::Value *addr,
    419                                     Qualifiers::ObjCLifetime lifetime) {
    420   switch (lifetime) {
    421   case Qualifiers::OCL_None:
    422     llvm_unreachable("present but none");
    423 
    424   case Qualifiers::OCL_ExplicitNone:
    425     // nothing to do
    426     break;
    427 
    428   case Qualifiers::OCL_Strong: {
    429     CodeGenFunction::Destroyer &destroyer =
    430       (var.hasAttr<ObjCPreciseLifetimeAttr>()
    431        ? CodeGenFunction::destroyARCStrongPrecise
    432        : CodeGenFunction::destroyARCStrongImprecise);
    433 
    434     CleanupKind cleanupKind = CGF.getARCCleanupKind();
    435     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
    436                     cleanupKind & EHCleanup);
    437     break;
    438   }
    439   case Qualifiers::OCL_Autoreleasing:
    440     // nothing to do
    441     break;
    442 
    443   case Qualifiers::OCL_Weak:
    444     // __weak objects always get EH cleanups; otherwise, exceptions
    445     // could cause really nasty crashes instead of mere leaks.
    446     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
    447                     CodeGenFunction::destroyARCWeak,
    448                     /*useEHCleanup*/ true);
    449     break;
    450   }
    451 }
    452 
    453 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
    454   if (const Expr *e = dyn_cast<Expr>(s)) {
    455     // Skip the most common kinds of expressions that make
    456     // hierarchy-walking expensive.
    457     s = e = e->IgnoreParenCasts();
    458 
    459     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
    460       return (ref->getDecl() == &var);
    461   }
    462 
    463   for (Stmt::const_child_range children = s->children(); children; ++children)
    464     // children might be null; as in missing decl or conditional of an if-stmt.
    465     if ((*children) && isAccessedBy(var, *children))
    466       return true;
    467 
    468   return false;
    469 }
    470 
    471 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
    472   if (!decl) return false;
    473   if (!isa<VarDecl>(decl)) return false;
    474   const VarDecl *var = cast<VarDecl>(decl);
    475   return isAccessedBy(*var, e);
    476 }
    477 
    478 static void drillIntoBlockVariable(CodeGenFunction &CGF,
    479                                    LValue &lvalue,
    480                                    const VarDecl *var) {
    481   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
    482 }
    483 
    484 void CodeGenFunction::EmitScalarInit(const Expr *init,
    485                                      const ValueDecl *D,
    486                                      LValue lvalue,
    487                                      bool capturedByInit) {
    488   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
    489   if (!lifetime) {
    490     llvm::Value *value = EmitScalarExpr(init);
    491     if (capturedByInit)
    492       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    493     EmitStoreThroughLValue(RValue::get(value), lvalue);
    494     return;
    495   }
    496 
    497   // If we're emitting a value with lifetime, we have to do the
    498   // initialization *before* we leave the cleanup scopes.
    499   CodeGenFunction::RunCleanupsScope Scope(*this);
    500   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init))
    501     init = ewc->getSubExpr();
    502 
    503   // We have to maintain the illusion that the variable is
    504   // zero-initialized.  If the variable might be accessed in its
    505   // initializer, zero-initialize before running the initializer, then
    506   // actually perform the initialization with an assign.
    507   bool accessedByInit = false;
    508   if (lifetime != Qualifiers::OCL_ExplicitNone)
    509     accessedByInit = (capturedByInit || isAccessedBy(D, init));
    510   if (accessedByInit) {
    511     LValue tempLV = lvalue;
    512     // Drill down to the __block object if necessary.
    513     if (capturedByInit) {
    514       // We can use a simple GEP for this because it can't have been
    515       // moved yet.
    516       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
    517                                    getByRefValueLLVMField(cast<VarDecl>(D))));
    518     }
    519 
    520     llvm::PointerType *ty
    521       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
    522     ty = cast<llvm::PointerType>(ty->getElementType());
    523 
    524     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
    525 
    526     // If __weak, we want to use a barrier under certain conditions.
    527     if (lifetime == Qualifiers::OCL_Weak)
    528       EmitARCInitWeak(tempLV.getAddress(), zero);
    529 
    530     // Otherwise just do a simple store.
    531     else
    532       EmitStoreOfScalar(zero, tempLV);
    533   }
    534 
    535   // Emit the initializer.
    536   llvm::Value *value = 0;
    537 
    538   switch (lifetime) {
    539   case Qualifiers::OCL_None:
    540     llvm_unreachable("present but none");
    541 
    542   case Qualifiers::OCL_ExplicitNone:
    543     // nothing to do
    544     value = EmitScalarExpr(init);
    545     break;
    546 
    547   case Qualifiers::OCL_Strong: {
    548     value = EmitARCRetainScalarExpr(init);
    549     break;
    550   }
    551 
    552   case Qualifiers::OCL_Weak: {
    553     // No way to optimize a producing initializer into this.  It's not
    554     // worth optimizing for, because the value will immediately
    555     // disappear in the common case.
