Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the Type interface and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_TYPE_H
     15 #define LLVM_CLANG_AST_TYPE_H
     16 
     17 #include "clang/Basic/Diagnostic.h"
     18 #include "clang/Basic/ExceptionSpecificationType.h"
     19 #include "clang/Basic/IdentifierTable.h"
     20 #include "clang/Basic/Linkage.h"
     21 #include "clang/Basic/PartialDiagnostic.h"
     22 #include "clang/Basic/Visibility.h"
     23 #include "clang/AST/NestedNameSpecifier.h"
     24 #include "clang/AST/TemplateName.h"
     25 #include "llvm/Support/type_traits.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/ADT/APSInt.h"
     28 #include "llvm/ADT/FoldingSet.h"
     29 #include "llvm/ADT/Optional.h"
     30 #include "llvm/ADT/PointerIntPair.h"
     31 #include "llvm/ADT/PointerUnion.h"
     32 #include "clang/Basic/LLVM.h"
     33 
     34 namespace clang {
     35   enum {
     36     TypeAlignmentInBits = 4,
     37     TypeAlignment = 1 << TypeAlignmentInBits
     38   };
     39   class Type;
     40   class ExtQuals;
     41   class QualType;
     42 }
     43 
     44 namespace llvm {
     45   template <typename T>
     46   class PointerLikeTypeTraits;
     47   template<>
     48   class PointerLikeTypeTraits< ::clang::Type*> {
     49   public:
     50     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     51     static inline ::clang::Type *getFromVoidPointer(void *P) {
     52       return static_cast< ::clang::Type*>(P);
     53     }
     54     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     55   };
     56   template<>
     57   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
     58   public:
     59     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     60     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     61       return static_cast< ::clang::ExtQuals*>(P);
     62     }
     63     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     64   };
     65 
     66   template <>
     67   struct isPodLike<clang::QualType> { static const bool value = true; };
     68 }
     69 
     70 namespace clang {
     71   class ASTContext;
     72   class TypedefNameDecl;
     73   class TemplateDecl;
     74   class TemplateTypeParmDecl;
     75   class NonTypeTemplateParmDecl;
     76   class TemplateTemplateParmDecl;
     77   class TagDecl;
     78   class RecordDecl;
     79   class CXXRecordDecl;
     80   class EnumDecl;
     81   class FieldDecl;
     82   class ObjCInterfaceDecl;
     83   class ObjCProtocolDecl;
     84   class ObjCMethodDecl;
     85   class UnresolvedUsingTypenameDecl;
     86   class Expr;
     87   class Stmt;
     88   class SourceLocation;
     89   class StmtIteratorBase;
     90   class TemplateArgument;
     91   class TemplateArgumentLoc;
     92   class TemplateArgumentListInfo;
     93   class ElaboratedType;
     94   class ExtQuals;
     95   class ExtQualsTypeCommonBase;
     96   struct PrintingPolicy;
     97 
     98   template <typename> class CanQual;
     99   typedef CanQual<Type> CanQualType;
    100 
    101   // Provide forward declarations for all of the *Type classes
    102 #define TYPE(Class, Base) class Class##Type;
    103 #include "clang/AST/TypeNodes.def"
    104 
    105 /// Qualifiers - The collection of all-type qualifiers we support.
    106 /// Clang supports five independent qualifiers:
    107 /// * C99: const, volatile, and restrict
    108 /// * Embedded C (TR18037): address spaces
    109 /// * Objective C: the GC attributes (none, weak, or strong)
    110 class Qualifiers {
    111 public:
    112   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    113     Const    = 0x1,
    114     Restrict = 0x2,
    115     Volatile = 0x4,
    116     CVRMask = Const | Volatile | Restrict
    117   };
    118 
    119   enum GC {
    120     GCNone = 0,
    121     Weak,
    122     Strong
    123   };
    124 
    125   enum ObjCLifetime {
    126     /// There is no lifetime qualification on this type.
    127     OCL_None,
    128 
    129     /// This object can be modified without requiring retains or
    130     /// releases.
    131     OCL_ExplicitNone,
    132 
    133     /// Assigning into this object requires the old value to be
    134     /// released and the new value to be retained.  The timing of the
    135     /// release of the old value is inexact: it may be moved to
    136     /// immediately after the last known point where the value is
    137     /// live.
