Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/Sema/ExternalSemaSource.h"
     17 #include "clang/Sema/Scope.h"
     18 #include "clang/Sema/ScopeInfo.h"
     19 #include "clang/AST/ASTConsumer.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/Basic/SourceManager.h"
     25 #include "clang/Sema/DeclSpec.h"
     26 #include "llvm/ADT/DenseSet.h"
     27 
     28 using namespace clang;
     29 
     30 /// Check whether the given method, which must be in the 'init'
     31 /// family, is a valid member of that family.
     32 ///
     33 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     34 ///   if non-null, check this as if making a call to it with the given
     35 ///   receiver type
     36 ///
     37 /// \return true to indicate that there was an error and appropriate
     38 ///   actions were taken
     39 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     40                            QualType receiverTypeIfCall) {
     41   if (method->isInvalidDecl()) return true;
     42 
     43   // This castAs is safe: methods that don't return an object
     44   // pointer won't be inferred as inits and will reject an explicit
     45   // objc_method_family(init).
     46 
     47   // We ignore protocols here.  Should we?  What about Class?
     48 
     49   const ObjCObjectType *result = method->getResultType()
     50     ->castAs<ObjCObjectPointerType>()->getObjectType();
     51 
     52   if (result->isObjCId()) {
     53     return false;
     54   } else if (result->isObjCClass()) {
     55     // fall through: always an error
     56   } else {
     57     ObjCInterfaceDecl *resultClass = result->getInterface();
     58     assert(resultClass && "unexpected object type!");
     59 
     60     // It's okay for the result type to still be a forward declaration
     61     // if we're checking an interface declaration.
     62     if (resultClass->isForwardDecl()) {
     63       if (receiverTypeIfCall.isNull() &&
     64           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     65         return false;
     66 
     67     // Otherwise, we try to compare class types.
     68     } else {
     69       // If this method was declared in a protocol, we can't check
     70       // anything unless we have a receiver type that's an interface.
     71       const ObjCInterfaceDecl *receiverClass = 0;
     72       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     73         if (receiverTypeIfCall.isNull())
     74           return false;
     75 
     76         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     77           ->getInterfaceDecl();
     78 
     79         // This can be null for calls to e.g. id<Foo>.
     80         if (!receiverClass) return false;
     81       } else {
     82         receiverClass = method->getClassInterface();
     83         assert(receiverClass && "method not associated with a class!");
     84       }
     85 
     86       // If either class is a subclass of the other, it's fine.
     87       if (receiverClass->isSuperClassOf(resultClass) ||
     88           resultClass->isSuperClassOf(receiverClass))
     89         return false;
     90     }
     91   }
     92 
     93   SourceLocation loc = method->getLocation();
     94 
     95   // If we're in a system header, and this is not a call, just make
     96   // the method unusable.
     97   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
     98     method->addAttr(new (Context) UnavailableAttr(loc, Context,
     99                 "init method returns a type unrelated to its receiver type"));
    100     return true;
    101   }
    102 
    103   // Otherwise, it's an error.
    104   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    105   method->setInvalidDecl();
    106   return true;
    107 }
    108 
    109 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    110                                    const ObjCMethodDecl *Overridden,
    111                                    bool IsImplementation) {
    112   if (Overridden->hasRelatedResultType() &&
    113       !NewMethod->hasRelatedResultType()) {
    114     // This can only happen when the method follows a naming convention that
    115     // implies a related result type, and the original (overridden) method has
    116     // a suitable return type, but the new (overriding) method does not have
    117     // a suitable return type.
    118     QualType ResultType = NewMethod->getResultType();
    119     SourceRange ResultTypeRange;
    120     if (const TypeSourceInfo *ResultTypeInfo
    121                                         = NewMethod->getResultTypeSourceInfo())
    122       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    123 
    124     // Figure out which class this method is part of, if any.
    125     ObjCInterfaceDecl *CurrentClass
    126       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    127     if (!CurrentClass) {
    128       DeclContext *DC = NewMethod->getDeclContext();
    129       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    130         CurrentClass = Cat->getClassInterface();
    131       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    132         CurrentClass = Impl->getClassInterface();
    133       else if (ObjCCategoryImplDecl *CatImpl
    134                = dyn_cast<ObjCCategoryImplDecl>(DC))
    135         CurrentClass = CatImpl->getClassInterface();
    136     }
    137 
    138     if (CurrentClass) {
    139       Diag(NewMethod->getLocation(),
    140            diag::warn_related_result_type_compatibility_class)
    141         << Context.getObjCInterfaceType(CurrentClass)
    142         << ResultType
    143         << ResultTypeRange;
    144     } else {
    145       Diag(NewMethod->getLocation(),
    146            diag::warn_related_result_type_compatibility_protocol)
    147         << ResultType
    148         << ResultTypeRange;
    149     }
    150 
    151     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    152       Diag(Overridden->getLocation(),
    153            diag::note_related_result_type_overridden_family)
    154         << Family;
    155     else
    156       Diag(Overridden->getLocation(),
    157            diag::note_related_result_type_overridden);
    158   }
    159   if (getLangOptions().ObjCAutoRefCount) {
    160     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    161          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    162         Diag(NewMethod->getLocation(),
    163              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    164         Diag(Overridden->getLocation(), diag::note_previous_decl)
    165         << "method";
    166     }
    167     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    168               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    169         Diag(NewMethod->getLocation(),
    170              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    171         Diag(Overridden->getLocation(), diag::note_previous_decl)
    172         << "method";
    173     }
    174     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
    175     for (ObjCMethodDecl::param_iterator
    176            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    177          ni != ne; ++ni, ++oi) {
    178       const ParmVarDecl *oldDecl = (*oi);
    179       ParmVarDecl *newDecl = (*ni);
    180       if (newDecl->hasAttr<NSConsumedAttr>() !=
    181           oldDecl->hasAttr<NSConsumedAttr>()) {
    182         Diag(newDecl->getLocation(),
    183              diag::err_nsconsumed_attribute_mismatch);
    184         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    185           << "parameter";
    186       }
    187     }
    188   }
    189 }
    190 
    191 /// \brief Check a method declaration for compatibility with the Objective-C
    192 /// ARC conventions.
    193 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
    194   ObjCMethodFamily family = method->getMethodFamily();
    195   switch (family) {
    196   case OMF_None:
    197   case OMF_dealloc:
    198   case OMF_finalize:
    199   case OMF_retain:
    200   case OMF_release:
    201   case OMF_autorelease:
    202   case OMF_retainCount:
    203   case OMF_self:
    204   case OMF_performSelector:
    205     return false;
    206 
    207   case OMF_init:
    208     // If the method doesn't obey the init rules, don't bother annotating it.
    209     if (S.checkInitMethod(method, QualType()))
    210       return true;
    211 
    212     method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
    213                                                        S.Context));
    214 
    215     // Don't add a second copy of this attribute, but otherwise don't
    216     // let it be suppressed.
    217     if (method->hasAttr<NSReturnsRetainedAttr>())
    218       return false;
    219     break;
    220 
    221   case OMF_alloc:
    222   case OMF_copy:
    223   case OMF_mutableCopy:
    224   case OMF_new:
    225     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    226         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    227         method->hasAttr<NSReturnsAutoreleasedAttr>())
    228       return false;
    229     break;
    230   }
    231 
    232   method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
    233                                                         S.Context));
    234   return false;
    235 }
    236 
    237 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    238                                                 NamedDecl *ND,
    239                                                 SourceLocation ImplLoc,
    240                                                 int select) {
    241   if (ND && ND->isDeprecated()) {
    242     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    243     if (select == 0)
    244       S.Diag(ND->getLocation(), diag::note_method_declared_at);
    245     else
    246       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    247   }
    248 }
    249 
    250 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    251 /// pool.
    252 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    253   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    254 
    255   // If we don't have a valid method decl, simply return.
    256   if (!MDecl)
    257     return;
    258   if (MDecl->isInstanceMethod())
    259     AddInstanceMethodToGlobalPool(MDecl, true);
    260   else
    261     AddFactoryMethodToGlobalPool(MDecl, true);
    262 }
    263 
    264 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    265 /// and user declared, in the method definition's AST.
    266 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    267   assert(getCurMethodDecl() == 0 && "Method parsing confused");
    268   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    269 
    270   // If we don't have a valid method decl, simply return.
    271   if (!MDecl)
    272     return;
    273 
    274   // Allow all of Sema to see that we are entering a method definition.
    275   PushDeclContext(FnBodyScope, MDecl);
    276   PushFunctionScope();
    277 
    278   // Create Decl objects for each parameter, entrring them in the scope for
    279   // binding to their use.
    280 
    281   // Insert the invisible arguments, self and _cmd!
    282   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    283 
    284   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    285   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    286 
    287   // Introduce all of the other parameters into this scope.
    288   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
    289        E = MDecl->param_end(); PI != E; ++PI) {
    290     ParmVarDecl *Param = (*PI);
    291     if (!Param->isInvalidDecl() &&
    292         RequireCompleteType(Param->getLocation(), Param->getType(),
    293                             diag::err_typecheck_decl_incomplete_type))
    294           Param->setInvalidDecl();
    295     if ((*PI)->getIdentifier())
    296       PushOnScopeChains(*PI, FnBodyScope);
    297   }
    298 
    299   // In ARC, disallow definition of retain/release/autorelease/retainCount
    300   if (getLangOptions().ObjCAutoRefCount) {
    301     switch (MDecl->getMethodFamily()) {
    302     case OMF_retain:
    303     case OMF_retainCount:
    304     case OMF_release:
    305     case OMF_autorelease:
    306       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    307         << MDecl->getSelector();
    308       break;
    309 
    310     case OMF_None:
    311     case OMF_dealloc:
    312     case OMF_finalize:
    313     case OMF_alloc:
    314     case OMF_init:
    315     case OMF_mutableCopy:
    316     case OMF_copy:
    317     case OMF_new:
    318     case OMF_self:
    319     case OMF_performSelector:
    320       break;
    321     }
    322   }
    323 
    324   // Warn on deprecated methods under -Wdeprecated-implementations,
    325   // and prepare for warning on missing super calls.
    326   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    327     if (ObjCMethodDecl *IMD =
    328           IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
    329       DiagnoseObjCImplementedDeprecations(*this,
    330                                           dyn_cast<NamedDecl>(IMD),
    331                                           MDecl->getLocation(), 0);
    332 
    333     // If this is "dealloc" or "finalize", set some bit here.
    334     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    335     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    336     // Only do this if the current class actually has a superclass.
    337     if (IC->getSuperClass()) {
    338       ObjCShouldCallSuperDealloc =
    339         !(Context.getLangOptions().ObjCAutoRefCount ||
    340           Context.getLangOptions().getGC() == LangOptions::GCOnly) &&
    341         MDecl->getMethodFamily() == OMF_dealloc;
    342       ObjCShouldCallSuperFinalize =
    343         Context.getLangOptions().getGC() != LangOptions::NonGC &&
    344         MDecl->getMethodFamily() == OMF_finalize;
    345     }
    346   }
    347 }
    348 
    349 Decl *Sema::
    350 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
    351                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    352                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    353                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    354                          const SourceLocation *ProtoLocs,
    355                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    356   assert(ClassName && "Missing class identifier");
    357 
    358   // Check for another declaration kind with the same name.
    359   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    360                                          LookupOrdinaryName, ForRedeclaration);
    361 
    362   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    363     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    364     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    365   }
    366 
    367   ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    368   if (IDecl) {
    369     // Class already seen. Is it a forward declaration?
    370     if (!IDecl->isForwardDecl()) {
    371       IDecl->setInvalidDecl();
    372       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
    373       Diag(IDecl->getLocation(), diag::note_previous_definition);
    374 
    375       // Return the previous class interface.
    376       // FIXME: don't leak the objects passed in!
    377       return ActOnObjCContainerStartDefinition(IDecl);
    378     } else {
    379       IDecl->setLocation(ClassLoc);
    380       IDecl->setForwardDecl(false);
    381       IDecl->setAtStartLoc(AtInterfaceLoc);
    382       // If the forward decl was in a PCH, we need to write it again in a
    383       // dependent AST file.
    384       IDecl->setChangedSinceDeserialization(true);
    385 
    386       // Since this ObjCInterfaceDecl was created by a forward declaration,
    387       // we now add it to the DeclContext since it wasn't added before
    388       // (see ActOnForwardClassDeclaration).
    389       IDecl->setLexicalDeclContext(CurContext);
    390       CurContext->addDecl(IDecl);
    391 
    392       if (AttrList)
    393         ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    394     }
    395   } else {
    396     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
    397                                       ClassName, ClassLoc);
    398     if (AttrList)
    399       ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    400 
    401     PushOnScopeChains(IDecl, TUScope);
    402   }
    403 
    404   if (SuperName) {
    405     // Check if a different kind of symbol declared in this scope.
    406     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    407                                 LookupOrdinaryName);
    408 
    409     if (!PrevDecl) {
    410       // Try to correct for a typo in the superclass name.