    556     value = EmitScalarExpr(init);
    557 
    558     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    559     if (accessedByInit)
    560       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
    561     else
    562       EmitARCInitWeak(lvalue.getAddress(), value);
    563     return;
    564   }
    565 
    566   case Qualifiers::OCL_Autoreleasing:
    567     value = EmitARCRetainAutoreleaseScalarExpr(init);
    568     break;
    569   }
    570 
    571   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    572 
    573   // If the variable might have been accessed by its initializer, we
    574   // might have to initialize with a barrier.  We have to do this for
    575   // both __weak and __strong, but __weak got filtered out above.
    576   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
    577     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
    578     EmitStoreOfScalar(value, lvalue);
    579     EmitARCRelease(oldValue, /*precise*/ false);
    580     return;
    581   }
    582 
    583   EmitStoreOfScalar(value, lvalue);
    584 }
    585 
    586 /// EmitScalarInit - Initialize the given lvalue with the given object.
    587 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
    588   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
    589   if (!lifetime)
    590     return EmitStoreThroughLValue(RValue::get(init), lvalue);
    591 
    592   switch (lifetime) {
    593   case Qualifiers::OCL_None:
    594     llvm_unreachable("present but none");
    595 
    596   case Qualifiers::OCL_ExplicitNone:
    597     // nothing to do
    598     break;
    599 
    600   case Qualifiers::OCL_Strong:
    601     init = EmitARCRetain(lvalue.getType(), init);
    602     break;
    603 
    604   case Qualifiers::OCL_Weak:
    605     // Initialize and then skip the primitive store.
    606     EmitARCInitWeak(lvalue.getAddress(), init);
    607     return;
    608 
    609   case Qualifiers::OCL_Autoreleasing:
    610     init = EmitARCRetainAutorelease(lvalue.getType(), init);
    611     break;
    612   }
    613 
    614   EmitStoreOfScalar(init, lvalue);
    615 }
    616 
    617 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
    618 /// non-zero parts of the specified initializer with equal or fewer than
    619 /// NumStores scalar stores.
    620 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
    621                                                 unsigned &NumStores) {
    622   // Zero and Undef never requires any extra stores.
    623   if (isa<llvm::ConstantAggregateZero>(Init) ||
    624       isa<llvm::ConstantPointerNull>(Init) ||
    625       isa<llvm::UndefValue>(Init))
    626     return true;
    627   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
    628       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
    629       isa<llvm::ConstantExpr>(Init))
    630     return Init->isNullValue() || NumStores--;
    631 
    632   // See if we can emit each element.
    633   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
    634     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    635       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
    636       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
    637         return false;
    638     }
    639     return true;
    640   }
    641 
    642   // Anything else is hard and scary.
    643   return false;
    644 }
    645 
    646 /// emitStoresForInitAfterMemset - For inits that
    647 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
    648 /// stores that would be required.
    649 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
    650                                          bool isVolatile, CGBuilderTy &Builder) {
    651   // Zero doesn't require any stores.
    652   if (isa<llvm::ConstantAggregateZero>(Init) ||
    653       isa<llvm::ConstantPointerNull>(Init) ||
    654       isa<llvm::UndefValue>(Init))
    655     return;
    656 
    657   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
    658       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
    659       isa<llvm::ConstantExpr>(Init)) {
    660     if (!Init->isNullValue())
    661       Builder.CreateStore(Init, Loc, isVolatile);
    662     return;
    663   }
    664 
    665   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
    666          "Unknown value type!");
    667 
    668   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    669     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
    670     if (Elt->isNullValue()) continue;
    671 
    672     // Otherwise, get a pointer to the element and emit it.
    673     emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
    674                                  isVolatile, Builder);
    675   }
    676 }
    677 
    678 
    679 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
    680 /// plus some stores to initialize a local variable instead of using a memcpy
    681 /// from a constant global.  It is beneficial to use memset if the global is all
    682 /// zeros, or mostly zeros and large.
    683 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
    684                                                   uint64_t GlobalSize) {
    685   // If a global is all zeros, always use a memset.
    686   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
    687 
    688 
    689   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
    690   // do it if it will require 6 or fewer scalar stores.
    691   // TODO: Should budget depends on the size?  Avoiding a large global warrants
    692   // plopping in more stores.
    693   unsigned StoreBudget = 6;
    694   uint64_t SizeLimit = 32;
    695 
    696   return GlobalSize > SizeLimit &&
    697          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
    698 }
    699 
    700 
    701 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
    702 /// variable declaration with auto, register, or no storage class specifier.
    703 /// These turn into simple stack objects, or GlobalValues depending on target.
    704 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
    705   AutoVarEmission emission = EmitAutoVarAlloca(D);
    706   EmitAutoVarInit(emission);
    707   EmitAutoVarCleanups(emission);
    708 }
    709 
    710 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
    711 /// local variable.  Does not emit initalization or destruction.