    138     OCL_Strong,
    139 
    140     /// Reading or writing from this object requires a barrier call.
    141     OCL_Weak,
    142 
    143     /// Assigning into this object requires a lifetime extension.
    144     OCL_Autoreleasing
    145   };
    146 
    147   enum {
    148     /// The maximum supported address space number.
    149     /// 24 bits should be enough for anyone.
    150     MaxAddressSpace = 0xffffffu,
    151 
    152     /// The width of the "fast" qualifier mask.
    153     FastWidth = 3,
    154 
    155     /// The fast qualifier mask.
    156     FastMask = (1 << FastWidth) - 1
    157   };
    158 
    159   Qualifiers() : Mask(0) {}
    160 
    161   static Qualifiers fromFastMask(unsigned Mask) {
    162     Qualifiers Qs;
    163     Qs.addFastQualifiers(Mask);
    164     return Qs;
    165   }
    166 
    167   static Qualifiers fromCVRMask(unsigned CVR) {
    168     Qualifiers Qs;
    169     Qs.addCVRQualifiers(CVR);
    170     return Qs;
    171   }
    172 
    173   // Deserialize qualifiers from an opaque representation.
    174   static Qualifiers fromOpaqueValue(unsigned opaque) {
    175     Qualifiers Qs;
    176     Qs.Mask = opaque;
    177     return Qs;
    178   }
    179 
    180   // Serialize these qualifiers into an opaque representation.
    181   unsigned getAsOpaqueValue() const {
    182     return Mask;
    183   }
    184 
    185   bool hasConst() const { return Mask & Const; }
    186   void setConst(bool flag) {
    187     Mask = (Mask & ~Const) | (flag ? Const : 0);
    188   }
    189   void removeConst() { Mask &= ~Const; }
    190   void addConst() { Mask |= Const; }
    191 
    192   bool hasVolatile() const { return Mask & Volatile; }
    193   void setVolatile(bool flag) {
    194     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    195   }
    196   void removeVolatile() { Mask &= ~Volatile; }
    197   void addVolatile() { Mask |= Volatile; }
    198 
    199   bool hasRestrict() const { return Mask & Restrict; }
    200   void setRestrict(bool flag) {
    201     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    202   }
    203   void removeRestrict() { Mask &= ~Restrict; }
    204   void addRestrict() { Mask |= Restrict; }
    205 
    206   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    207   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    208   void setCVRQualifiers(unsigned mask) {
    209     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    210     Mask = (Mask & ~CVRMask) | mask;
    211   }
    212   void removeCVRQualifiers(unsigned mask) {
    213     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    214     Mask &= ~mask;
    215   }
    216   void removeCVRQualifiers() {
    217     removeCVRQualifiers(CVRMask);
    218   }
    219   void addCVRQualifiers(unsigned mask) {
    220     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    221     Mask |= mask;
    222   }
    223 
    224   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    225   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    226   void setObjCGCAttr(GC type) {
    227     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    228   }
    229   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    230   void addObjCGCAttr(GC type) {
    231     assert(type);
    232     setObjCGCAttr(type);
    233   }
    234   Qualifiers withoutObjCGCAttr() const {
    235     Qualifiers qs = *this;
    236     qs.removeObjCGCAttr();
    237     return qs;
    238   }
    239   Qualifiers withoutObjCGLifetime() const {
    240     Qualifiers qs = *this;
    241     qs.removeObjCLifetime();
    242     return qs;
    243   }
    244 
    245   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    246   ObjCLifetime getObjCLifetime() const {
    247     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    248   }
    249   void setObjCLifetime(ObjCLifetime type) {
    250     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    251   }
    252   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    253   void addObjCLifetime(ObjCLifetime type) {
    254     assert(type);
    255     setObjCLifetime(type);
    256   }
    257 
    258   /// True if the lifetime is neither None or ExplicitNone.
    259   bool hasNonTrivialObjCLifetime() const {
    260     ObjCLifetime lifetime = getObjCLifetime();
    261     return (lifetime > OCL_ExplicitNone);
    262   }
    263 
    264   /// True if the lifetime is either strong or weak.