    411       TypoCorrection Corrected = CorrectTypo(
    412           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
    413           NULL, NULL, false, CTC_NoKeywords);
    414       if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
    415         Diag(SuperLoc, diag::err_undef_superclass_suggest)
    416           << SuperName << ClassName << PrevDecl->getDeclName();
    417         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
    418           << PrevDecl->getDeclName();
    419       }
    420     }
    421 
    422     if (PrevDecl == IDecl) {
    423       Diag(SuperLoc, diag::err_recursive_superclass)
    424         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    425       IDecl->setLocEnd(ClassLoc);
    426     } else {
    427       ObjCInterfaceDecl *SuperClassDecl =
    428                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    429 
    430       // Diagnose classes that inherit from deprecated classes.
    431       if (SuperClassDecl)
    432         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    433 
    434       if (PrevDecl && SuperClassDecl == 0) {
    435         // The previous declaration was not a class decl. Check if we have a
    436         // typedef. If we do, get the underlying class type.
    437         if (const TypedefNameDecl *TDecl =
    438               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    439           QualType T = TDecl->getUnderlyingType();
    440           if (T->isObjCObjectType()) {
    441             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
    442               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    443           }
    444         }
    445 
    446         // This handles the following case:
    447         //
    448         // typedef int SuperClass;
    449         // @interface MyClass : SuperClass {} @end
    450         //
    451         if (!SuperClassDecl) {
    452           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    453           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    454         }
    455       }
    456 
    457       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    458         if (!SuperClassDecl)
    459           Diag(SuperLoc, diag::err_undef_superclass)
    460             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    461         else if (SuperClassDecl->isForwardDecl()) {
    462           Diag(SuperLoc, diag::err_forward_superclass)
    463             << SuperClassDecl->getDeclName() << ClassName
    464             << SourceRange(AtInterfaceLoc, ClassLoc);
    465           Diag(SuperClassDecl->getLocation(), diag::note_forward_class);
    466           SuperClassDecl = 0;
    467         }
    468       }
    469       IDecl->setSuperClass(SuperClassDecl);
    470       IDecl->setSuperClassLoc(SuperLoc);
    471       IDecl->setLocEnd(SuperLoc);
    472     }
    473   } else { // we have a root class.
    474     IDecl->setLocEnd(ClassLoc);
    475   }
    476 
    477   // Check then save referenced protocols.
    478   if (NumProtoRefs) {
    479     IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    480                            ProtoLocs, Context);
    481     IDecl->setLocEnd(EndProtoLoc);
    482   }
    483 
    484   CheckObjCDeclScope(IDecl);
    485   return ActOnObjCContainerStartDefinition(IDecl);
    486 }
    487 
    488 /// ActOnCompatiblityAlias - this action is called after complete parsing of
    489 /// @compatibility_alias declaration. It sets up the alias relationships.
    490 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
    491                                         IdentifierInfo *AliasName,
    492                                         SourceLocation AliasLocation,
    493                                         IdentifierInfo *ClassName,
    494                                         SourceLocation ClassLocation) {
    495   // Look for previous declaration of alias name
    496   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
    497                                       LookupOrdinaryName, ForRedeclaration);
    498   if (ADecl) {
    499     if (isa<ObjCCompatibleAliasDecl>(ADecl))
    500       Diag(AliasLocation, diag::warn_previous_alias_decl);
    501     else
    502       Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
    503     Diag(ADecl->getLocation(), diag::note_previous_declaration);
    504     return 0;
    505   }
    506   // Check for class declaration
    507   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    508                                        LookupOrdinaryName, ForRedeclaration);
    509   if (const TypedefNameDecl *TDecl =
    510         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
    511     QualType T = TDecl->getUnderlyingType();
    512     if (T->isObjCObjectType()) {
    513       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    514         ClassName = IDecl->getIdentifier();
    515         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    516                                   LookupOrdinaryName, ForRedeclaration);
    517       }
    518     }
    519   }
    520   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
    521   if (CDecl == 0) {
    522     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
    523     if (CDeclU)
    524       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
    525     return 0;
    526   }
    527 
    528   // Everything checked out, instantiate a new alias declaration AST.
    529   ObjCCompatibleAliasDecl *AliasDecl =
    530     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
    531 
    532   if (!CheckObjCDeclScope(AliasDecl))
    533     PushOnScopeChains(AliasDecl, TUScope);
    534 
    535   return AliasDecl;
    536 }
    537 
    538 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
    539   IdentifierInfo *PName,
    540   SourceLocation &Ploc, SourceLocation PrevLoc,
    541   const ObjCList<ObjCProtocolDecl> &PList) {
    542 
    543   bool res = false;
    544   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
    545        E = PList.end(); I != E; ++I) {
    546     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
    547                                                  Ploc)) {
    548       if (PDecl->getIdentifier() == PName) {
    549         Diag(Ploc, diag::err_protocol_has_circular_dependency);
    550         Diag(PrevLoc, diag::note_previous_definition);
    551         res = true;
    552       }
    553       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
    554             PDecl->getLocation(), PDecl->getReferencedProtocols()))
    555         res = true;
    556     }
    557   }
    558   return res;
    559 }
    560 
    561 Decl *
    562 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
    563                                   IdentifierInfo *ProtocolName,
    564                                   SourceLocation ProtocolLoc,
    565                                   Decl * const *ProtoRefs,
    566                                   unsigned NumProtoRefs,
    567                                   const SourceLocation *ProtoLocs,
    568                                   SourceLocation EndProtoLoc,
    569                                   AttributeList *AttrList) {
    570   bool err = false;
    571   // FIXME: Deal with AttrList.
    572   assert(ProtocolName && "Missing protocol identifier");
    573   ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
    574   if (PDecl) {
    575     // Protocol already seen. Better be a forward protocol declaration
    576     if (!PDecl->isForwardDecl()) {
    577       Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
    578       Diag(PDecl->getLocation(), diag::note_previous_definition);
    579       // Just return the protocol we already had.
    580       // FIXME: don't leak the objects passed in!
    581       return ActOnObjCContainerStartDefinition(PDecl);
    582     }
    583     ObjCList<ObjCProtocolDecl> PList;
    584     PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
    585     err = CheckForwardProtocolDeclarationForCircularDependency(
    586             ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
    587 
    588     // Make sure the cached decl gets a valid start location.
    589     PDecl->setAtStartLoc(AtProtoInterfaceLoc);
    590     PDecl->setLocation(ProtocolLoc);
    591     PDecl->setForwardDecl(false);
    592     // Since this ObjCProtocolDecl was created by a forward declaration,
    593     // we now add it to the DeclContext since it wasn't added before
    594     PDecl->setLexicalDeclContext(CurContext);
    595     CurContext->addDecl(PDecl);
    596     // Repeat in dependent AST files.
    597     PDecl->setChangedSinceDeserialization(true);
    598   } else {
    599     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    600                                      ProtocolLoc, AtProtoInterfaceLoc,
    601                                      /*isForwardDecl=*/false);
    602     PushOnScopeChains(PDecl, TUScope);
    603     PDecl->setForwardDecl(false);
    604   }
    605   if (AttrList)
    606     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
    607   if (!err && NumProtoRefs ) {
    608     /// Check then save referenced protocols.
    609     PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    610                            ProtoLocs, Context);
    611     PDecl->setLocEnd(EndProtoLoc);
    612   }
    613 
    614   CheckObjCDeclScope(PDecl);
    615   return ActOnObjCContainerStartDefinition(PDecl);
    616 }
    617 
    618 /// FindProtocolDeclaration - This routine looks up protocols and
    619 /// issues an error if they are not declared. It returns list of
    620 /// protocol declarations in its 'Protocols' argument.
    621 void
    622 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
    623                               const IdentifierLocPair *ProtocolId,
    624                               unsigned NumProtocols,
    625                               SmallVectorImpl<Decl *> &Protocols) {
    626   for (unsigned i = 0; i != NumProtocols; ++i) {
    627     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
    628                                              ProtocolId[i].second);
    629     if (!PDecl) {
    630       TypoCorrection Corrected = CorrectTypo(
    631           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
    632           LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords);
    633       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
    634         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
    635           << ProtocolId[i].first << Corrected.getCorrection();
    636         Diag(PDecl->getLocation(), diag::note_previous_decl)
    637           << PDecl->getDeclName();
    638       }
    639     }
    640 
    641     if (!PDecl) {
    642       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
    643         << ProtocolId[i].first;
    644       continue;
    645     }
    646 
    647     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
    648 
    649     // If this is a forward declaration and we are supposed to warn in this
    650     // case, do it.
    651     if (WarnOnDeclarations && PDecl->isForwardDecl())
    652       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
    653         << ProtocolId[i].first;
    654     Protocols.push_back(PDecl);
    655   }
    656 }
    657 
    658 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
    659 /// a class method in its extension.
    660 ///
    661 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
    662                                             ObjCInterfaceDecl *ID) {
    663   if (!ID)
    664     return;  // Possibly due to previous error
    665 
    666   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
    667   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
    668        e =  ID->meth_end(); i != e; ++i) {
    669     ObjCMethodDecl *MD = *i;
    670     MethodMap[MD->getSelector()] = MD;
    671   }
    672 
    673   if (MethodMap.empty())
    674     return;
    675   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
    676        e =  CAT->meth_end(); i != e; ++i) {
    677     ObjCMethodDecl *Method = *i;
    678     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
    679     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
    680       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
    681             << Method->getDeclName();
    682       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
    683     }
    684   }
    685 }
    686 
    687 /// ActOnForwardProtocolDeclaration - Handle @protocol foo;
    688 Decl *
    689 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
    690                                       const IdentifierLocPair *IdentList,
    691                                       unsigned NumElts,
    692                                       AttributeList *attrList) {
    693   SmallVector<ObjCProtocolDecl*, 32> Protocols;
    694   SmallVector<SourceLocation, 8> ProtoLocs;
    695 
    696   for (unsigned i = 0; i != NumElts; ++i) {
    697     IdentifierInfo *Ident = IdentList[i].first;
    698     ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
    699     bool isNew = false;
    700     if (PDecl == 0) { // Not already seen?
    701       PDecl = ObjCProtocolDecl::Create(Context, CurContext, Ident,
    702                                        IdentList[i].second, AtProtocolLoc,
    703                                        /*isForwardDecl=*/true);
    704       PushOnScopeChains(PDecl, TUScope, false);
    705       isNew = true;
    706     }
    707     if (attrList) {
    708       ProcessDeclAttributeList(TUScope, PDecl, attrList);
    709       if (!isNew)
    710         PDecl->setChangedSinceDeserialization(true);
    711     }
    712     Protocols.push_back(PDecl);
    713     ProtoLocs.push_back(IdentList[i].second);
    714   }
    715 
    716   ObjCForwardProtocolDecl *PDecl =
    717     ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
    718                                     Protocols.data(), Protocols.size(),
    719                                     ProtoLocs.data());
    720   CurContext->addDecl(PDecl);
    721   CheckObjCDeclScope(PDecl);
    722   return PDecl;
    723 }
    724 
    725 Decl *Sema::
    726 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
    727                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
    728                             IdentifierInfo *CategoryName,
    729                             SourceLocation CategoryLoc,
    730                             Decl * const *ProtoRefs,
    731                             unsigned NumProtoRefs,
    732                             const SourceLocation *ProtoLocs,
    733                             SourceLocation EndProtoLoc) {
    734   ObjCCategoryDecl *CDecl;
    735   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    736 
    737   /// Check that class of this category is already completely declared.
    738   if (!IDecl || IDecl->isForwardDecl()) {
    739     // Create an invalid ObjCCategoryDecl to serve as context for
    740     // the enclosing method declarations.  We mark the decl invalid
    741     // to make it clear that this isn't a valid AST.
    742     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    743                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
    744     CDecl->setInvalidDecl();
    745     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    746     return ActOnObjCContainerStartDefinition(CDecl);
    747   }
    748 
    749   if (!CategoryName && IDecl->getImplementation()) {
    750     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
    751     Diag(IDecl->getImplementation()->getLocation(),
    752           diag::note_implementation_declared);
    753   }
    754 
    755   if (CategoryName) {
    756     /// Check for duplicate interface declaration for this category
    757     ObjCCategoryDecl *CDeclChain;
    758     for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
    759          CDeclChain = CDeclChain->getNextClassCategory()) {
    760       if (CDeclChain->getIdentifier() == CategoryName) {
    761         // Class extensions can be declared multiple times.
    762         Diag(CategoryLoc, diag::warn_dup_category_def)
    763           << ClassName << CategoryName;
    764         Diag(CDeclChain->getLocation(), diag::note_previous_definition);
    765         break;
    766       }
    767     }
    768   }
    769 
    770   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    771                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
    772   // FIXME: PushOnScopeChains?
    773   CurContext->addDecl(CDecl);
    774 
    775   if (NumProtoRefs) {
    776     CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
    777                            ProtoLocs, Context);
    778     // Protocols in the class extension belong to the class.