    712 CodeGenFunction::AutoVarEmission
    713 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
    714   QualType Ty = D.getType();
    715 
    716   AutoVarEmission emission(D);
    717 
    718   bool isByRef = D.hasAttr<BlocksAttr>();
    719   emission.IsByRef = isByRef;
    720 
    721   CharUnits alignment = getContext().getDeclAlign(&D);
    722   emission.Alignment = alignment;
    723 
    724   // If the type is variably-modified, emit all the VLA sizes for it.
    725   if (Ty->isVariablyModifiedType())
    726     EmitVariablyModifiedType(Ty);
    727 
    728   llvm::Value *DeclPtr;
    729   if (Ty->isConstantSizeType()) {
    730     if (!Target.useGlobalsForAutomaticVariables()) {
    731       bool NRVO = getContext().getLangOptions().ElideConstructors &&
    732                   D.isNRVOVariable();
    733 
    734       // If this value is a POD array or struct with a statically
    735       // determinable constant initializer, there are optimizations we
    736       // can do.
    737       // TODO: we can potentially constant-evaluate non-POD structs and
    738       // arrays as long as the initialization is trivial (e.g. if they
    739       // have a non-trivial destructor, but not a non-trivial constructor).
    740       if (D.getInit() &&
    741           (Ty->isArrayType() || Ty->isRecordType()) &&
    742           (Ty.isPODType(getContext()) ||
    743            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
    744           D.getInit()->isConstantInitializer(getContext(), false)) {
    745 
    746         // If the variable's a const type, and it's neither an NRVO
    747         // candidate nor a __block variable, emit it as a global instead.
    748         if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
    749             !NRVO && !isByRef) {
    750           EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
    751 
    752           emission.Address = 0; // signal this condition to later callbacks
    753           assert(emission.wasEmittedAsGlobal());
    754           return emission;
    755         }
    756 
    757         // Otherwise, tell the initialization code that we're in this case.
    758         emission.IsConstantAggregate = true;
    759       }
    760 
    761       // A normal fixed sized variable becomes an alloca in the entry block,
    762       // unless it's an NRVO variable.
    763       llvm::Type *LTy = ConvertTypeForMem(Ty);
    764 
    765       if (NRVO) {
    766         // The named return value optimization: allocate this variable in the
    767         // return slot, so that we can elide the copy when returning this
    768         // variable (C++0x [class.copy]p34).
    769         DeclPtr = ReturnValue;
    770 
    771         if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
    772           if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
    773             // Create a flag that is used to indicate when the NRVO was applied
    774             // to this variable. Set it to zero to indicate that NRVO was not
    775             // applied.
    776             llvm::Value *Zero = Builder.getFalse();
    777             llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
    778             EnsureInsertPoint();
    779             Builder.CreateStore(Zero, NRVOFlag);
    780 
    781             // Record the NRVO flag for this variable.
    782             NRVOFlags[&D] = NRVOFlag;
    783             emission.NRVOFlag = NRVOFlag;
    784           }
    785         }
    786       } else {
    787         if (isByRef)
    788           LTy = BuildByRefType(&D);
    789 
    790         llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
    791         Alloc->setName(D.getNameAsString());
    792 
    793         CharUnits allocaAlignment = alignment;
    794         if (isByRef)
    795           allocaAlignment = std::max(allocaAlignment,
    796               getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
    797         Alloc->setAlignment(allocaAlignment.getQuantity());
    798         DeclPtr = Alloc;
    799       }
    800     } else {
    801       // Targets that don't support recursion emit locals as globals.
    802       const char *Class =
    803         D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
    804       DeclPtr = CreateStaticVarDecl(D, Class,
    805                                     llvm::GlobalValue::InternalLinkage);
    806     }
    807   } else {
    808     EnsureInsertPoint();
    809 
    810     if (!DidCallStackSave) {
    811       // Save the stack.
    812       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
    813 
    814       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
    815       llvm::Value *V = Builder.CreateCall(F);
    816 
    817       Builder.CreateStore(V, Stack);
    818 
    819       DidCallStackSave = true;
    820 
    821       // Push a cleanup block and restore the stack there.
    822       // FIXME: in general circumstances, this should be an EH cleanup.
    823       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
    824     }
    825 
    826     llvm::Value *elementCount;
    827     QualType elementType;
    828     llvm::tie(elementCount, elementType) = getVLASize(Ty);
    829 
    830     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
    831 
    832     // Allocate memory for the array.
    833     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
    834     vla->setAlignment(alignment.getQuantity());
    835 
    836     DeclPtr = vla;
    837   }
    838 
    839   llvm::Value *&DMEntry = LocalDeclMap[&D];
    840   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
    841   DMEntry = DeclPtr;
    842   emission.Address = DeclPtr;
    843 
    844   // Emit debug info for local var declaration.