    265   bool hasStrongOrWeakObjCLifetime() const {
    266     ObjCLifetime lifetime = getObjCLifetime();
    267     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    268   }
    269 
    270   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    271   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
    272   void setAddressSpace(unsigned space) {
    273     assert(space <= MaxAddressSpace);
    274     Mask = (Mask & ~AddressSpaceMask)
    275          | (((uint32_t) space) << AddressSpaceShift);
    276   }
    277   void removeAddressSpace() { setAddressSpace(0); }
    278   void addAddressSpace(unsigned space) {
    279     assert(space);
    280     setAddressSpace(space);
    281   }
    282 
    283   // Fast qualifiers are those that can be allocated directly
    284   // on a QualType object.
    285   bool hasFastQualifiers() const { return getFastQualifiers(); }
    286   unsigned getFastQualifiers() const { return Mask & FastMask; }
    287   void setFastQualifiers(unsigned mask) {
    288     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    289     Mask = (Mask & ~FastMask) | mask;
    290   }
    291   void removeFastQualifiers(unsigned mask) {
    292     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    293     Mask &= ~mask;
    294   }
    295   void removeFastQualifiers() {
    296     removeFastQualifiers(FastMask);
    297   }
    298   void addFastQualifiers(unsigned mask) {
    299     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    300     Mask |= mask;
    301   }
    302 
    303   /// hasNonFastQualifiers - Return true if the set contains any
    304   /// qualifiers which require an ExtQuals node to be allocated.
    305   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    306   Qualifiers getNonFastQualifiers() const {
    307     Qualifiers Quals = *this;
    308     Quals.setFastQualifiers(0);
    309     return Quals;
    310   }
    311 
    312   /// hasQualifiers - Return true if the set contains any qualifiers.
    313   bool hasQualifiers() const { return Mask; }
    314   bool empty() const { return !Mask; }
    315 
    316   /// \brief Add the qualifiers from the given set to this set.
    317   void addQualifiers(Qualifiers Q) {
    318     // If the other set doesn't have any non-boolean qualifiers, just
    319     // bit-or it in.
    320     if (!(Q.Mask & ~CVRMask))
    321       Mask |= Q.Mask;
    322     else {
    323       Mask |= (Q.Mask & CVRMask);
    324       if (Q.hasAddressSpace())
    325         addAddressSpace(Q.getAddressSpace());
    326       if (Q.hasObjCGCAttr())
    327         addObjCGCAttr(Q.getObjCGCAttr());
    328       if (Q.hasObjCLifetime())
    329         addObjCLifetime(Q.getObjCLifetime());
    330     }
    331   }
    332 
    333   /// \brief Add the qualifiers from the given set to this set, given that
    334   /// they don't conflict.
    335   void addConsistentQualifiers(Qualifiers qs) {
    336     assert(getAddressSpace() == qs.getAddressSpace() ||
    337            !hasAddressSpace() || !qs.hasAddressSpace());
    338     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    339            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    340     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    341            !hasObjCLifetime() || !qs.hasObjCLifetime());
    342     Mask |= qs.Mask;
    343   }
    344 
    345   /// \brief Determines if these qualifiers compatibly include another set.
    346   /// Generally this answers the question of whether an object with the other
    347   /// qualifiers can be safely used as an object with these qualifiers.
    348   bool compatiblyIncludes(Qualifiers other) const {
    349     return
    350       // Address spaces must match exactly.
    351       getAddressSpace() == other.getAddressSpace() &&
    352       // ObjC GC qualifiers can match, be added, or be removed, but can't be
    353       // changed.
    354       (getObjCGCAttr() == other.getObjCGCAttr() ||
    355        !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
    356       // ObjC lifetime qualifiers must match exactly.
    357       getObjCLifetime() == other.getObjCLifetime() &&
    358       // CVR qualifiers may subset.
    359       (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
    360   }
    361 
    362   /// \brief Determines if these qualifiers compatibly include another set of
    363   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    364   ///
    365   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    366   /// if the lifetime qualifiers match, or if both are non-__weak and the
    367   /// including set also contains the 'const' qualifier.
    368   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    369     if (getObjCLifetime() == other.getObjCLifetime())
    370       return true;
    371 
    372     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    373       return false;
    374 
    375     return hasConst();
    376   }
    377 
    378   bool isSupersetOf(Qualifiers Other) const;
    379 
    380   /// \brief Determine whether this set of qualifiers is a strict superset of
    381   /// another set of qualifiers, not considering qualifier compatibility.