    779     if (CDecl->IsClassExtension())
    780      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
    781                                             NumProtoRefs, Context);
    782   }
    783 
    784   CheckObjCDeclScope(CDecl);
    785   return ActOnObjCContainerStartDefinition(CDecl);
    786 }
    787 
    788 /// ActOnStartCategoryImplementation - Perform semantic checks on the
    789 /// category implementation declaration and build an ObjCCategoryImplDecl
    790 /// object.
    791 Decl *Sema::ActOnStartCategoryImplementation(
    792                       SourceLocation AtCatImplLoc,
    793                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    794                       IdentifierInfo *CatName, SourceLocation CatLoc) {
    795   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    796   ObjCCategoryDecl *CatIDecl = 0;
    797   if (IDecl) {
    798     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
    799     if (!CatIDecl) {
    800       // Category @implementation with no corresponding @interface.
    801       // Create and install one.
    802       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
    803                                           SourceLocation(), SourceLocation(),
    804                                           CatName, IDecl);
    805     }
    806   }
    807 
    808   ObjCCategoryImplDecl *CDecl =
    809     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
    810                                  ClassLoc, AtCatImplLoc);
    811   /// Check that class of this category is already completely declared.
    812   if (!IDecl || IDecl->isForwardDecl()) {
    813     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    814     CDecl->setInvalidDecl();
    815   }
    816 
    817   // FIXME: PushOnScopeChains?
    818   CurContext->addDecl(CDecl);
    819 
    820   // If the interface is deprecated/unavailable, warn/error about it.
    821   if (IDecl)
    822     DiagnoseUseOfDecl(IDecl, ClassLoc);
    823 
    824   /// Check that CatName, category name, is not used in another implementation.
    825   if (CatIDecl) {
    826     if (CatIDecl->getImplementation()) {
    827       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
    828         << CatName;
    829       Diag(CatIDecl->getImplementation()->getLocation(),
    830            diag::note_previous_definition);
    831     } else {
    832       CatIDecl->setImplementation(CDecl);
    833       // Warn on implementating category of deprecated class under
    834       // -Wdeprecated-implementations flag.
    835       DiagnoseObjCImplementedDeprecations(*this,
    836                                           dyn_cast<NamedDecl>(IDecl),
    837                                           CDecl->getLocation(), 2);
    838     }
    839   }
    840 
    841   CheckObjCDeclScope(CDecl);
    842   return ActOnObjCContainerStartDefinition(CDecl);
    843 }
    844 
    845 Decl *Sema::ActOnStartClassImplementation(
    846                       SourceLocation AtClassImplLoc,
    847                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    848                       IdentifierInfo *SuperClassname,
    849                       SourceLocation SuperClassLoc) {
    850   ObjCInterfaceDecl* IDecl = 0;
    851   // Check for another declaration kind with the same name.
    852   NamedDecl *PrevDecl
    853     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
    854                        ForRedeclaration);
    855   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    856     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    857     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    858   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
    859     // If this is a forward declaration of an interface, warn.
    860     if (IDecl->isForwardDecl()) {
    861       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
    862       IDecl = 0;
    863     }
    864   } else {
    865     // We did not find anything with the name ClassName; try to correct for
    866     // typos in the class name.
    867     TypoCorrection Corrected = CorrectTypo(
    868         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
    869         NULL, NULL, false, CTC_NoKeywords);
    870     if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
    871       // Suggest the (potentially) correct interface name. However, put the
    872       // fix-it hint itself in a separate note, since changing the name in
    873       // the warning would make the fix-it change semantics.However, don't
    874       // provide a code-modification hint or use the typo name for recovery,
    875       // because this is just a warning. The program may actually be correct.
    876       DeclarationName CorrectedName = Corrected.getCorrection();
    877       Diag(ClassLoc, diag::warn_undef_interface_suggest)
    878         << ClassName << CorrectedName;
    879       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
    880         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
    881       IDecl = 0;
    882     } else {
    883       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
    884     }
    885   }
    886 
    887   // Check that super class name is valid class name
    888   ObjCInterfaceDecl* SDecl = 0;
    889   if (SuperClassname) {
    890     // Check if a different kind of symbol declared in this scope.
    891     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
    892                                 LookupOrdinaryName);
    893     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    894       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
    895         << SuperClassname;
    896       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    897     } else {
    898       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    899       if (!SDecl)
    900         Diag(SuperClassLoc, diag::err_undef_superclass)
    901           << SuperClassname << ClassName;
    902       else if (IDecl && IDecl->getSuperClass() != SDecl) {
    903         // This implementation and its interface do not have the same
    904         // super class.
    905         Diag(SuperClassLoc, diag::err_conflicting_super_class)
    906           << SDecl->getDeclName();
    907         Diag(SDecl->getLocation(), diag::note_previous_definition);
    908       }
    909     }
    910   }
    911 
    912   if (!IDecl) {
    913     // Legacy case of @implementation with no corresponding @interface.
    914     // Build, chain & install the interface decl into the identifier.
    915 
    916     // FIXME: Do we support attributes on the @implementation? If so we should
    917     // copy them over.
    918     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
    919                                       ClassName, ClassLoc, false, true);
    920     IDecl->setSuperClass(SDecl);
    921     IDecl->setLocEnd(ClassLoc);
    922 
    923     PushOnScopeChains(IDecl, TUScope);
    924   } else {
    925     // Mark the interface as being completed, even if it was just as
    926     //   @class ....;
    927     // declaration; the user cannot reopen it.
    928     IDecl->setForwardDecl(false);
    929   }
    930 
    931   ObjCImplementationDecl* IMPDecl =
    932     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
    933                                    ClassLoc, AtClassImplLoc);
    934 
    935   if (CheckObjCDeclScope(IMPDecl))
    936     return ActOnObjCContainerStartDefinition(IMPDecl);
    937 
    938   // Check that there is no duplicate implementation of this class.
    939   if (IDecl->getImplementation()) {
    940     // FIXME: Don't leak everything!
    941     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
    942     Diag(IDecl->getImplementation()->getLocation(),
    943          diag::note_previous_definition);
    944   } else { // add it to the list.
    945     IDecl->setImplementation(IMPDecl);
    946     PushOnScopeChains(IMPDecl, TUScope);
    947     // Warn on implementating deprecated class under
    948     // -Wdeprecated-implementations flag.
    949     DiagnoseObjCImplementedDeprecations(*this,
    950                                         dyn_cast<NamedDecl>(IDecl),
    951                                         IMPDecl->getLocation(), 1);
    952   }
    953   return ActOnObjCContainerStartDefinition(IMPDecl);
    954 }
    955 
    956 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
    957                                     ObjCIvarDecl **ivars, unsigned numIvars,
    958                                     SourceLocation RBrace) {
    959   assert(ImpDecl && "missing implementation decl");
    960   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
    961   if (!IDecl)
    962     return;
    963   /// Check case of non-existing @interface decl.
    964   /// (legacy objective-c @implementation decl without an @interface decl).
    965   /// Add implementations's ivar to the synthesize class's ivar list.
    966   if (IDecl->isImplicitInterfaceDecl()) {
    967     IDecl->setLocEnd(RBrace);
    968     // Add ivar's to class's DeclContext.
    969     for (unsigned i = 0, e = numIvars; i != e; ++i) {
    970       ivars[i]->setLexicalDeclContext(ImpDecl);
    971       IDecl->makeDeclVisibleInContext(ivars[i], false);
    972       ImpDecl->addDecl(ivars[i]);
    973     }
    974 
    975     return;
    976   }
    977   // If implementation has empty ivar list, just return.
    978   if (numIvars == 0)
    979     return;
    980 
    981   assert(ivars && "missing @implementation ivars");
    982   if (LangOpts.ObjCNonFragileABI2) {
    983     if (ImpDecl->getSuperClass())
    984       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
    985     for (unsigned i = 0; i < numIvars; i++) {
    986       ObjCIvarDecl* ImplIvar = ivars[i];
    987       if (const ObjCIvarDecl *ClsIvar =
    988             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
    989         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
    990         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
    991         continue;
    992       }
    993       // Instance ivar to Implementation's DeclContext.
    994       ImplIvar->setLexicalDeclContext(ImpDecl);
    995       IDecl->makeDeclVisibleInContext(ImplIvar, false);
    996       ImpDecl->addDecl(ImplIvar);
    997     }
    998     return;
    999   }
   1000   // Check interface's Ivar list against those in the implementation.
   1001   // names and types must match.
   1002   //
   1003   unsigned j = 0;
   1004   ObjCInterfaceDecl::ivar_iterator
   1005     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   1006   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   1007     ObjCIvarDecl* ImplIvar = ivars[j++];
   1008     ObjCIvarDecl* ClsIvar = *IVI;
   1009     assert (ImplIvar && "missing implementation ivar");
   1010     assert (ClsIvar && "missing class ivar");
   1011 
   1012     // First, make sure the types match.
   1013     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   1014       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   1015         << ImplIvar->getIdentifier()
   1016         << ImplIvar->getType() << ClsIvar->getType();
   1017       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1018     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   1019                ImplIvar->getBitWidthValue(Context) !=
   1020                ClsIvar->getBitWidthValue(Context)) {
   1021       Diag(ImplIvar->getBitWidth()->getLocStart(),
   1022            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   1023       Diag(ClsIvar->getBitWidth()->getLocStart(),
   1024            diag::note_previous_definition);
   1025     }
   1026     // Make sure the names are identical.
   1027     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   1028       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   1029         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   1030       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1031     }
   1032     --numIvars;
   1033   }
   1034 
   1035   if (numIvars > 0)
   1036     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
   1037   else if (IVI != IVE)
   1038     Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
   1039 }
   1040 
   1041 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
   1042                                bool &IncompleteImpl, unsigned DiagID) {
   1043   // No point warning no definition of method which is 'unavailable'.
   1044   if (method->hasAttr<UnavailableAttr>())
   1045     return;
   1046   if (!IncompleteImpl) {
   1047     Diag(ImpLoc, diag::warn_incomplete_impl);
   1048     IncompleteImpl = true;
   1049   }
   1050   if (DiagID == diag::warn_unimplemented_protocol_method)
   1051     Diag(ImpLoc, DiagID) << method->getDeclName();
   1052   else
   1053     Diag(method->getLocation(), DiagID) << method->getDeclName();
   1054 }
   1055 
   1056 /// Determines if type B can be substituted for type A.  Returns true if we can
   1057 /// guarantee that anything that the user will do to an object of type A can
   1058 /// also be done to an object of type B.  This is trivially true if the two
   1059 /// types are the same, or if B is a subclass of A.  It becomes more complex
   1060 /// in cases where protocols are involved.
   1061 ///
   1062 /// Object types in Objective-C describe the minimum requirements for an
   1063 /// object, rather than providing a complete description of a type.  For
   1064 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   1065 /// The principle of substitutability means that we may use an instance of A
   1066 /// anywhere that we may use an instance of B - it will implement all of the
   1067 /// ivars of B and all of the methods of B.
   1068 ///
   1069 /// This substitutability is important when type checking methods, because
   1070 /// the implementation may have stricter type definitions than the interface.
   1071 /// The interface specifies minimum requirements, but the implementation may
   1072 /// have more accurate ones.  For example, a method may privately accept
   1073 /// instances of B, but only publish that it accepts instances of A.  Any
   1074 /// object passed to it will be type checked against B, and so will implicitly
   1075 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   1076 /// it is declared as returning.
   1077 ///
   1078 /// This is most important when considering subclassing.  A method in a
   1079 /// subclass must accept any object as an argument that its superclass's
   1080 /// implementation accepts.  It may, however, accept a more general type
   1081 /// without breaking substitutability (i.e. you can still use the subclass
   1082 /// anywhere that you can use the superclass, but not vice versa).  The
   1083 /// converse requirement applies to return types: the return type for a
   1084 /// subclass method must be a valid object of the kind that the superclass
   1085 /// advertises, but it may be specified more accurately.  This avoids the need
   1086 /// for explicit down-casting by callers.
   1087 ///
   1088 /// Note: This is a stricter requirement than for assignment.
   1089 static bool isObjCTypeSubstitutable(ASTContext &Context,
   1090                                     const ObjCObjectPointerType *A,
   1091                                     const ObjCObjectPointerType *B,
   1092                                     bool rejectId) {
   1093   // Reject a protocol-unqualified id.
   1094   if (rejectId && B->isObjCIdType()) return false;
   1095 
   1096   // If B is a qualified id, then A must also be a qualified id and it must
   1097   // implement all of the protocols in B.  It may not be a qualified class.
   1098   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   1099   // stricter definition so it is not substitutable for id<A>.
   1100   if (B->isObjCQualifiedIdType()) {
   1101     return A->isObjCQualifiedIdType() &&
   1102            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   1103                                                      QualType(B,0),
   1104                                                      false);
   1105   }
   1106 
   1107   /*
   1108   // id is a special type that bypasses type checking completely.  We want a
   1109   // warning when it is used in one place but not another.