    845   if (HaveInsertPoint())
    846     if (CGDebugInfo *DI = getDebugInfo()) {
    847       DI->setLocation(D.getLocation());
    848       if (Target.useGlobalsForAutomaticVariables()) {
    849         DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
    850       } else
    851         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
    852     }
    853 
    854   if (D.hasAttr<AnnotateAttr>())
    855       EmitVarAnnotations(&D, emission.Address);
    856 
    857   return emission;
    858 }
    859 
    860 /// Determines whether the given __block variable is potentially
    861 /// captured by the given expression.
    862 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
    863   // Skip the most common kinds of expressions that make
    864   // hierarchy-walking expensive.
    865   e = e->IgnoreParenCasts();
    866 
    867   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
    868     const BlockDecl *block = be->getBlockDecl();
    869     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
    870            e = block->capture_end(); i != e; ++i) {
    871       if (i->getVariable() == &var)
    872         return true;
    873     }
    874 
    875     // No need to walk into the subexpressions.
    876     return false;
    877   }
    878 
    879   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
    880     const CompoundStmt *CS = SE->getSubStmt();
    881     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
    882 	   BE = CS->body_end(); BI != BE; ++BI)
    883       if (Expr *E = dyn_cast<Expr>((*BI))) {
    884         if (isCapturedBy(var, E))
    885             return true;
    886       }
    887       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
    888           // special case declarations
    889           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
    890                I != E; ++I) {
    891               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
    892                 Expr *Init = VD->getInit();
    893                 if (Init && isCapturedBy(var, Init))
    894                   return true;
    895               }
    896           }
    897       }
    898       else
    899         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
    900         // Later, provide code to poke into statements for capture analysis.
    901         return true;
    902     return false;
    903   }
    904 
    905   for (Stmt::const_child_range children = e->children(); children; ++children)
    906     if (isCapturedBy(var, cast<Expr>(*children)))
    907       return true;
    908 
    909   return false;
    910 }
    911 
    912 /// \brief Determine whether the given initializer is trivial in the sense
    913 /// that it requires no code to be generated.
    914 static bool isTrivialInitializer(const Expr *Init) {
    915   if (!Init)
    916     return true;
    917 
    918   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
    919     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
    920       if (Constructor->isTrivial() &&
    921           Constructor->isDefaultConstructor() &&
    922           !Construct->requiresZeroInitialization())
    923         return true;
    924 
    925   return false;
    926 }
    927 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
    928   assert(emission.Variable && "emission was not valid!");
    929 
    930   // If this was emitted as a global constant, we're done.
    931   if (emission.wasEmittedAsGlobal()) return;
    932 
    933   const VarDecl &D = *emission.Variable;
    934   QualType type = D.getType();
    935 
    936   // If this local has an initializer, emit it now.
    937   const Expr *Init = D.getInit();
    938 
    939   // If we are at an unreachable point, we don't need to emit the initializer
    940   // unless it contains a label.
    941   if (!HaveInsertPoint()) {
    942     if (!Init || !ContainsLabel(Init)) return;
    943     EnsureInsertPoint();
    944   }
    945 
    946   // Initialize the structure of a __block variable.
    947   if (emission.IsByRef)
    948     emitByrefStructureInit(emission);
    949 
    950   if (isTrivialInitializer(Init))
    951     return;
    952 
    953   CharUnits alignment = emission.Alignment;
    954 
    955   // Check whether this is a byref variable that's potentially
    956   // captured and moved by its own initializer.  If so, we'll need to
    957   // emit the initializer first, then copy into the variable.
    958   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
    959 
    960   llvm::Value *Loc =
    961     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
    962 
    963   if (!emission.IsConstantAggregate) {
    964     LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity());
    965     lv.setNonGC(true);
    966     return EmitExprAsInit(Init, &D, lv, capturedByInit);
    967   }
    968 
    969   // If this is a simple aggregate initialization, we can optimize it
    970   // in various ways.
    971   assert(!capturedByInit && "constant init contains a capturing block?");
    972 
    973   bool isVolatile = type.isVolatileQualified();
    974 
    975   llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
    976   assert(constant != 0 && "Wasn't a simple constant init?");
    977 
    978   llvm::Value *SizeVal =
    979     llvm::ConstantInt::get(IntPtrTy,
    980                            getContext().getTypeSizeInChars(type).getQuantity());
    981 
    982   llvm::Type *BP = Int8PtrTy;
    983   if (Loc->getType() != BP)
    984     Loc = Builder.CreateBitCast(Loc, BP);
    985 
    986   // If the initializer is all or mostly zeros, codegen with memset then do
    987   // a few stores afterward.
    988   if (shouldUseMemSetPlusStoresToInitialize(constant,
    989                 CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
    990     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
    991                          alignment.getQuantity(), isVolatile);
    992     if (!constant->isNullValue()) {
    993       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
    994       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
    995     }
    996   } else {
    997     // Otherwise, create a temporary global with the initializer then
    998     // memcpy from the global to the alloca.