    382   bool isStrictSupersetOf(Qualifiers Other) const;
    383 
    384   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    385   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    386 
    387   operator bool() const { return hasQualifiers(); }
    388 
    389   Qualifiers &operator+=(Qualifiers R) {
    390     addQualifiers(R);
    391     return *this;
    392   }
    393 
    394   // Union two qualifier sets.  If an enumerated qualifier appears
    395   // in both sets, use the one from the right.
    396   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    397     L += R;
    398     return L;
    399   }
    400 
    401   Qualifiers &operator-=(Qualifiers R) {
    402     Mask = Mask & ~(R.Mask);
    403     return *this;
    404   }
    405 
    406   /// \brief Compute the difference between two qualifier sets.
    407   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    408     L -= R;
    409     return L;
    410   }
    411 
    412   std::string getAsString() const;
    413   std::string getAsString(const PrintingPolicy &Policy) const {
    414     std::string Buffer;
    415     getAsStringInternal(Buffer, Policy);
    416     return Buffer;
    417   }
    418   void getAsStringInternal(std::string &S, const PrintingPolicy &Policy) const;
    419 
    420   void Profile(llvm::FoldingSetNodeID &ID) const {
    421     ID.AddInteger(Mask);
    422   }
    423 
    424 private:
    425 
    426   // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
    427   //           |C R V|GCAttr|Lifetime|AddressSpace|
    428   uint32_t Mask;
    429 
    430   static const uint32_t GCAttrMask = 0x18;
    431   static const uint32_t GCAttrShift = 3;
    432   static const uint32_t LifetimeMask = 0xE0;
    433   static const uint32_t LifetimeShift = 5;
    434   static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
    435   static const uint32_t AddressSpaceShift = 8;
    436 };
    437 
    438 /// CallingConv - Specifies the calling convention that a function uses.
    439 enum CallingConv {
    440   CC_Default,
    441   CC_C,           // __attribute__((cdecl))
    442   CC_X86StdCall,  // __attribute__((stdcall))
    443   CC_X86FastCall, // __attribute__((fastcall))
    444   CC_X86ThisCall, // __attribute__((thiscall))
    445   CC_X86Pascal,   // __attribute__((pascal))
    446   CC_AAPCS,       // __attribute__((pcs("aapcs")))
    447   CC_AAPCS_VFP    // __attribute__((pcs("aapcs-vfp")))
    448 };
    449 
    450 typedef std::pair<const Type*, Qualifiers> SplitQualType;
    451 
    452 /// QualType - For efficiency, we don't store CV-qualified types as nodes on
    453 /// their own: instead each reference to a type stores the qualifiers.  This
    454 /// greatly reduces the number of nodes we need to allocate for types (for
    455 /// example we only need one for 'int', 'const int', 'volatile int',
    456 /// 'const volatile int', etc).
    457 ///
    458 /// As an added efficiency bonus, instead of making this a pair, we
    459 /// just store the two bits we care about in the low bits of the
    460 /// pointer.  To handle the packing/unpacking, we make QualType be a
    461 /// simple wrapper class that acts like a smart pointer.  A third bit
    462 /// indicates whether there are extended qualifiers present, in which
    463 /// case the pointer points to a special structure.
    464 class QualType {
    465   // Thankfully, these are efficiently composable.
    466   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    467                        Qualifiers::FastWidth> Value;
    468 
    469   const ExtQuals *getExtQualsUnsafe() const {
    470     return Value.getPointer().get<const ExtQuals*>();
    471   }
    472 
    473   const Type *getTypePtrUnsafe() const {
    474     return Value.getPointer().get<const Type*>();
    475   }
    476 
    477   const ExtQualsTypeCommonBase *getCommonPtr() const {
    478     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    479     uintptr_t CommonPtrVal
    480       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    481     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    482     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    483   }
    484 
    485   friend class QualifierCollector;
    486 public:
    487   QualType() {}
    488 
    489   QualType(const Type *Ptr, unsigned Quals)
    490     : Value(Ptr, Quals) {}
    491   QualType(const ExtQuals *Ptr, unsigned Quals)
    492     : Value(Ptr, Quals) {}
    493 
    494   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    495   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    496 
    497   /// Retrieves a pointer to the underlying (unqualified) type.