   1110   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   1111 
   1112 
   1113   // If B is a qualified id, then A must also be a qualified id (which it isn't
   1114   // if we've got this far)
   1115   if (B->isObjCQualifiedIdType()) return false;
   1116   */
   1117 
   1118   // Now we know that A and B are (potentially-qualified) class types.  The
   1119   // normal rules for assignment apply.
   1120   return Context.canAssignObjCInterfaces(A, B);
   1121 }
   1122 
   1123 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   1124   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   1125 }
   1126 
   1127 static bool CheckMethodOverrideReturn(Sema &S,
   1128                                       ObjCMethodDecl *MethodImpl,
   1129                                       ObjCMethodDecl *MethodDecl,
   1130                                       bool IsProtocolMethodDecl,
   1131                                       bool IsOverridingMode,
   1132                                       bool Warn) {
   1133   if (IsProtocolMethodDecl &&
   1134       (MethodDecl->getObjCDeclQualifier() !=
   1135        MethodImpl->getObjCDeclQualifier())) {
   1136     if (Warn) {
   1137         S.Diag(MethodImpl->getLocation(),
   1138                (IsOverridingMode ?
   1139                  diag::warn_conflicting_overriding_ret_type_modifiers
   1140                  : diag::warn_conflicting_ret_type_modifiers))
   1141           << MethodImpl->getDeclName()
   1142           << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1143         S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   1144           << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1145     }
   1146     else
   1147       return false;
   1148   }
   1149 
   1150   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
   1151                                        MethodDecl->getResultType()))
   1152     return true;
   1153   if (!Warn)
   1154     return false;
   1155 
   1156   unsigned DiagID =
   1157     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   1158                      : diag::warn_conflicting_ret_types;
   1159 
   1160   // Mismatches between ObjC pointers go into a different warning
   1161   // category, and sometimes they're even completely whitelisted.
   1162   if (const ObjCObjectPointerType *ImplPtrTy =
   1163         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1164     if (const ObjCObjectPointerType *IfacePtrTy =
   1165           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1166       // Allow non-matching return types as long as they don't violate
   1167       // the principle of substitutability.  Specifically, we permit
   1168       // return types that are subclasses of the declared return type,
   1169       // or that are more-qualified versions of the declared type.
   1170       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   1171         return false;
   1172 
   1173       DiagID =
   1174         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   1175                           : diag::warn_non_covariant_ret_types;
   1176     }
   1177   }
   1178 
   1179   S.Diag(MethodImpl->getLocation(), DiagID)
   1180     << MethodImpl->getDeclName()
   1181     << MethodDecl->getResultType()
   1182     << MethodImpl->getResultType()
   1183     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1184   S.Diag(MethodDecl->getLocation(),
   1185          IsOverridingMode ? diag::note_previous_declaration
   1186                           : diag::note_previous_definition)
   1187     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1188   return false;
   1189 }
   1190 
   1191 static bool CheckMethodOverrideParam(Sema &S,
   1192                                      ObjCMethodDecl *MethodImpl,
   1193                                      ObjCMethodDecl *MethodDecl,
   1194                                      ParmVarDecl *ImplVar,
   1195                                      ParmVarDecl *IfaceVar,
   1196                                      bool IsProtocolMethodDecl,
   1197                                      bool IsOverridingMode,
   1198                                      bool Warn) {
   1199   if (IsProtocolMethodDecl &&
   1200       (ImplVar->getObjCDeclQualifier() !=
   1201        IfaceVar->getObjCDeclQualifier())) {
   1202     if (Warn) {
   1203       if (IsOverridingMode)
   1204         S.Diag(ImplVar->getLocation(),
   1205                diag::warn_conflicting_overriding_param_modifiers)
   1206             << getTypeRange(ImplVar->getTypeSourceInfo())
   1207             << MethodImpl->getDeclName();
   1208       else S.Diag(ImplVar->getLocation(),
   1209              diag::warn_conflicting_param_modifiers)
   1210           << getTypeRange(ImplVar->getTypeSourceInfo())
   1211           << MethodImpl->getDeclName();
   1212       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   1213           << getTypeRange(IfaceVar->getTypeSourceInfo());
   1214     }
   1215     else
   1216       return false;
   1217   }
   1218 
   1219   QualType ImplTy = ImplVar->getType();
   1220   QualType IfaceTy = IfaceVar->getType();
   1221 
   1222   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   1223     return true;
   1224 
   1225   if (!Warn)
   1226     return false;
   1227   unsigned DiagID =
   1228     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   1229                      : diag::warn_conflicting_param_types;
   1230 
   1231   // Mismatches between ObjC pointers go into a different warning
   1232   // category, and sometimes they're even completely whitelisted.
   1233   if (const ObjCObjectPointerType *ImplPtrTy =
   1234         ImplTy->getAs<ObjCObjectPointerType>()) {
   1235     if (const ObjCObjectPointerType *IfacePtrTy =
   1236           IfaceTy->getAs<ObjCObjectPointerType>()) {
   1237       // Allow non-matching argument types as long as they don't
   1238       // violate the principle of substitutability.  Specifically, the
   1239       // implementation must accept any objects that the superclass
   1240       // accepts, however it may also accept others.
   1241       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   1242         return false;
   1243 
   1244       DiagID =
   1245       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   1246                        :  diag::warn_non_contravariant_param_types;
   1247     }
   1248   }
   1249 
   1250   S.Diag(ImplVar->getLocation(), DiagID)
   1251     << getTypeRange(ImplVar->getTypeSourceInfo())
   1252     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   1253   S.Diag(IfaceVar->getLocation(),
   1254          (IsOverridingMode ? diag::note_previous_declaration
   1255                         : diag::note_previous_definition))
   1256     << getTypeRange(IfaceVar->getTypeSourceInfo());
   1257   return false;
   1258 }
   1259 
   1260 /// In ARC, check whether the conventional meanings of the two methods
   1261 /// match.  If they don't, it's a hard error.
   1262 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   1263                                       ObjCMethodDecl *decl) {
   1264   ObjCMethodFamily implFamily = impl->getMethodFamily();
   1265   ObjCMethodFamily declFamily = decl->getMethodFamily();
   1266   if (implFamily == declFamily) return false;
   1267 
   1268   // Since conventions are sorted by selector, the only possibility is
   1269   // that the types differ enough to cause one selector or the other
   1270   // to fall out of the family.
   1271   assert(implFamily == OMF_None || declFamily == OMF_None);
   1272 
   1273   // No further diagnostics required on invalid declarations.
   1274   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   1275 
   1276   const ObjCMethodDecl *unmatched = impl;
   1277   ObjCMethodFamily family = declFamily;
   1278   unsigned errorID = diag::err_arc_lost_method_convention;
   1279   unsigned noteID = diag::note_arc_lost_method_convention;
   1280   if (declFamily == OMF_None) {
   1281     unmatched = decl;
   1282     family = implFamily;
   1283     errorID = diag::err_arc_gained_method_convention;
   1284     noteID = diag::note_arc_gained_method_convention;
   1285   }
   1286 
   1287   // Indexes into a %select clause in the diagnostic.
   1288   enum FamilySelector {
   1289     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   1290   };
   1291   FamilySelector familySelector = FamilySelector();
   1292 
   1293   switch (family) {
   1294   case OMF_None: llvm_unreachable("logic error, no method convention");
   1295   case OMF_retain:
   1296   case OMF_release:
   1297   case OMF_autorelease:
   1298   case OMF_dealloc:
   1299   case OMF_finalize:
   1300   case OMF_retainCount:
   1301   case OMF_self:
   1302   case OMF_performSelector:
   1303     // Mismatches for these methods don't change ownership
   1304     // conventions, so we don't care.
   1305     return false;
   1306 
   1307   case OMF_init: familySelector = F_init; break;
   1308   case OMF_alloc: familySelector = F_alloc; break;
   1309   case OMF_copy: familySelector = F_copy; break;
   1310   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   1311   case OMF_new: familySelector = F_new; break;
   1312   }
   1313 
   1314   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   1315   ReasonSelector reasonSelector;
   1316 
   1317   // The only reason these methods don't fall within their families is
   1318   // due to unusual result types.
   1319   if (unmatched->getResultType()->isObjCObjectPointerType()) {
   1320     reasonSelector = R_UnrelatedReturn;
   1321   } else {
   1322     reasonSelector = R_NonObjectReturn;
   1323   }
   1324 
   1325   S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
   1326   S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
   1327 
   1328   return true;
   1329 }
   1330 
   1331 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1332                                        ObjCMethodDecl *MethodDecl,
   1333                                        bool IsProtocolMethodDecl) {
   1334   if (getLangOptions().ObjCAutoRefCount &&
   1335       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   1336     return;
   1337 
   1338   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1339                             IsProtocolMethodDecl, false,
   1340                             true);
   1341 
   1342   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1343        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
   1344        IM != EM; ++IM, ++IF) {
   1345     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   1346                              IsProtocolMethodDecl, false, true);
   1347   }
   1348 
   1349   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   1350     Diag(ImpMethodDecl->getLocation(),
   1351          diag::warn_conflicting_variadic);
   1352     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   1353   }
   1354 }
   1355 
   1356 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   1357                                        ObjCMethodDecl *Overridden,
   1358                                        bool IsProtocolMethodDecl) {
   1359 
   1360   CheckMethodOverrideReturn(*this, Method, Overridden,
   1361                             IsProtocolMethodDecl, true,
   1362                             true);
   1363 
   1364   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   1365        IF = Overridden->param_begin(), EM = Method->param_end();
   1366        IM != EM; ++IM, ++IF) {
   1367     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   1368                              IsProtocolMethodDecl, true, true);
   1369   }
   1370 
   1371   if (Method->isVariadic() != Overridden->isVariadic()) {
   1372     Diag(Method->getLocation(),
   1373          diag::warn_conflicting_overriding_variadic);
   1374     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   1375   }
   1376 }
   1377 
   1378 /// WarnExactTypedMethods - This routine issues a warning if method
   1379 /// implementation declaration matches exactly that of its declaration.
   1380 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1381                                  ObjCMethodDecl *MethodDecl,
   1382                                  bool IsProtocolMethodDecl) {
   1383   // don't issue warning when protocol method is optional because primary
   1384   // class is not required to implement it and it is safe for protocol
   1385   // to implement it.
   1386   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   1387     return;
   1388   // don't issue warning when primary class's method is
   1389   // depecated/unavailable.
   1390   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   1391       MethodDecl->hasAttr<DeprecatedAttr>())
   1392     return;
   1393 
   1394   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1395                                       IsProtocolMethodDecl, false, false);
   1396   if (match)
   1397     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1398          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
   1399          IM != EM; ++IM, ++IF) {
   1400       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   1401                                        *IM, *IF,
   1402                                        IsProtocolMethodDecl, false, false);
   1403       if (!match)
   1404         break;
   1405     }
   1406   if (match)
   1407     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   1408   if (match)
   1409     match = !(MethodDecl->isClassMethod() &&
   1410               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   1411 
   1412   if (match) {
   1413     Diag(ImpMethodDecl->getLocation(),
   1414          diag::warn_category_method_impl_match);
   1415     Diag(MethodDecl->getLocation(), diag::note_method_declared_at);
   1416   }
   1417 }
   1418 
   1419 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   1420 /// improve the efficiency of selector lookups and type checking by associating
   1421 /// with each protocol / interface / category the flattened instance tables. If
   1422 /// we used an immutable set to keep the table then it wouldn't add significant
   1423 /// memory cost and it would be handy for lookups.
   1424 
   1425 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   1426 /// Declared in protocol, and those referenced by it.
   1427 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
   1428                                    ObjCProtocolDecl *PDecl,
   1429                                    bool& IncompleteImpl,
   1430                                    const llvm::DenseSet<Selector> &InsMap,
   1431                                    const llvm::DenseSet<Selector> &ClsMap,
   1432                                    ObjCContainerDecl *CDecl) {
   1433   ObjCInterfaceDecl *IDecl;
   1434   if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
   1435     IDecl = C->getClassInterface();
   1436   else
   1437     IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
   1438   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   1439 
   1440   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   1441   ObjCInterfaceDecl *NSIDecl = 0;
   1442   if (getLangOptions().NeXTRuntime) {
   1443     // check to see if class implements forwardInvocation method and objects
   1444     // of this class are derived from 'NSProxy' so that to forward requests
   1445     // from one object to another.
   1446     // Under such conditions, which means that every method possible is
   1447     // implemented in the class, we should not issue "Method definition not
   1448     // found" warnings.
   1449     // FIXME: Use a general GetUnarySelector method for this.
   1450     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
   1451     Selector fISelector = Context.Selectors.getSelector(1, &II);
   1452     if (InsMap.count(fISelector))
   1453       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   1454       // need be implemented in the implementation.