    999     std::string Name = GetStaticDeclName(*this, D, ".");
   1000     llvm::GlobalVariable *GV =
   1001       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
   1002                                llvm::GlobalValue::PrivateLinkage,
   1003                                constant, Name, 0, false, 0);
   1004     GV->setAlignment(alignment.getQuantity());
   1005     GV->setUnnamedAddr(true);
   1006 
   1007     llvm::Value *SrcPtr = GV;
   1008     if (SrcPtr->getType() != BP)
   1009       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
   1010 
   1011     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
   1012                          isVolatile);
   1013   }
   1014 }
   1015 
   1016 /// Emit an expression as an initializer for a variable at the given
   1017 /// location.  The expression is not necessarily the normal
   1018 /// initializer for the variable, and the address is not necessarily
   1019 /// its normal location.
   1020 ///
   1021 /// \param init the initializing expression
   1022 /// \param var the variable to act as if we're initializing
   1023 /// \param loc the address to initialize; its type is a pointer
   1024 ///   to the LLVM mapping of the variable's type
   1025 /// \param alignment the alignment of the address
   1026 /// \param capturedByInit true if the variable is a __block variable
   1027 ///   whose address is potentially changed by the initializer
   1028 void CodeGenFunction::EmitExprAsInit(const Expr *init,
   1029                                      const ValueDecl *D,
   1030                                      LValue lvalue,
   1031                                      bool capturedByInit) {
   1032   QualType type = D->getType();
   1033 
   1034   if (type->isReferenceType()) {
   1035     RValue rvalue = EmitReferenceBindingToExpr(init, D);
   1036     if (capturedByInit)
   1037       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
   1038     EmitStoreThroughLValue(rvalue, lvalue);
   1039   } else if (!hasAggregateLLVMType(type)) {
   1040     EmitScalarInit(init, D, lvalue, capturedByInit);
   1041   } else if (type->isAnyComplexType()) {
   1042     ComplexPairTy complex = EmitComplexExpr(init);
   1043     if (capturedByInit)
   1044       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
   1045     StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
   1046   } else {
   1047     // TODO: how can we delay here if D is captured by its initializer?
   1048     EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
   1049                                               AggValueSlot::IsDestructed,
   1050                                          AggValueSlot::DoesNotNeedGCBarriers,
   1051                                               AggValueSlot::IsNotAliased));
   1052   }
   1053 }
   1054 
   1055 /// Enter a destroy cleanup for the given local variable.
   1056 void CodeGenFunction::emitAutoVarTypeCleanup(
   1057                             const CodeGenFunction::AutoVarEmission &emission,
   1058                             QualType::DestructionKind dtorKind) {
   1059   assert(dtorKind != QualType::DK_none);
   1060 
   1061   // Note that for __block variables, we want to destroy the
   1062   // original stack object, not the possibly forwarded object.
   1063   llvm::Value *addr = emission.getObjectAddress(*this);
   1064 
   1065   const VarDecl *var = emission.Variable;
   1066   QualType type = var->getType();
   1067 
   1068   CleanupKind cleanupKind = NormalAndEHCleanup;
   1069   CodeGenFunction::Destroyer *destroyer = 0;
   1070 
   1071   switch (dtorKind) {
   1072   case QualType::DK_none:
   1073     llvm_unreachable("no cleanup for trivially-destructible variable");
   1074 
   1075   case QualType::DK_cxx_destructor:
   1076     // If there's an NRVO flag on the emission, we need a different
   1077     // cleanup.
   1078     if (emission.NRVOFlag) {
   1079       assert(!type->isArrayType());
   1080       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
   1081       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
   1082                                                emission.NRVOFlag);
   1083       return;
   1084     }
   1085     break;
   1086 
   1087   case QualType::DK_objc_strong_lifetime:
   1088     // Suppress cleanups for pseudo-strong variables.
   1089     if (var->isARCPseudoStrong()) return;
   1090 
   1091     // Otherwise, consider whether to use an EH cleanup or not.
   1092     cleanupKind = getARCCleanupKind();
   1093 
   1094     // Use the imprecise destroyer by default.
   1095     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
   1096       destroyer = CodeGenFunction::destroyARCStrongImprecise;
   1097     break;
   1098 
   1099   case QualType::DK_objc_weak_lifetime:
   1100     break;
   1101   }
   1102 
   1103   // If we haven't chosen a more specific destroyer, use the default.
   1104   if (!destroyer) destroyer = &getDestroyer(dtorKind);
   1105 
   1106   // Use an EH cleanup in array destructors iff the destructor itself
   1107   // is being pushed as an EH cleanup.
   1108   bool useEHCleanup = (cleanupKind & EHCleanup);
   1109   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
   1110                                      useEHCleanup);
   1111 }
   1112 
   1113 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
   1114   assert(emission.Variable && "emission was not valid!");
   1115 
   1116   // If this was emitted as a global constant, we're done.