    498   /// This should really return a const Type, but it's not worth
    499   /// changing all the users right now.
    500   ///
    501   /// This function requires that the type not be NULL. If the type might be
    502   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    503   const Type *getTypePtr() const;
    504 
    505   const Type *getTypePtrOrNull() const;
    506 
    507   /// Retrieves a pointer to the name of the base type.
    508   const IdentifierInfo *getBaseTypeIdentifier() const;
    509 
    510   /// Divides a QualType into its unqualified type and a set of local
    511   /// qualifiers.
    512   SplitQualType split() const;
    513 
    514   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    515   static QualType getFromOpaquePtr(const void *Ptr) {
    516     QualType T;
    517     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    518     return T;
    519   }
    520 
    521   const Type &operator*() const {
    522     return *getTypePtr();
    523   }
    524 
    525   const Type *operator->() const {
    526     return getTypePtr();
    527   }
    528 
    529   bool isCanonical() const;
    530   bool isCanonicalAsParam() const;
    531 
    532   /// isNull - Return true if this QualType doesn't point to a type yet.
    533   bool isNull() const {
    534     return Value.getPointer().isNull();
    535   }
    536 
    537   /// \brief Determine whether this particular QualType instance has the
    538   /// "const" qualifier set, without looking through typedefs that may have
    539   /// added "const" at a different level.
    540   bool isLocalConstQualified() const {
    541     return (getLocalFastQualifiers() & Qualifiers::Const);
    542   }
    543 
    544   /// \brief Determine whether this type is const-qualified.
    545   bool isConstQualified() const;
    546 
    547   /// \brief Determine whether this particular QualType instance has the
    548   /// "restrict" qualifier set, without looking through typedefs that may have
    549   /// added "restrict" at a different level.
    550   bool isLocalRestrictQualified() const {
    551     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    552   }
    553 
    554   /// \brief Determine whether this type is restrict-qualified.
    555   bool isRestrictQualified() const;
    556 
    557   /// \brief Determine whether this particular QualType instance has the
    558   /// "volatile" qualifier set, without looking through typedefs that may have
    559   /// added "volatile" at a different level.
    560   bool isLocalVolatileQualified() const {
    561     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    562   }
    563 
    564   /// \brief Determine whether this type is volatile-qualified.
    565   bool isVolatileQualified() const;
    566 
    567   /// \brief Determine whether this particular QualType instance has any
    568   /// qualifiers, without looking through any typedefs that might add
    569   /// qualifiers at a different level.
    570   bool hasLocalQualifiers() const {
    571     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    572   }
    573 
    574   /// \brief Determine whether this type has any qualifiers.
    575   bool hasQualifiers() const;
    576 
    577   /// \brief Determine whether this particular QualType instance has any
    578   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    579   /// instance.
    580   bool hasLocalNonFastQualifiers() const {
    581     return Value.getPointer().is<const ExtQuals*>();
    582   }
    583 
    584   /// \brief Retrieve the set of qualifiers local to this particular QualType
    585   /// instance, not including any qualifiers acquired through typedefs or
    586   /// other sugar.
    587   Qualifiers getLocalQualifiers() const;
    588 
    589   /// \brief Retrieve the set of qualifiers applied to this type.
    590   Qualifiers getQualifiers() const;
    591 
    592   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    593   /// local to this particular QualType instance, not including any qualifiers
    594   /// acquired through typedefs or other sugar.
    595   unsigned getLocalCVRQualifiers() const {
    596     return getLocalFastQualifiers();
    597   }
    598 
    599   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    600   /// applied to this type.
    601   unsigned getCVRQualifiers() const;
    602 
    603   bool isConstant(ASTContext& Ctx) const {
    604     return QualType::isConstant(*this, Ctx);
    605   }
    606 
    607   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    608   bool isPODType(ASTContext &Context) const;
    609 
    610   /// isCXX11PODType() - Return true if this is a POD type according to the
    611   /// more relaxed rules of the C++11 standard, regardless of the current
    612   /// compilation's language.