   1455       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
   1456   }
   1457 
   1458   // If a method lookup fails locally we still need to look and see if
   1459   // the method was implemented by a base class or an inherited
   1460   // protocol. This lookup is slow, but occurs rarely in correct code
   1461   // and otherwise would terminate in a warning.
   1462 
   1463   // check unimplemented instance methods.
   1464   if (!NSIDecl)
   1465     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
   1466          E = PDecl->instmeth_end(); I != E; ++I) {
   1467       ObjCMethodDecl *method = *I;
   1468       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1469           !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
   1470           (!Super ||
   1471            !Super->lookupInstanceMethod(method->getSelector()))) {
   1472             // Ugly, but necessary. Method declared in protcol might have
   1473             // have been synthesized due to a property declared in the class which
   1474             // uses the protocol.
   1475             ObjCMethodDecl *MethodInClass =
   1476             IDecl->lookupInstanceMethod(method->getSelector());
   1477             if (!MethodInClass || !MethodInClass->isSynthesized()) {
   1478               unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1479               if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
   1480                       != DiagnosticsEngine::Ignored) {
   1481                 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1482                 Diag(method->getLocation(), diag::note_method_declared_at);
   1483                 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
   1484                   << PDecl->getDeclName();
   1485               }
   1486             }
   1487           }
   1488     }
   1489   // check unimplemented class methods
   1490   for (ObjCProtocolDecl::classmeth_iterator
   1491          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
   1492        I != E; ++I) {
   1493     ObjCMethodDecl *method = *I;
   1494     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1495         !ClsMap.count(method->getSelector()) &&
   1496         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
   1497       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1498       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
   1499             DiagnosticsEngine::Ignored) {
   1500         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1501         Diag(method->getLocation(), diag::note_method_declared_at);
   1502         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
   1503           PDecl->getDeclName();
   1504       }
   1505     }
   1506   }
   1507   // Check on this protocols's referenced protocols, recursively.
   1508   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
   1509        E = PDecl->protocol_end(); PI != E; ++PI)
   1510     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
   1511 }
   1512 
   1513 /// MatchAllMethodDeclarations - Check methods declared in interface
   1514 /// or protocol against those declared in their implementations.
   1515 ///
   1516 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
   1517                                       const llvm::DenseSet<Selector> &ClsMap,
   1518                                       llvm::DenseSet<Selector> &InsMapSeen,
   1519                                       llvm::DenseSet<Selector> &ClsMapSeen,
   1520                                       ObjCImplDecl* IMPDecl,
   1521                                       ObjCContainerDecl* CDecl,
   1522                                       bool &IncompleteImpl,
   1523                                       bool ImmediateClass,
   1524                                       bool WarnExactMatch) {
   1525   // Check and see if instance methods in class interface have been
   1526   // implemented in the implementation class. If so, their types match.
   1527   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
   1528        E = CDecl->instmeth_end(); I != E; ++I) {
   1529     if (InsMapSeen.count((*I)->getSelector()))
   1530         continue;
   1531     InsMapSeen.insert((*I)->getSelector());
   1532     if (!(*I)->isSynthesized() &&
   1533         !InsMap.count((*I)->getSelector())) {
   1534       if (ImmediateClass)
   1535         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1536                             diag::note_undef_method_impl);
   1537       continue;
   1538     } else {
   1539       ObjCMethodDecl *ImpMethodDecl =
   1540         IMPDecl->getInstanceMethod((*I)->getSelector());
   1541       assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
   1542              "Expected to find the method through lookup as well");
   1543       ObjCMethodDecl *MethodDecl = *I;
   1544       // ImpMethodDecl may be null as in a @dynamic property.
   1545       if (ImpMethodDecl) {
   1546         if (!WarnExactMatch)
   1547           WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1548                                       isa<ObjCProtocolDecl>(CDecl));
   1549         else if (!MethodDecl->isSynthesized())
   1550           WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1551                                isa<ObjCProtocolDecl>(CDecl));
   1552       }
   1553     }
   1554   }
   1555 
   1556   // Check and see if class methods in class interface have been
   1557   // implemented in the implementation class. If so, their types match.
   1558    for (ObjCInterfaceDecl::classmeth_iterator
   1559        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
   1560      if (ClsMapSeen.count((*I)->getSelector()))
   1561        continue;
   1562      ClsMapSeen.insert((*I)->getSelector());
   1563     if (!ClsMap.count((*I)->getSelector())) {
   1564       if (ImmediateClass)
   1565         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1566                             diag::note_undef_method_impl);
   1567     } else {
   1568       ObjCMethodDecl *ImpMethodDecl =
   1569         IMPDecl->getClassMethod((*I)->getSelector());
   1570       assert(CDecl->getClassMethod((*I)->getSelector()) &&
   1571              "Expected to find the method through lookup as well");
   1572       ObjCMethodDecl *MethodDecl = *I;
   1573       if (!WarnExactMatch)
   1574         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1575                                     isa<ObjCProtocolDecl>(CDecl));
   1576       else
   1577         WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1578                              isa<ObjCProtocolDecl>(CDecl));
   1579     }
   1580   }
   1581 
   1582   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1583     // Also methods in class extensions need be looked at next.
   1584     for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
   1585          ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
   1586       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1587                                  IMPDecl,
   1588                                  const_cast<ObjCCategoryDecl *>(ClsExtDecl),
   1589                                  IncompleteImpl, false, WarnExactMatch);
   1590 
   1591     // Check for any implementation of a methods declared in protocol.
   1592     for (ObjCInterfaceDecl::all_protocol_iterator
   1593           PI = I->all_referenced_protocol_begin(),
   1594           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1595       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1596                                  IMPDecl,
   1597                                  (*PI), IncompleteImpl, false, WarnExactMatch);
   1598 
   1599     // FIXME. For now, we are not checking for extact match of methods
   1600     // in category implementation and its primary class's super class.
   1601     if (!WarnExactMatch && I->getSuperClass())
   1602       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1603                                  IMPDecl,
   1604                                  I->getSuperClass(), IncompleteImpl, false);
   1605   }
   1606 }
   1607 
   1608 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   1609 /// category matches with those implemented in its primary class and
   1610 /// warns each time an exact match is found.
   1611 void Sema::CheckCategoryVsClassMethodMatches(
   1612                                   ObjCCategoryImplDecl *CatIMPDecl) {
   1613   llvm::DenseSet<Selector> InsMap, ClsMap;
   1614 
   1615   for (ObjCImplementationDecl::instmeth_iterator
   1616        I = CatIMPDecl->instmeth_begin(),
   1617        E = CatIMPDecl->instmeth_end(); I!=E; ++I)
   1618     InsMap.insert((*I)->getSelector());
   1619 
   1620   for (ObjCImplementationDecl::classmeth_iterator
   1621        I = CatIMPDecl->classmeth_begin(),
   1622        E = CatIMPDecl->classmeth_end(); I != E; ++I)
   1623     ClsMap.insert((*I)->getSelector());
   1624   if (InsMap.empty() && ClsMap.empty())
   1625     return;
   1626 
   1627   // Get category's primary class.
   1628   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   1629   if (!CatDecl)
   1630     return;
   1631   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   1632   if (!IDecl)
   1633     return;
   1634   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
   1635   bool IncompleteImpl = false;
   1636   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1637                              CatIMPDecl, IDecl,
   1638                              IncompleteImpl, false, true /*WarnExactMatch*/);
   1639 }
   1640 
   1641 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   1642                                      ObjCContainerDecl* CDecl,
   1643                                      bool IncompleteImpl) {
   1644   llvm::DenseSet<Selector> InsMap;
   1645   // Check and see if instance methods in class interface have been
   1646   // implemented in the implementation class.
   1647   for (ObjCImplementationDecl::instmeth_iterator
   1648          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
   1649     InsMap.insert((*I)->getSelector());
   1650 
   1651   // Check and see if properties declared in the interface have either 1)
   1652   // an implementation or 2) there is a @synthesize/@dynamic implementation
   1653   // of the property in the @implementation.
   1654   if (isa<ObjCInterfaceDecl>(CDecl) &&
   1655         !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
   1656     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1657 
   1658   llvm::DenseSet<Selector> ClsMap;
   1659   for (ObjCImplementationDecl::classmeth_iterator
   1660        I = IMPDecl->classmeth_begin(),
   1661        E = IMPDecl->classmeth_end(); I != E; ++I)
   1662     ClsMap.insert((*I)->getSelector());
   1663 
   1664   // Check for type conflict of methods declared in a class/protocol and
   1665   // its implementation; if any.
   1666   llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
   1667   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1668                              IMPDecl, CDecl,
   1669                              IncompleteImpl, true);
   1670 
   1671   // check all methods implemented in category against those declared
   1672   // in its primary class.
   1673   if (ObjCCategoryImplDecl *CatDecl =
   1674         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   1675     CheckCategoryVsClassMethodMatches(CatDecl);
   1676 
   1677   // Check the protocol list for unimplemented methods in the @implementation
   1678   // class.
   1679   // Check and see if class methods in class interface have been
   1680   // implemented in the implementation class.
   1681 
   1682   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1683     for (ObjCInterfaceDecl::all_protocol_iterator
   1684           PI = I->all_referenced_protocol_begin(),
   1685           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1686       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1687                               InsMap, ClsMap, I);
   1688     // Check class extensions (unnamed categories)
   1689     for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
   1690          Categories; Categories = Categories->getNextClassExtension())
   1691       ImplMethodsVsClassMethods(S, IMPDecl,
   1692                                 const_cast<ObjCCategoryDecl*>(Categories),
   1693                                 IncompleteImpl);
   1694   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1695     // For extended class, unimplemented methods in its protocols will
   1696     // be reported in the primary class.
   1697     if (!C->IsClassExtension()) {
   1698       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
   1699            E = C->protocol_end(); PI != E; ++PI)
   1700         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1701                                 InsMap, ClsMap, CDecl);
   1702       // Report unimplemented properties in the category as well.
   1703       // When reporting on missing setter/getters, do not report when
   1704       // setter/getter is implemented in category's primary class
   1705       // implementation.
   1706       if (ObjCInterfaceDecl *ID = C->getClassInterface())
   1707         if (ObjCImplDecl *IMP = ID->getImplementation()) {
   1708           for (ObjCImplementationDecl::instmeth_iterator
   1709                I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
   1710             InsMap.insert((*I)->getSelector());
   1711         }
   1712       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1713     }
   1714   } else
   1715     llvm_unreachable("invalid ObjCContainerDecl type.");
   1716 }
   1717 
   1718 /// ActOnForwardClassDeclaration -
   1719 Sema::DeclGroupPtrTy
   1720 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   1721                                    IdentifierInfo **IdentList,
   1722                                    SourceLocation *IdentLocs,
   1723                                    unsigned NumElts) {
   1724   SmallVector<Decl *, 8> DeclsInGroup;
   1725   for (unsigned i = 0; i != NumElts; ++i) {
   1726     // Check for another declaration kind with the same name.
   1727     NamedDecl *PrevDecl
   1728       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   1729                          LookupOrdinaryName, ForRedeclaration);
   1730     if (PrevDecl && PrevDecl->isTemplateParameter()) {
   1731       // Maybe we will complain about the shadowed template parameter.
   1732       DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
   1733       // Just pretend that we didn't see the previous declaration.
   1734       PrevDecl = 0;
   1735     }
   1736 
   1737     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1738       // GCC apparently allows the following idiom:
   1739       //
   1740       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   1741       // @class XCElementToggler;
   1742       //
   1743       // FIXME: Make an extension?
   1744       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   1745       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   1746         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   1747         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1748       } else {
   1749         // a forward class declaration matching a typedef name of a class refers
   1750         // to the underlying class.
   1751         if (const ObjCObjectType *OI =
   1752               TDD->getUnderlyingType()->getAs<ObjCObjectType>())
   1753           PrevDecl = OI->getInterface();
   1754       }
   1755     }
   1756     ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1757     if (!IDecl) {  // Not already seen?  Make a forward decl.
   1758       IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   1759                                         IdentList[i], IdentLocs[i], true);
   1760 
   1761       // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
   1762       // the current DeclContext.  This prevents clients that walk DeclContext
   1763       // from seeing the imaginary ObjCInterfaceDecl until it is actually
   1764       // declared later (if at all).  We also take care to explicitly make
   1765       // sure this declaration is visible for name lookup.
   1766       PushOnScopeChains(IDecl, TUScope, false);
   1767       CurContext->makeDeclVisibleInContext(IDecl, true);
   1768     }
   1769     ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
   1770                                                  IDecl, IdentLocs[i]);
   1771     CurContext->addDecl(CDecl);
   1772     CheckObjCDeclScope(CDecl);
   1773     DeclsInGroup.push_back(CDecl);
   1774   }
   1775 
   1776   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
   1777 }
   1778 
   1779 static bool tryMatchRecordTypes(ASTContext &Context,
   1780                                 Sema::MethodMatchStrategy strategy,
   1781                                 const Type *left, const Type *right);
   1782 
   1783 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   1784                        QualType leftQT, QualType rightQT) {
   1785   const Type *left =
   1786     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   1787   const Type *right =
   1788     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   1789 
   1790   if (left == right) return true;
   1791 
   1792   // If we're doing a strict match, the types have to match exactly.