   1117   if (emission.wasEmittedAsGlobal()) return;
   1118 
   1119   const VarDecl &D = *emission.Variable;
   1120 
   1121   // Check the type for a cleanup.
   1122   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
   1123     emitAutoVarTypeCleanup(emission, dtorKind);
   1124 
   1125   // In GC mode, honor objc_precise_lifetime.
   1126   if (getLangOptions().getGC() != LangOptions::NonGC &&
   1127       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
   1128     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
   1129   }
   1130 
   1131   // Handle the cleanup attribute.
   1132   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
   1133     const FunctionDecl *FD = CA->getFunctionDecl();
   1134 
   1135     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
   1136     assert(F && "Could not find function!");
   1137 
   1138     const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
   1139     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
   1140   }
   1141 
   1142   // If this is a block variable, call _Block_object_destroy
   1143   // (on the unforwarded address).
   1144   if (emission.IsByRef)
   1145     enterByrefCleanup(emission);
   1146 }
   1147 
   1148 CodeGenFunction::Destroyer &
   1149 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
   1150   // This is surprisingly compiler-dependent.  GCC 4.2 can't bind
   1151   // references to functions directly in returns, and using '*&foo'
   1152   // confuses MSVC.  Luckily, the following code pattern works in both.
   1153   Destroyer *destroyer = 0;
   1154   switch (kind) {
   1155   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
   1156   case QualType::DK_cxx_destructor:
   1157     destroyer = &destroyCXXObject;
   1158     break;
   1159   case QualType::DK_objc_strong_lifetime:
   1160     destroyer = &destroyARCStrongPrecise;
   1161     break;
   1162   case QualType::DK_objc_weak_lifetime:
   1163     destroyer = &destroyARCWeak;
   1164     break;
   1165   }
   1166   return *destroyer;
   1167 }
   1168 
   1169 /// pushDestroy - Push the standard destructor for the given type.
   1170 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
   1171                                   llvm::Value *addr, QualType type) {
   1172   assert(dtorKind && "cannot push destructor for trivial type");
   1173 
   1174   CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1175   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
   1176               cleanupKind & EHCleanup);
   1177 }
   1178 
   1179 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
   1180                                   QualType type, Destroyer &destroyer,
   1181                                   bool useEHCleanupForArray) {
   1182   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
   1183                                      destroyer, useEHCleanupForArray);
   1184 }
   1185 
   1186 /// emitDestroy - Immediately perform the destruction of the given
   1187 /// object.
   1188 ///
   1189 /// \param addr - the address of the object; a type*
   1190 /// \param type - the type of the object; if an array type, all
   1191 ///   objects are destroyed in reverse order
   1192 /// \param destroyer - the function to call to destroy individual
   1193 ///   elements
   1194 /// \param useEHCleanupForArray - whether an EH cleanup should be
   1195 ///   used when destroying array elements, in case one of the
   1196 ///   destructions throws an exception
   1197 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
   1198                                   Destroyer &destroyer,
   1199                                   bool useEHCleanupForArray) {
   1200   const ArrayType *arrayType = getContext().getAsArrayType(type);
   1201   if (!arrayType)
   1202     return destroyer(*this, addr, type);
   1203 
   1204   llvm::Value *begin = addr;
   1205   llvm::Value *length = emitArrayLength(arrayType, type, begin);
   1206 
   1207   // Normally we have to check whether the array is zero-length.
   1208   bool checkZeroLength = true;
   1209 
   1210   // But if the array length is constant, we can suppress that.
   1211   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
   1212     // ...and if it's constant zero, we can just skip the entire thing.
   1213     if (constLength->isZero()) return;
   1214     checkZeroLength = false;
   1215   }
   1216 
   1217   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
   1218   emitArrayDestroy(begin, end, type, destroyer,
   1219                    checkZeroLength, useEHCleanupForArray);
   1220 }
   1221 
   1222 /// emitArrayDestroy - Destroys all the elements of the given array,
   1223 /// beginning from last to first.  The array cannot be zero-length.
   1224 ///
   1225 /// \param begin - a type* denoting the first element of the array
   1226 /// \param end - a type* denoting one past the end of the array
   1227 /// \param type - the element type of the array
   1228 /// \param destroyer - the function to call to destroy elements
   1229 /// \param useEHCleanup - whether to push an EH cleanup to destroy
   1230 ///   the remaining elements in case the destruction of a single
   1231 ///   element throws
   1232 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
   1233                                        llvm::Value *end,
   1234                                        QualType type,
   1235                                        Destroyer &destroyer,
   1236                                        bool checkZeroLength,
   1237                                        bool useEHCleanup) {
   1238   assert(!type->isArrayType());
   1239 
   1240   // The basic structure here is a do-while loop, because we don't
   1241   // need to check for the zero-element case.
   1242   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
   1243   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
   1244 
   1245   if (checkZeroLength) {
   1246     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
   1247                                                 "arraydestroy.isempty");
   1248     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
   1249   }
   1250 
   1251   // Enter the loop body, making that address the current address.