    613   /// (C++0x [basic.types]p9)
    614   bool isCXX11PODType(ASTContext &Context) const;
    615 
    616   /// isTrivialType - Return true if this is a trivial type
    617   /// (C++0x [basic.types]p9)
    618   bool isTrivialType(ASTContext &Context) const;
    619 
    620   /// isTriviallyCopyableType - Return true if this is a trivially
    621   /// copyable type (C++0x [basic.types]p9)
    622   bool isTriviallyCopyableType(ASTContext &Context) const;
    623 
    624   // Don't promise in the API that anything besides 'const' can be
    625   // easily added.
    626 
    627   /// addConst - add the specified type qualifier to this QualType.
    628   void addConst() {
    629     addFastQualifiers(Qualifiers::Const);
    630   }
    631   QualType withConst() const {
    632     return withFastQualifiers(Qualifiers::Const);
    633   }
    634 
    635   /// addVolatile - add the specified type qualifier to this QualType.
    636   void addVolatile() {
    637     addFastQualifiers(Qualifiers::Volatile);
    638   }
    639   QualType withVolatile() const {
    640     return withFastQualifiers(Qualifiers::Volatile);
    641   }
    642 
    643   QualType withCVRQualifiers(unsigned CVR) const {
    644     return withFastQualifiers(CVR);
    645   }
    646 
    647   void addFastQualifiers(unsigned TQs) {
    648     assert(!(TQs & ~Qualifiers::FastMask)
    649            && "non-fast qualifier bits set in mask!");
    650     Value.setInt(Value.getInt() | TQs);
    651   }
    652 
    653   void removeLocalConst();
    654   void removeLocalVolatile();
    655   void removeLocalRestrict();
    656   void removeLocalCVRQualifiers(unsigned Mask);
    657 
    658   void removeLocalFastQualifiers() { Value.setInt(0); }
    659   void removeLocalFastQualifiers(unsigned Mask) {
    660     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    661     Value.setInt(Value.getInt() & ~Mask);
    662   }
    663 
    664   // Creates a type with the given qualifiers in addition to any
    665   // qualifiers already on this type.
    666   QualType withFastQualifiers(unsigned TQs) const {
    667     QualType T = *this;
    668     T.addFastQualifiers(TQs);
    669     return T;
    670   }
    671 
    672   // Creates a type with exactly the given fast qualifiers, removing
    673   // any existing fast qualifiers.
    674   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    675     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    676   }
    677 
    678   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    679   QualType withoutLocalFastQualifiers() const {
    680     QualType T = *this;
    681     T.removeLocalFastQualifiers();
    682     return T;
    683   }
    684 
    685   QualType getCanonicalType() const;
    686 
    687   /// \brief Return this type with all of the instance-specific qualifiers
    688   /// removed, but without removing any qualifiers that may have been applied
    689   /// through typedefs.
    690   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    691 
    692   /// \brief Retrieve the unqualified variant of the given type,
    693   /// removing as little sugar as possible.
    694   ///
    695   /// This routine looks through various kinds of sugar to find the
    696   /// least-desugared type that is unqualified. For example, given:
    697   ///
    698   /// \code
    699   /// typedef int Integer;
    700   /// typedef const Integer CInteger;
    701   /// typedef CInteger DifferenceType;
    702   /// \endcode
    703   ///
    704   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    705   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    706   ///
    707   /// The resulting type might still be qualified if it's an array
    708   /// type.  To strip qualifiers even from within an array type, use
    709   /// ASTContext::getUnqualifiedArrayType.
    710   inline QualType getUnqualifiedType() const;
    711 
    712   /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
    713   /// given type, removing as little sugar as possible.
    714   ///
    715   /// Like getUnqualifiedType(), but also returns the set of
    716   /// qualifiers that were built up.
    717   ///
    718   /// The resulting type might still be qualified if it's an array
    719   /// type.  To strip qualifiers even from within an array type, use
    720   /// ASTContext::getUnqualifiedArrayType.
    721   inline SplitQualType getSplitUnqualifiedType() const;
    722 
    723   /// \brief Determine whether this type is more qualified than the other
    724   /// given type, requiring exact equality for non-CVR qualifiers.
    725   bool isMoreQualifiedThan(QualType Other) const;
    726 
    727   /// \brief Determine whether this type is at least as qualified as the other
    728   /// given type, requiring exact equality for non-CVR qualifiers.
    729   bool isAtLeastAsQualifiedAs(QualType Other) const;
    730 
    731   QualType getNonReferenceType() const;
    732 
    733   /// \brief Determine the type of a (typically non-lvalue) expression with the
    734   /// specified result type.