   1793   if (strategy == Sema::MMS_strict) return false;
   1794 
   1795   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   1796 
   1797   // Otherwise, use this absurdly complicated algorithm to try to
   1798   // validate the basic, low-level compatibility of the two types.
   1799 
   1800   // As a minimum, require the sizes and alignments to match.
   1801   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
   1802     return false;
   1803 
   1804   // Consider all the kinds of non-dependent canonical types:
   1805   // - functions and arrays aren't possible as return and parameter types
   1806 
   1807   // - vector types of equal size can be arbitrarily mixed
   1808   if (isa<VectorType>(left)) return isa<VectorType>(right);
   1809   if (isa<VectorType>(right)) return false;
   1810 
   1811   // - references should only match references of identical type
   1812   // - structs, unions, and Objective-C objects must match more-or-less
   1813   //   exactly
   1814   // - everything else should be a scalar
   1815   if (!left->isScalarType() || !right->isScalarType())
   1816     return tryMatchRecordTypes(Context, strategy, left, right);
   1817 
   1818   // Make scalars agree in kind, except count bools as chars, and group
   1819   // all non-member pointers together.
   1820   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   1821   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   1822   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   1823   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   1824   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   1825     leftSK = Type::STK_ObjCObjectPointer;
   1826   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   1827     rightSK = Type::STK_ObjCObjectPointer;
   1828 
   1829   // Note that data member pointers and function member pointers don't
   1830   // intermix because of the size differences.
   1831 
   1832   return (leftSK == rightSK);
   1833 }
   1834 
   1835 static bool tryMatchRecordTypes(ASTContext &Context,
   1836                                 Sema::MethodMatchStrategy strategy,
   1837                                 const Type *lt, const Type *rt) {
   1838   assert(lt && rt && lt != rt);
   1839 
   1840   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   1841   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   1842   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   1843 
   1844   // Require union-hood to match.
   1845   if (left->isUnion() != right->isUnion()) return false;
   1846 
   1847   // Require an exact match if either is non-POD.
   1848   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   1849       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   1850     return false;
   1851 
   1852   // Require size and alignment to match.
   1853   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
   1854 
   1855   // Require fields to match.
   1856   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   1857   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   1858   for (; li != le && ri != re; ++li, ++ri) {
   1859     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   1860       return false;
   1861   }
   1862   return (li == le && ri == re);
   1863 }
   1864 
   1865 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   1866 /// returns true, or false, accordingly.
   1867 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   1868 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   1869                                       const ObjCMethodDecl *right,
   1870                                       MethodMatchStrategy strategy) {
   1871   if (!matchTypes(Context, strategy,
   1872                   left->getResultType(), right->getResultType()))
   1873     return false;
   1874 
   1875   if (getLangOptions().ObjCAutoRefCount &&
   1876       (left->hasAttr<NSReturnsRetainedAttr>()
   1877          != right->hasAttr<NSReturnsRetainedAttr>() ||
   1878        left->hasAttr<NSConsumesSelfAttr>()
   1879          != right->hasAttr<NSConsumesSelfAttr>()))
   1880     return false;
   1881 
   1882   ObjCMethodDecl::param_const_iterator
   1883     li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
   1884 
   1885   for (; li != le; ++li, ++ri) {
   1886     assert(ri != right->param_end() && "Param mismatch");
   1887     const ParmVarDecl *lparm = *li, *rparm = *ri;
   1888 
   1889     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   1890       return false;
   1891 
   1892     if (getLangOptions().ObjCAutoRefCount &&
   1893         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   1894       return false;
   1895   }
   1896   return true;
   1897 }
   1898 
   1899 /// \brief Read the contents of the method pool for a given selector from
   1900 /// external storage.
   1901 ///
   1902 /// This routine should only be called once, when the method pool has no entry
   1903 /// for this selector.
   1904 Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
   1905   assert(ExternalSource && "We need an external AST source");
   1906   assert(MethodPool.find(Sel) == MethodPool.end() &&
   1907          "Selector data already loaded into the method pool");
   1908 
   1909   // Read the method list from the external source.
   1910   GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
   1911 
   1912   return MethodPool.insert(std::make_pair(Sel, Methods)).first;
   1913 }
   1914 
   1915 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   1916                                  bool instance) {
   1917   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   1918   if (Pos == MethodPool.end()) {
   1919     if (ExternalSource)
   1920       Pos = ReadMethodPool(Method->getSelector());
   1921     else
   1922       Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   1923                                              GlobalMethods())).first;
   1924   }
   1925   Method->setDefined(impl);
   1926   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   1927   if (Entry.Method == 0) {
   1928     // Haven't seen a method with this selector name yet - add it.
   1929     Entry.Method = Method;
   1930     Entry.Next = 0;
   1931     return;
   1932   }
   1933 
   1934   // We've seen a method with this name, see if we have already seen this type
   1935   // signature.
   1936   for (ObjCMethodList *List = &Entry; List; List = List->Next) {
   1937     bool match = MatchTwoMethodDeclarations(Method, List->Method);
   1938 
   1939     if (match) {
   1940       ObjCMethodDecl *PrevObjCMethod = List->Method;
   1941       PrevObjCMethod->setDefined(impl);
   1942       // If a method is deprecated, push it in the global pool.
   1943       // This is used for better diagnostics.
   1944       if (Method->isDeprecated()) {
   1945         if (!PrevObjCMethod->isDeprecated())
   1946           List->Method = Method;
   1947       }
   1948       // If new method is unavailable, push it into global pool
   1949       // unless previous one is deprecated.
   1950       if (Method->isUnavailable()) {
   1951         if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   1952           List->Method = Method;
   1953       }
   1954       return;
   1955     }
   1956   }
   1957 
   1958   // We have a new signature for an existing method - add it.
   1959   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   1960   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   1961   Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
   1962 }
   1963 
   1964 /// Determines if this is an "acceptable" loose mismatch in the global
   1965 /// method pool.  This exists mostly as a hack to get around certain
   1966 /// global mismatches which we can't afford to make warnings / errors.
   1967 /// Really, what we want is a way to take a method out of the global
   1968 /// method pool.
   1969 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   1970                                        ObjCMethodDecl *other) {
   1971   if (!chosen->isInstanceMethod())
   1972     return false;
   1973 
   1974   Selector sel = chosen->getSelector();
   1975   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   1976     return false;
   1977 
   1978   // Don't complain about mismatches for -length if the method we
   1979   // chose has an integral result type.
   1980   return (chosen->getResultType()->isIntegerType());
   1981 }
   1982 
   1983 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   1984                                                bool receiverIdOrClass,
   1985                                                bool warn, bool instance) {
   1986   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   1987   if (Pos == MethodPool.end()) {
   1988     if (ExternalSource)
   1989       Pos = ReadMethodPool(Sel);
   1990     else
   1991       return 0;
   1992   }
   1993 
   1994   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   1995 
   1996   if (warn && MethList.Method && MethList.Next) {
   1997     bool issueDiagnostic = false, issueError = false;
   1998 
   1999     // We support a warning which complains about *any* difference in
   2000     // method signature.
   2001     bool strictSelectorMatch =
   2002       (receiverIdOrClass && warn &&
   2003        (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
   2004                                  R.getBegin()) !=
   2005       DiagnosticsEngine::Ignored));
   2006     if (strictSelectorMatch)
   2007       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   2008         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   2009                                         MMS_strict)) {
   2010           issueDiagnostic = true;
   2011           break;
   2012         }
   2013       }
   2014 
   2015     // If we didn't see any strict differences, we won't see any loose
   2016     // differences.  In ARC, however, we also need to check for loose
   2017     // mismatches, because most of them are errors.
   2018     if (!strictSelectorMatch ||
   2019         (issueDiagnostic && getLangOptions().ObjCAutoRefCount))
   2020       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   2021         // This checks if the methods differ in type mismatch.
   2022         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   2023                                         MMS_loose) &&
   2024             !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
   2025           issueDiagnostic = true;
   2026           if (getLangOptions().ObjCAutoRefCount)
   2027             issueError = true;
   2028           break;
   2029         }
   2030       }
   2031 
   2032     if (issueDiagnostic) {
   2033       if (issueError)
   2034         Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   2035       else if (strictSelectorMatch)
   2036         Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   2037       else
   2038         Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   2039 
   2040       Diag(MethList.Method->getLocStart(),
   2041            issueError ? diag::note_possibility : diag::note_using)
   2042         << MethList.Method->getSourceRange();
   2043       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
   2044         Diag(Next->Method->getLocStart(), diag::note_also_found)
   2045           << Next->Method->getSourceRange();
   2046     }
   2047   }
   2048   return MethList.Method;
   2049 }
   2050 
   2051 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   2052   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2053   if (Pos == MethodPool.end())
   2054     return 0;
   2055 
   2056   GlobalMethods &Methods = Pos->second;
   2057 
   2058   if (Methods.first.Method && Methods.first.Method->isDefined())
   2059     return Methods.first.Method;
   2060   if (Methods.second.Method && Methods.second.Method->isDefined())
   2061     return Methods.second.Method;
   2062   return 0;
   2063 }
   2064 
   2065 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with
   2066 /// identical selector names in current and its super classes and issues
   2067 /// a warning if any of their argument types are incompatible.
   2068 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
   2069                                              ObjCMethodDecl *Method,
   2070                                              bool IsInstance)  {
   2071   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   2072   if (ID == 0) return;
   2073 
   2074   while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
   2075     ObjCMethodDecl *SuperMethodDecl =
   2076         SD->lookupMethod(Method->getSelector(), IsInstance);
   2077     if (SuperMethodDecl == 0) {
   2078       ID = SD;
   2079       continue;
   2080     }
   2081     ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
   2082       E = Method->param_end();
   2083     ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
   2084     for (; ParamI != E; ++ParamI, ++PrevI) {
   2085       // Number of parameters are the same and is guaranteed by selector match.
   2086       assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
   2087       QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   2088       QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   2089       // If type of argument of method in this class does not match its
   2090       // respective argument type in the super class method, issue warning;
   2091       if (!Context.typesAreCompatible(T1, T2)) {
   2092         Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   2093           << T1 << T2;
   2094         Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
   2095         return;
   2096       }
   2097     }
   2098     ID = SD;
   2099   }
   2100 }
   2101 
   2102 /// DiagnoseDuplicateIvars -
   2103 /// Check for duplicate ivars in the entire class at the start of
   2104 /// @implementation. This becomes necesssary because class extension can
   2105 /// add ivars to a class in random order which will not be known until
   2106 /// class's @implementation is seen.
   2107 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   2108                                   ObjCInterfaceDecl *SID) {
   2109   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
   2110        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
   2111     ObjCIvarDecl* Ivar = (*IVI);
   2112     if (Ivar->isInvalidDecl())
   2113       continue;
   2114     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   2115       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   2116       if (prevIvar) {
   2117         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   2118         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   2119         Ivar->setInvalidDecl();
   2120       }
   2121     }
   2122   }
   2123 }
   2124 
   2125 // Note: For class/category implemenations, allMethods/allProperties is
   2126 // always null.
   2127 void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
   2128                       Decl **allMethods, unsigned allNum,
   2129                       Decl **allProperties, unsigned pNum,
   2130                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
   2131 
   2132   if (!CurContext->isObjCContainer())
   2133     return;
   2134   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2135   Decl *ClassDecl = cast<Decl>(OCD);
   2136 
   2137   bool isInterfaceDeclKind =
   2138         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   2139          || isa<ObjCProtocolDecl>(ClassDecl);
   2140   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   2141 
   2142   if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
   2143     // FIXME: This is wrong.  We shouldn't be pretending that there is
   2144     //  an '@end' in the declaration.
   2145     SourceLocation L = ClassDecl->getLocation();
   2146     AtEnd.setBegin(L);
   2147     AtEnd.setEnd(L);
   2148     Diag(L, diag::err_missing_atend);
   2149   }
   2150 
   2151   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   2152   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   2153   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   2154 
   2155   for (unsigned i = 0; i < allNum; i++ ) {
   2156     ObjCMethodDecl *Method =
   2157       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   2158 
   2159     if (!Method) continue;  // Already issued a diagnostic.
   2160     if (Method->isInstanceMethod()) {
   2161       /// Check for instance method of the same name with incompatible types
   2162       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   2163       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2164                               : false;
   2165       if ((isInterfaceDeclKind && PrevMethod && !match)
   2166           || (checkIdenticalMethods && match)) {
   2167           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2168             << Method->getDeclName();
   2169           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2170         Method->setInvalidDecl();
   2171       } else {
   2172         if (PrevMethod)
   2173           Method->setAsRedeclaration(PrevMethod);
   2174         InsMap[Method->getSelector()] = Method;
   2175         /// The following allows us to typecheck messages to "id".