   1252   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1253   EmitBlock(bodyBB);
   1254   llvm::PHINode *elementPast =
   1255     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
   1256   elementPast->addIncoming(end, entryBB);
   1257 
   1258   // Shift the address back by one element.
   1259   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
   1260   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
   1261                                                    "arraydestroy.element");
   1262 
   1263   if (useEHCleanup)
   1264     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
   1265 
   1266   // Perform the actual destruction there.
   1267   destroyer(*this, element, type);
   1268 
   1269   if (useEHCleanup)
   1270     PopCleanupBlock();
   1271 
   1272   // Check whether we've reached the end.
   1273   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
   1274   Builder.CreateCondBr(done, doneBB, bodyBB);
   1275   elementPast->addIncoming(element, Builder.GetInsertBlock());
   1276 
   1277   // Done.
   1278   EmitBlock(doneBB);
   1279 }
   1280 
   1281 /// Perform partial array destruction as if in an EH cleanup.  Unlike
   1282 /// emitArrayDestroy, the element type here may still be an array type.
   1283 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
   1284                                     llvm::Value *begin, llvm::Value *end,
   1285                                     QualType type,
   1286                                     CodeGenFunction::Destroyer &destroyer) {
   1287   // If the element type is itself an array, drill down.
   1288   unsigned arrayDepth = 0;
   1289   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
   1290     // VLAs don't require a GEP index to walk into.
   1291     if (!isa<VariableArrayType>(arrayType))
   1292       arrayDepth++;
   1293     type = arrayType->getElementType();
   1294   }
   1295 
   1296   if (arrayDepth) {
   1297     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
   1298 
   1299     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
   1300     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
   1301     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
   1302   }
   1303 
   1304   // Destroy the array.  We don't ever need an EH cleanup because we
   1305   // assume that we're in an EH cleanup ourselves, so a throwing
   1306   // destructor causes an immediate terminate.
   1307   CGF.emitArrayDestroy(begin, end, type, destroyer,
   1308                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
   1309 }
   1310 
   1311 namespace {
   1312   /// RegularPartialArrayDestroy - a cleanup which performs a partial
   1313   /// array destroy where the end pointer is regularly determined and
   1314   /// does not need to be loaded from a local.
   1315   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
   1316     llvm::Value *ArrayBegin;
   1317     llvm::Value *ArrayEnd;
   1318     QualType ElementType;
   1319     CodeGenFunction::Destroyer &Destroyer;
   1320   public:
   1321     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
   1322                                QualType elementType,
   1323                                CodeGenFunction::Destroyer *destroyer)
   1324       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
   1325         ElementType(elementType), Destroyer(*destroyer) {}
   1326 
   1327     void Emit(CodeGenFunction &CGF, Flags flags) {
   1328       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
   1329                               ElementType, Destroyer);
   1330     }
   1331   };
   1332 
   1333   /// IrregularPartialArrayDestroy - a cleanup which performs a
   1334   /// partial array destroy where the end pointer is irregularly
   1335   /// determined and must be loaded from a local.
   1336   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
   1337     llvm::Value *ArrayBegin;
   1338     llvm::Value *ArrayEndPointer;
   1339     QualType ElementType;
   1340     CodeGenFunction::Destroyer &Destroyer;
   1341   public:
   1342     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
   1343                                  llvm::Value *arrayEndPointer,
   1344                                  QualType elementType,
   1345                                  CodeGenFunction::Destroyer *destroyer)
   1346       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
   1347         ElementType(elementType), Destroyer(*destroyer) {}
   1348 
   1349     void Emit(CodeGenFunction &CGF, Flags flags) {
   1350       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
   1351       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
   1352                               ElementType, Destroyer);
   1353     }
   1354   };
   1355 }
   1356 
   1357 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
   1358 /// already-constructed elements of the given array.  The cleanup
   1359 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
   1360 ///
   1361 /// \param elementType - the immediate element type of the array;
   1362 ///   possibly still an array type
   1363 /// \param array - a value of type elementType*
   1364 /// \param destructionKind - the kind of destruction required
   1365 /// \param initializedElementCount - a value of type size_t* holding
   1366 ///   the number of successfully-constructed elements
   1367 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1368                                                  llvm::Value *arrayEndPointer,
   1369                                                        QualType elementType,
   1370                                                        Destroyer &destroyer) {
   1371   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
   1372                                                     arrayBegin, arrayEndPointer,
   1373                                                     elementType, &destroyer);
   1374 }
   1375 
   1376 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
   1377 /// already-constructed elements of the given array.  The cleanup
   1378 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
   1379 ///
   1380 /// \param elementType - the immediate element type of the array;
   1381 ///   possibly still an array type
   1382 /// \param array - a value of type elementType*
   1383 /// \param destructionKind - the kind of destruction required
   1384 /// \param initializedElementCount - a value of type size_t* holding
   1385 ///   the number of successfully-constructed elements
   1386 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1387                                                      llvm::Value *arrayEnd,
   1388                                                      QualType elementType,
   1389                                                      Destroyer &destroyer) {
   1390   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
   1391                                                   arrayBegin, arrayEnd,
   1392                                                   elementType, &destroyer);
   1393 }
   1394 
   1395 namespace {
   1396   /// A cleanup to perform a release of an object at the end of a
   1397   /// function.  This is used to balance out the incoming +1 of a
   1398   /// ns_consumed argument when we can't reasonably do that just by
   1399   /// not doing the initial retain for a __block argument.