    735   ///
    736   /// This routine should be used for expressions for which the return type is
    737   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    738   /// an lvalue. It removes a top-level reference (since there are no
    739   /// expressions of reference type) and deletes top-level cvr-qualifiers
    740   /// from non-class types (in C++) or all types (in C).
    741   QualType getNonLValueExprType(ASTContext &Context) const;
    742 
    743   /// getDesugaredType - Return the specified type with any "sugar" removed from
    744   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    745   /// the type is already concrete, it returns it unmodified.  This is similar
    746   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    747   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    748   /// concrete.
    749   ///
    750   /// Qualifiers are left in place.
    751   QualType getDesugaredType(const ASTContext &Context) const {
    752     return getDesugaredType(*this, Context);
    753   }
    754 
    755   SplitQualType getSplitDesugaredType() const {
    756     return getSplitDesugaredType(*this);
    757   }
    758 
    759   /// \brief Return the specified type with one level of "sugar" removed from
    760   /// the type.
    761   ///
    762   /// This routine takes off the first typedef, typeof, etc. If the outer level
    763   /// of the type is already concrete, it returns it unmodified.
    764   QualType getSingleStepDesugaredType(const ASTContext &Context) const;
    765 
    766   /// IgnoreParens - Returns the specified type after dropping any
    767   /// outer-level parentheses.
    768   QualType IgnoreParens() const {
    769     if (isa<ParenType>(*this))
    770       return QualType::IgnoreParens(*this);
    771     return *this;
    772   }
    773 
    774   /// operator==/!= - Indicate whether the specified types and qualifiers are
    775   /// identical.
    776   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    777     return LHS.Value == RHS.Value;
    778   }
    779   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    780     return LHS.Value != RHS.Value;
    781   }
    782   std::string getAsString() const {
    783     return getAsString(split());
    784   }
    785   static std::string getAsString(SplitQualType split) {
    786     return getAsString(split.first, split.second);
    787   }
    788   static std::string getAsString(const Type *ty, Qualifiers qs);
    789 
    790   std::string getAsString(const PrintingPolicy &Policy) const {
    791     std::string S;
    792     getAsStringInternal(S, Policy);
    793     return S;
    794   }
    795   void getAsStringInternal(std::string &Str,
    796                            const PrintingPolicy &Policy) const {
    797     return getAsStringInternal(split(), Str, Policy);
    798   }
    799   static void getAsStringInternal(SplitQualType split, std::string &out,
    800                                   const PrintingPolicy &policy) {
    801     return getAsStringInternal(split.first, split.second, out, policy);
    802   }
    803   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    804                                   std::string &out,
    805                                   const PrintingPolicy &policy);
    806 
    807   void dump(const char *s) const;
    808   void dump() const;
    809 
    810   void Profile(llvm::FoldingSetNodeID &ID) const {
    811     ID.AddPointer(getAsOpaquePtr());
    812   }
    813 
    814   /// getAddressSpace - Return the address space of this type.
    815   inline unsigned getAddressSpace() const;
    816 
    817   /// getObjCGCAttr - Returns gc attribute of this type.
    818   inline Qualifiers::GC getObjCGCAttr() const;
    819 
    820   /// isObjCGCWeak true when Type is objc's weak.
    821   bool isObjCGCWeak() const {
    822     return getObjCGCAttr() == Qualifiers::Weak;
    823   }
    824 
    825   /// isObjCGCStrong true when Type is objc's strong.
    826   bool isObjCGCStrong() const {
    827     return getObjCGCAttr() == Qualifiers::Strong;
    828   }
    829 
    830   /// getObjCLifetime - Returns lifetime attribute of this type.
    831   Qualifiers::ObjCLifetime getObjCLifetime() const {
    832     return getQualifiers().getObjCLifetime();
    833   }
    834 
    835   bool hasNonTrivialObjCLifetime() const {
    836     return getQualifiers().hasNonTrivialObjCLifetime();
    837   }
    838 
    839   bool hasStrongOrWeakObjCLifetime() const {
    840     return getQualifiers().hasStrongOrWeakObjCLifetime();
    841   }
    842 
    843   enum DestructionKind {
    844     DK_none,
    845     DK_cxx_destructor,
    846     DK_objc_strong_lifetime,
    847     DK_objc_weak_lifetime
    848   };
    849 
    850   /// isDestructedType - nonzero if objects of this type require
    851   /// non-trivial work to clean up after.  Non-zero because it's
    852   /// conceivable that qualifiers (objc_gc(weak)?) could make
    853   /// something require destruction.