   2176         AddInstanceMethodToGlobalPool(Method);
   2177         // verify that the instance method conforms to the same definition of
   2178         // parent methods if it shadows one.
   2179         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
   2180       }
   2181     } else {
   2182       /// Check for class method of the same name with incompatible types
   2183       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   2184       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2185                               : false;
   2186       if ((isInterfaceDeclKind && PrevMethod && !match)
   2187           || (checkIdenticalMethods && match)) {
   2188         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2189           << Method->getDeclName();
   2190         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2191         Method->setInvalidDecl();
   2192       } else {
   2193         if (PrevMethod)
   2194           Method->setAsRedeclaration(PrevMethod);
   2195         ClsMap[Method->getSelector()] = Method;
   2196         /// The following allows us to typecheck messages to "Class".
   2197         AddFactoryMethodToGlobalPool(Method);
   2198         // verify that the class method conforms to the same definition of
   2199         // parent methods if it shadows one.
   2200         CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
   2201       }
   2202     }
   2203   }
   2204   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
   2205     // Compares properties declared in this class to those of its
   2206     // super class.
   2207     ComparePropertiesInBaseAndSuper(I);
   2208     CompareProperties(I, I);
   2209   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   2210     // Categories are used to extend the class by declaring new methods.
   2211     // By the same token, they are also used to add new properties. No
   2212     // need to compare the added property to those in the class.
   2213 
   2214     // Compare protocol properties with those in category
   2215     CompareProperties(C, C);
   2216     if (C->IsClassExtension()) {
   2217       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   2218       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   2219     }
   2220   }
   2221   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   2222     if (CDecl->getIdentifier())
   2223       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   2224       // user-defined setter/getter. It also synthesizes setter/getter methods
   2225       // and adds them to the DeclContext and global method pools.
   2226       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
   2227                                             E = CDecl->prop_end();
   2228            I != E; ++I)
   2229         ProcessPropertyDecl(*I, CDecl);
   2230     CDecl->setAtEndRange(AtEnd);
   2231   }
   2232   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2233     IC->setAtEndRange(AtEnd);
   2234     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   2235       // Any property declared in a class extension might have user
   2236       // declared setter or getter in current class extension or one
   2237       // of the other class extensions. Mark them as synthesized as
   2238       // property will be synthesized when property with same name is
   2239       // seen in the @implementation.
   2240       for (const ObjCCategoryDecl *ClsExtDecl =
   2241            IDecl->getFirstClassExtension();
   2242            ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
   2243         for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
   2244              E = ClsExtDecl->prop_end(); I != E; ++I) {
   2245           ObjCPropertyDecl *Property = (*I);
   2246           // Skip over properties declared @dynamic
   2247           if (const ObjCPropertyImplDecl *PIDecl
   2248               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   2249             if (PIDecl->getPropertyImplementation()
   2250                   == ObjCPropertyImplDecl::Dynamic)
   2251               continue;
   2252 
   2253           for (const ObjCCategoryDecl *CExtDecl =
   2254                IDecl->getFirstClassExtension();
   2255                CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
   2256             if (ObjCMethodDecl *GetterMethod =
   2257                 CExtDecl->getInstanceMethod(Property->getGetterName()))
   2258               GetterMethod->setSynthesized(true);
   2259             if (!Property->isReadOnly())
   2260               if (ObjCMethodDecl *SetterMethod =
   2261                   CExtDecl->getInstanceMethod(Property->getSetterName()))
   2262                 SetterMethod->setSynthesized(true);
   2263           }
   2264         }
   2265       }
   2266       ImplMethodsVsClassMethods(S, IC, IDecl);
   2267       AtomicPropertySetterGetterRules(IC, IDecl);
   2268       DiagnoseOwningPropertyGetterSynthesis(IC);
   2269 
   2270       if (LangOpts.ObjCNonFragileABI2)
   2271         while (IDecl->getSuperClass()) {
   2272           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   2273           IDecl = IDecl->getSuperClass();
   2274         }
   2275     }
   2276     SetIvarInitializers(IC);
   2277   } else if (ObjCCategoryImplDecl* CatImplClass =
   2278                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2279     CatImplClass->setAtEndRange(AtEnd);
   2280 
   2281     // Find category interface decl and then check that all methods declared
   2282     // in this interface are implemented in the category @implementation.
   2283     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   2284       for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
   2285            Categories; Categories = Categories->getNextClassCategory()) {
   2286         if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
   2287           ImplMethodsVsClassMethods(S, CatImplClass, Categories);
   2288           break;
   2289         }
   2290       }
   2291     }
   2292   }
   2293   if (isInterfaceDeclKind) {
   2294     // Reject invalid vardecls.
   2295     for (unsigned i = 0; i != tuvNum; i++) {
   2296       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2297       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2298         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   2299           if (!VDecl->hasExternalStorage())
   2300             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   2301         }
   2302     }
   2303   }
   2304   ActOnObjCContainerFinishDefinition();
   2305 
   2306   for (unsigned i = 0; i != tuvNum; i++) {
   2307     DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2308     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   2309   }
   2310 }
   2311 
   2312 
   2313 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   2314 /// objective-c's type qualifier from the parser version of the same info.
   2315 static Decl::ObjCDeclQualifier
   2316 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   2317   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   2318 }
   2319 
   2320 static inline
   2321 bool containsInvalidMethodImplAttribute(const AttrVec &A) {
   2322   // The 'ibaction' attribute is allowed on method definitions because of
   2323   // how the IBAction macro is used on both method declarations and definitions.
   2324   // If the method definitions contains any other attributes, return true.
   2325   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
   2326     if ((*i)->getKind() != attr::IBAction)
   2327       return true;
   2328   return false;
   2329 }
   2330 
   2331 namespace  {
   2332   /// \brief Describes the compatibility of a result type with its method.
   2333   enum ResultTypeCompatibilityKind {
   2334     RTC_Compatible,
   2335     RTC_Incompatible,
   2336     RTC_Unknown
   2337   };
   2338 }
   2339 
   2340 /// \brief Check whether the declared result type of the given Objective-C
   2341 /// method declaration is compatible with the method's class.
   2342 ///
   2343 static ResultTypeCompatibilityKind
   2344 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   2345                                     ObjCInterfaceDecl *CurrentClass) {
   2346   QualType ResultType = Method->getResultType();
   2347 
   2348   // If an Objective-C method inherits its related result type, then its
   2349   // declared result type must be compatible with its own class type. The
   2350   // declared result type is compatible if:
   2351   if (const ObjCObjectPointerType *ResultObjectType
   2352                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   2353     //   - it is id or qualified id, or
   2354     if (ResultObjectType->isObjCIdType() ||
   2355         ResultObjectType->isObjCQualifiedIdType())
   2356       return RTC_Compatible;
   2357 
   2358     if (CurrentClass) {
   2359       if (ObjCInterfaceDecl *ResultClass
   2360                                       = ResultObjectType->getInterfaceDecl()) {
   2361         //   - it is the same as the method's class type, or
   2362         if (CurrentClass == ResultClass)
   2363           return RTC_Compatible;
   2364 
   2365         //   - it is a superclass of the method's class type
   2366         if (ResultClass->isSuperClassOf(CurrentClass))
   2367           return RTC_Compatible;
   2368       }
   2369     } else {
   2370       // Any Objective-C pointer type might be acceptable for a protocol
   2371       // method; we just don't know.
   2372       return RTC_Unknown;
   2373     }
   2374   }
   2375 
   2376   return RTC_Incompatible;
   2377 }
   2378 
   2379 namespace {
   2380 /// A helper class for searching for methods which a particular method
   2381 /// overrides.
   2382 class OverrideSearch {
   2383   Sema &S;
   2384   ObjCMethodDecl *Method;
   2385   llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched;
   2386   llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden;
   2387   bool Recursive;
   2388 
   2389 public:
   2390   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   2391     Selector selector = method->getSelector();
   2392 
   2393     // Bypass this search if we've never seen an instance/class method
   2394     // with this selector before.
   2395     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   2396     if (it == S.MethodPool.end()) {
   2397       if (!S.ExternalSource) return;
   2398       it = S.ReadMethodPool(selector);
   2399     }
   2400     ObjCMethodList &list =
   2401       method->isInstanceMethod() ? it->second.first : it->second.second;
   2402     if (!list.Method) return;
   2403 
   2404     ObjCContainerDecl *container
   2405       = cast<ObjCContainerDecl>(method->getDeclContext());
   2406 
   2407     // Prevent the search from reaching this container again.  This is
   2408     // important with categories, which override methods from the
   2409     // interface and each other.
   2410     Searched.insert(container);
   2411     searchFromContainer(container);
   2412   }
   2413 
   2414   typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator;
   2415   iterator begin() const { return Overridden.begin(); }
   2416   iterator end() const { return Overridden.end(); }
   2417 
   2418 private:
   2419   void searchFromContainer(ObjCContainerDecl *container) {
   2420     if (container->isInvalidDecl()) return;
   2421 
   2422     switch (container->getDeclKind()) {
   2423 #define OBJCCONTAINER(type, base) \
   2424     case Decl::type: \
   2425       searchFrom(cast<type##Decl>(container)); \
   2426       break;
   2427 #define ABSTRACT_DECL(expansion)
   2428 #define DECL(type, base) \
   2429     case Decl::type:
   2430 #include "clang/AST/DeclNodes.inc"
   2431       llvm_unreachable("not an ObjC container!");
   2432     }
   2433   }
   2434 
   2435   void searchFrom(ObjCProtocolDecl *protocol) {
   2436     // A method in a protocol declaration overrides declarations from
   2437     // referenced ("parent") protocols.
   2438     search(protocol->getReferencedProtocols());
   2439   }
   2440 
   2441   void searchFrom(ObjCCategoryDecl *category) {
   2442     // A method in a category declaration overrides declarations from
   2443     // the main class and from protocols the category references.
   2444     search(category->getClassInterface());
   2445     search(category->getReferencedProtocols());
   2446   }
   2447 
   2448   void searchFrom(ObjCCategoryImplDecl *impl) {
   2449     // A method in a category definition that has a category
   2450     // declaration overrides declarations from the category
   2451     // declaration.
   2452     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   2453       search(category);
   2454 
   2455     // Otherwise it overrides declarations from the class.
   2456     } else {
   2457       search(impl->getClassInterface());
   2458     }
   2459   }
   2460 
   2461   void searchFrom(ObjCInterfaceDecl *iface) {
   2462     // A method in a class declaration overrides declarations from
   2463 
   2464     //   - categories,
   2465     for (ObjCCategoryDecl *category = iface->getCategoryList();
   2466            category; category = category->getNextClassCategory())
   2467       search(category);
   2468 
   2469     //   - the super class, and
   2470     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   2471       search(super);
   2472 
   2473     //   - any referenced protocols.
   2474     search(iface->getReferencedProtocols());
   2475   }
   2476 
   2477   void searchFrom(ObjCImplementationDecl *impl) {
   2478     // A method in a class implementation overrides declarations from
   2479     // the class interface.
   2480     search(impl->getClassInterface());
   2481   }
   2482 
   2483 
   2484   void search(const ObjCProtocolList &protocols) {
   2485     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   2486          i != e; ++i)
   2487       search(*i);
   2488   }
   2489 
   2490   void search(ObjCContainerDecl *container) {
   2491     // Abort if we've already searched this container.
   2492     if (!Searched.insert(container)) return;
   2493 
   2494     // Check for a method in this container which matches this selector.
   2495     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   2496                                                 Method->isInstanceMethod());
   2497 
   2498     // If we find one, record it and bail out.
   2499     if (meth) {
   2500       Overridden.insert(meth);
   2501       return;
   2502     }
   2503 
   2504     // Otherwise, search for methods that a hypothetical method here
   2505     // would have overridden.
   2506 
   2507     // Note that we're now in a recursive case.
   2508     Recursive = true;
   2509 
   2510     searchFromContainer(container);
   2511   }
   2512 };
   2513 }
   2514 
   2515 Decl *Sema::ActOnMethodDeclaration(
   2516     Scope *S,
   2517     SourceLocation MethodLoc, SourceLocation EndLoc,
   2518     tok::TokenKind MethodType,
   2519     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   2520     ArrayRef<SourceLocation> SelectorLocs,
   2521     Selector Sel,
   2522     // optional arguments. The number of types/arguments is obtained
   2523     // from the Sel.getNumArgs().
   2524     ObjCArgInfo *ArgInfo,
   2525     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   2526     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   2527     bool isVariadic, bool MethodDefinition) {
   2528   // Make sure we can establish a context for the method.
   2529   if (!CurContext->isObjCContainer()) {
   2530     Diag(MethodLoc, diag::error_missing_method_context);
   2531     return 0;
   2532   }
   2533   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2534   Decl *ClassDecl = cast<Decl>(OCD);
   2535   QualType resultDeclType;
   2536 
   2537   bool HasRelatedResultType = false;
   2538   TypeSourceInfo *ResultTInfo = 0;
   2539   if (ReturnType) {
   2540     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
   2541 
   2542     // Methods cannot return interface types. All ObjC objects are
   2543     // passed by reference.