   1400   struct ConsumeARCParameter : EHScopeStack::Cleanup {
   1401     ConsumeARCParameter(llvm::Value *param) : Param(param) {}
   1402 
   1403     llvm::Value *Param;
   1404 
   1405     void Emit(CodeGenFunction &CGF, Flags flags) {
   1406       CGF.EmitARCRelease(Param, /*precise*/ false);
   1407     }
   1408   };
   1409 }
   1410 
   1411 /// Emit an alloca (or GlobalValue depending on target)
   1412 /// for the specified parameter and set up LocalDeclMap.
   1413 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
   1414                                    unsigned ArgNo) {
   1415   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
   1416   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
   1417          "Invalid argument to EmitParmDecl");
   1418 
   1419   Arg->setName(D.getName());
   1420 
   1421   // Use better IR generation for certain implicit parameters.
   1422   if (isa<ImplicitParamDecl>(D)) {
   1423     // The only implicit argument a block has is its literal.
   1424     if (BlockInfo) {
   1425       LocalDeclMap[&D] = Arg;
   1426 
   1427       if (CGDebugInfo *DI = getDebugInfo()) {
   1428         DI->setLocation(D.getLocation());
   1429         DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
   1430       }
   1431 
   1432       return;
   1433     }
   1434   }
   1435 
   1436   QualType Ty = D.getType();
   1437 
   1438   llvm::Value *DeclPtr;
   1439   // If this is an aggregate or variable sized value, reuse the input pointer.
   1440   if (!Ty->isConstantSizeType() ||
   1441       CodeGenFunction::hasAggregateLLVMType(Ty)) {
   1442     DeclPtr = Arg;
   1443   } else {
   1444     // Otherwise, create a temporary to hold the value.
   1445     DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
   1446 
   1447     bool doStore = true;
   1448 
   1449     Qualifiers qs = Ty.getQualifiers();
   1450 
   1451     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
   1452       // We honor __attribute__((ns_consumed)) for types with lifetime.
   1453       // For __strong, it's handled by just skipping the initial retain;
   1454       // otherwise we have to balance out the initial +1 with an extra
   1455       // cleanup to do the release at the end of the function.
   1456       bool isConsumed = D.hasAttr<NSConsumedAttr>();
   1457 
   1458       // 'self' is always formally __strong, but if this is not an
   1459       // init method then we don't want to retain it.
   1460       if (D.isARCPseudoStrong()) {
   1461         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
   1462         assert(&D == method->getSelfDecl());
   1463         assert(lt == Qualifiers::OCL_Strong);
   1464         assert(qs.hasConst());
   1465         assert(method->getMethodFamily() != OMF_init);
   1466         (void) method;
   1467         lt = Qualifiers::OCL_ExplicitNone;
   1468       }
   1469 
   1470       if (lt == Qualifiers::OCL_Strong) {
   1471         if (!isConsumed)
   1472           // Don't use objc_retainBlock for block pointers, because we
   1473           // don't want to Block_copy something just because we got it
   1474           // as a parameter.
   1475           Arg = EmitARCRetainNonBlock(Arg);
   1476       } else {
   1477         // Push the cleanup for a consumed parameter.
   1478         if (isConsumed)
   1479           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
   1480 
   1481         if (lt == Qualifiers::OCL_Weak) {
   1482           EmitARCInitWeak(DeclPtr, Arg);
   1483           doStore = false; // The weak init is a store, no need to do two
   1484         }
   1485       }
   1486 
   1487       // Enter the cleanup scope.
   1488       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
   1489     }
   1490 
   1491     // Store the initial value into the alloca.
   1492     if (doStore) {
   1493       LValue lv = MakeAddrLValue(DeclPtr, Ty,
   1494                                  getContext().getDeclAlign(&D).getQuantity());
   1495       EmitStoreOfScalar(Arg, lv);
   1496     }
   1497   }
   1498 
   1499   llvm::Value *&DMEntry = LocalDeclMap[&D];
   1500   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
   1501   DMEntry = DeclPtr;
   1502 
   1503   // Emit debug info for param declaration.
   1504   if (CGDebugInfo *DI = getDebugInfo())
   1505     DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
   1506 
   1507   if (D.hasAttr<AnnotateAttr>())
   1508       EmitVarAnnotations(&D, DeclPtr);
   1509 }
   1510