   2544     if (resultDeclType->isObjCObjectType()) {
   2545       Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
   2546         << 0 << resultDeclType;
   2547       return 0;
   2548     }
   2549 
   2550     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
   2551   } else { // get the type for "id".
   2552     resultDeclType = Context.getObjCIdType();
   2553     Diag(MethodLoc, diag::warn_missing_method_return_type)
   2554       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   2555   }
   2556 
   2557   ObjCMethodDecl* ObjCMethod =
   2558     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
   2559                            resultDeclType,
   2560                            ResultTInfo,
   2561                            CurContext,
   2562                            MethodType == tok::minus, isVariadic,
   2563                            /*isSynthesized=*/false,
   2564                            /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   2565                            MethodDeclKind == tok::objc_optional
   2566                              ? ObjCMethodDecl::Optional
   2567                              : ObjCMethodDecl::Required,
   2568                            HasRelatedResultType);
   2569 
   2570   SmallVector<ParmVarDecl*, 16> Params;
   2571 
   2572   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   2573     QualType ArgType;
   2574     TypeSourceInfo *DI;
   2575 
   2576     if (ArgInfo[i].Type == 0) {
   2577       ArgType = Context.getObjCIdType();
   2578       DI = 0;
   2579     } else {
   2580       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   2581       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2582       ArgType = Context.getAdjustedParameterType(ArgType);
   2583     }
   2584 
   2585     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   2586                    LookupOrdinaryName, ForRedeclaration);
   2587     LookupName(R, S);
   2588     if (R.isSingleResult()) {
   2589       NamedDecl *PrevDecl = R.getFoundDecl();
   2590       if (S->isDeclScope(PrevDecl)) {
   2591         Diag(ArgInfo[i].NameLoc,
   2592              (MethodDefinition ? diag::warn_method_param_redefinition
   2593                                : diag::warn_method_param_declaration))
   2594           << ArgInfo[i].Name;
   2595         Diag(PrevDecl->getLocation(),
   2596              diag::note_previous_declaration);
   2597       }
   2598     }
   2599 
   2600     SourceLocation StartLoc = DI
   2601       ? DI->getTypeLoc().getBeginLoc()
   2602       : ArgInfo[i].NameLoc;
   2603 
   2604     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   2605                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   2606                                         ArgType, DI, SC_None, SC_None);
   2607 
   2608     Param->setObjCMethodScopeInfo(i);
   2609 
   2610     Param->setObjCDeclQualifier(
   2611       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   2612 
   2613     // Apply the attributes to the parameter.
   2614     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   2615 
   2616     S->AddDecl(Param);
   2617     IdResolver.AddDecl(Param);
   2618 
   2619     Params.push_back(Param);
   2620   }
   2621 
   2622   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   2623     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   2624     QualType ArgType = Param->getType();
   2625     if (ArgType.isNull())
   2626       ArgType = Context.getObjCIdType();
   2627     else
   2628       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2629       ArgType = Context.getAdjustedParameterType(ArgType);
   2630     if (ArgType->isObjCObjectType()) {
   2631       Diag(Param->getLocation(),
   2632            diag::err_object_cannot_be_passed_returned_by_value)
   2633       << 1 << ArgType;
   2634       Param->setInvalidDecl();
   2635     }
   2636     Param->setDeclContext(ObjCMethod);
   2637 
   2638     Params.push_back(Param);
   2639   }
   2640 
   2641   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   2642   ObjCMethod->setObjCDeclQualifier(
   2643     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   2644 
   2645   if (AttrList)
   2646     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   2647 
   2648   // Add the method now.
   2649   const ObjCMethodDecl *PrevMethod = 0;
   2650   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   2651     if (MethodType == tok::minus) {
   2652       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   2653       ImpDecl->addInstanceMethod(ObjCMethod);
   2654     } else {
   2655       PrevMethod = ImpDecl->getClassMethod(Sel);
   2656       ImpDecl->addClassMethod(ObjCMethod);
   2657     }
   2658 
   2659     if (ObjCMethod->hasAttrs() &&
   2660         containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
   2661       Diag(EndLoc, diag::warn_attribute_method_def);
   2662   } else {
   2663     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   2664   }
   2665 
   2666   if (PrevMethod) {
   2667     // You can never have two method definitions with the same name.
   2668     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   2669       << ObjCMethod->getDeclName();
   2670     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2671   }
   2672 
   2673   // If this Objective-C method does not have a related result type, but we
   2674   // are allowed to infer related result types, try to do so based on the
   2675   // method family.
   2676   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   2677   if (!CurrentClass) {
   2678     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   2679       CurrentClass = Cat->getClassInterface();
   2680     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   2681       CurrentClass = Impl->getClassInterface();
   2682     else if (ObjCCategoryImplDecl *CatImpl
   2683                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   2684       CurrentClass = CatImpl->getClassInterface();
   2685   }
   2686 
   2687   ResultTypeCompatibilityKind RTC
   2688     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   2689 
   2690   // Search for overridden methods and merge information down from them.
   2691   OverrideSearch overrides(*this, ObjCMethod);
   2692   for (OverrideSearch::iterator
   2693          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   2694     ObjCMethodDecl *overridden = *i;
   2695 
   2696     // Propagate down the 'related result type' bit from overridden methods.
   2697     if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
   2698       ObjCMethod->SetRelatedResultType();
   2699 
   2700     // Then merge the declarations.
   2701     mergeObjCMethodDecls(ObjCMethod, overridden);
   2702 
   2703     // Check for overriding methods
   2704     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   2705         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   2706       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   2707               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   2708   }
   2709 
   2710   bool ARCError = false;
   2711   if (getLangOptions().ObjCAutoRefCount)
   2712     ARCError = CheckARCMethodDecl(*this, ObjCMethod);
   2713 
   2714   // Infer the related result type when possible.
   2715   if (!ARCError && RTC == RTC_Compatible &&
   2716       !ObjCMethod->hasRelatedResultType() &&
   2717       LangOpts.ObjCInferRelatedResultType) {
   2718     bool InferRelatedResultType = false;
   2719     switch (ObjCMethod->getMethodFamily()) {
   2720     case OMF_None:
   2721     case OMF_copy:
   2722     case OMF_dealloc:
   2723     case OMF_finalize:
   2724     case OMF_mutableCopy:
   2725     case OMF_release:
   2726     case OMF_retainCount:
   2727     case OMF_performSelector:
   2728       break;
   2729 
   2730     case OMF_alloc:
   2731     case OMF_new:
   2732       InferRelatedResultType = ObjCMethod->isClassMethod();
   2733       break;
   2734 
   2735     case OMF_init:
   2736     case OMF_autorelease:
   2737     case OMF_retain:
   2738     case OMF_self:
   2739       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   2740       break;
   2741     }
   2742 
   2743     if (InferRelatedResultType)
   2744       ObjCMethod->SetRelatedResultType();
   2745   }
   2746 
   2747   return ObjCMethod;
   2748 }
   2749 
   2750 bool Sema::CheckObjCDeclScope(Decl *D) {
   2751   if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
   2752     return false;
   2753   // Following is also an error. But it is caused by a missing @end
   2754   // and diagnostic is issued elsewhere.
   2755   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) {
   2756     return false;
   2757   }
   2758 
   2759   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   2760   D->setInvalidDecl();
   2761 
   2762   return true;
   2763 }
   2764 
   2765 /// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
   2766 /// instance variables of ClassName into Decls.
   2767 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   2768                      IdentifierInfo *ClassName,
   2769                      SmallVectorImpl<Decl*> &Decls) {
   2770   // Check that ClassName is a valid class
   2771   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   2772   if (!Class) {
   2773     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   2774     return;
   2775   }
   2776   if (LangOpts.ObjCNonFragileABI) {
   2777     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   2778     return;
   2779   }
   2780 
   2781   // Collect the instance variables
   2782   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   2783   Context.DeepCollectObjCIvars(Class, true, Ivars);
   2784   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   2785   for (unsigned i = 0; i < Ivars.size(); i++) {
   2786     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   2787     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   2788     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   2789                                            /*FIXME: StartL=*/ID->getLocation(),
   2790                                            ID->getLocation(),
   2791                                            ID->getIdentifier(), ID->getType(),
   2792                                            ID->getBitWidth());
   2793     Decls.push_back(FD);
   2794   }
   2795 
   2796   // Introduce all of these fields into the appropriate scope.
   2797   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   2798        D != Decls.end(); ++D) {
   2799     FieldDecl *FD = cast<FieldDecl>(*D);
   2800     if (getLangOptions().CPlusPlus)
   2801       PushOnScopeChains(cast<FieldDecl>(FD), S);
   2802     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   2803       Record->addDecl(FD);
   2804   }
   2805 }
   2806 
   2807 /// \brief Build a type-check a new Objective-C exception variable declaration.
   2808 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   2809                                       SourceLocation StartLoc,
   2810                                       SourceLocation IdLoc,
   2811                                       IdentifierInfo *Id,
   2812                                       bool Invalid) {
   2813   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   2814   // duration shall not be qualified by an address-space qualifier."
   2815   // Since all parameters have automatic store duration, they can not have
   2816   // an address space.
   2817   if (T.getAddressSpace() != 0) {
   2818     Diag(IdLoc, diag::err_arg_with_address_space);
   2819     Invalid = true;
   2820   }
   2821 
   2822   // An @catch parameter must be an unqualified object pointer type;
   2823   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   2824   if (Invalid) {
   2825     // Don't do any further checking.
   2826   } else if (T->isDependentType()) {
   2827     // Okay: we don't know what this type will instantiate to.
   2828   } else if (!T->isObjCObjectPointerType()) {
   2829     Invalid = true;
   2830     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   2831   } else if (T->isObjCQualifiedIdType()) {
   2832     Invalid = true;
   2833     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   2834   }
   2835 
   2836   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   2837                                  T, TInfo, SC_None, SC_None);
   2838   New->setExceptionVariable(true);
   2839 
   2840   if (Invalid)
   2841     New->setInvalidDecl();
   2842   return New;
   2843 }
   2844 
   2845 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   2846   const DeclSpec &DS = D.getDeclSpec();
   2847 
   2848   // We allow the "register" storage class on exception variables because
   2849   // GCC did, but we drop it completely. Any other storage class is an error.
   2850   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   2851     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   2852       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   2853   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   2854     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   2855       << DS.getStorageClassSpec();
   2856   }
   2857   if (D.getDeclSpec().isThreadSpecified())
   2858     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   2859   D.getMutableDeclSpec().ClearStorageClassSpecs();
   2860 
   2861   DiagnoseFunctionSpecifiers(D);
   2862 
   2863   // Check that there are no default arguments inside the type of this
   2864   // exception object (C++ only).
   2865   if (getLangOptions().CPlusPlus)
   2866     CheckExtraCXXDefaultArguments(D);
   2867 
   2868   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   2869   QualType ExceptionType = TInfo->getType();
   2870 
   2871   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   2872                                         D.getSourceRange().getBegin(),
   2873                                         D.getIdentifierLoc(),
   2874                                         D.getIdentifier(),
   2875                                         D.isInvalidType());
   2876 
   2877   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   2878   if (D.getCXXScopeSpec().isSet()) {
   2879     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   2880       << D.getCXXScopeSpec().getRange();
   2881     New->setInvalidDecl();
   2882   }
   2883 
   2884   // Add the parameter declaration into this scope.
   2885   S->AddDecl(New);
   2886   if (D.getIdentifier())
   2887     IdResolver.AddDecl(New);
   2888 
   2889   ProcessDeclAttributes(S, New, D);
   2890 
   2891   if (New->hasAttr<BlocksAttr>())
   2892     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   2893   return New;
   2894 }
   2895 
   2896 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   2897 /// initialization.
   2898 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   2899                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   2900   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   2901        Iv= Iv->getNextIvar()) {
   2902     QualType QT = Context.getBaseElementType(Iv->getType());
   2903     if (QT->isRecordType())
   2904       Ivars.push_back(Iv);
   2905   }
   2906 }
   2907 
   2908 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   2909   // Load referenced selectors from the external source.
   2910   if (ExternalSource) {
   2911     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   2912     ExternalSource->ReadReferencedSelectors(Sels);
   2913     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   2914       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   2915   }
   2916 
   2917   // Warning will be issued only when selector table is
   2918   // generated (which means there is at lease one implementation
   2919   // in the TU). This is to match gcc's behavior.
   2920   if (ReferencedSelectors.empty() ||
   2921       !Context.AnyObjCImplementation())
   2922     return;
   2923   for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
   2924         ReferencedSelectors.begin(),
   2925        E = ReferencedSelectors.end(); S != E; ++S) {
   2926     Selector Sel = (*S).first;
   2927     if (!LookupImplementedMethodInGlobalPool(Sel))
   2928       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
   2929   }
   2930   return;
   2931 }
   2932