    854   DestructionKind isDestructedType() const {
    855     return isDestructedTypeImpl(*this);
    856   }
    857 
    858   /// \brief Determine whether expressions of the given type are forbidden
    859   /// from being lvalues in C.
    860   ///
    861   /// The expression types that are forbidden to be lvalues are:
    862   ///   - 'void', but not qualified void
    863   ///   - function types
    864   ///
    865   /// The exact rule here is C99 6.3.2.1:
    866   ///   An lvalue is an expression with an object type or an incomplete
    867   ///   type other than void.
    868   bool isCForbiddenLValueType() const;
    869 
    870   /// \brief Determine whether this type has trivial copy/move-assignment
    871   ///        semantics.
    872   bool hasTrivialAssignment(ASTContext &Context, bool Copying) const;
    873 
    874 private:
    875   // These methods are implemented in a separate translation unit;
    876   // "static"-ize them to avoid creating temporary QualTypes in the
    877   // caller.
    878   static bool isConstant(QualType T, ASTContext& Ctx);
    879   static QualType getDesugaredType(QualType T, const ASTContext &Context);
    880   static SplitQualType getSplitDesugaredType(QualType T);
    881   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
    882   static QualType IgnoreParens(QualType T);
    883   static DestructionKind isDestructedTypeImpl(QualType type);
    884 };
    885 
    886 } // end clang.
    887 
    888 namespace llvm {
    889 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
    890 /// to a specific Type class.
    891 template<> struct simplify_type<const ::clang::QualType> {
    892   typedef const ::clang::Type *SimpleType;
    893   static SimpleType getSimplifiedValue(const ::clang::QualType &Val) {
    894     return Val.getTypePtr();
    895   }
    896 };
    897 template<> struct simplify_type< ::clang::QualType>
    898   : public simplify_type<const ::clang::QualType> {};
    899 
    900 // Teach SmallPtrSet that QualType is "basically a pointer".
    901 template<>
    902 class PointerLikeTypeTraits<clang::QualType> {
    903 public:
    904   static inline void *getAsVoidPointer(clang::QualType P) {
    905     return P.getAsOpaquePtr();
    906   }
    907   static inline clang::QualType getFromVoidPointer(void *P) {
    908     return clang::QualType::getFromOpaquePtr(P);
    909   }
    910   // Various qualifiers go in low bits.
    911   enum { NumLowBitsAvailable = 0 };
    912 };
    913 
    914 } // end namespace llvm
    915 
    916 namespace clang {
    917 
    918 /// \brief Base class that is common to both the \c ExtQuals and \c Type
    919 /// classes, which allows \c QualType to access the common fields between the
    920 /// two.
    921 ///
    922 class ExtQualsTypeCommonBase {
    923   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
    924     : BaseType(baseType), CanonicalType(canon) {}
    925 
    926   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
    927   /// a self-referential pointer (for \c Type).
    928   ///
    929   /// This pointer allows an efficient mapping from a QualType to its
    930   /// underlying type pointer.
    931   const Type *const BaseType;
    932 
    933   /// \brief The canonical type of this type.  A QualType.
    934   QualType CanonicalType;
    935 
    936   friend class QualType;
    937   friend class Type;
    938   friend class ExtQuals;
    939 };
    940 
    941 /// ExtQuals - We can encode up to four bits in the low bits of a
    942 /// type pointer, but there are many more type qualifiers that we want
    943 /// to be able to apply to an arbitrary type.  Therefore we have this
    944 /// struct, intended to be heap-allocated and used by QualType to
    945 /// store qualifiers.
    946 ///
    947 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
    948 /// in three low bits on the QualType pointer; a fourth bit records whether
    949 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
    950 /// Objective-C GC attributes) are much more rare.
    951 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
    952   // NOTE: changing the fast qualifiers should be straightforward as
    953   // long as you don't make 'const' non-fast.
    954   // 1. Qualifiers:
    955   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
    956   //       Fast qualifiers must occupy the low-order bits.
    957   //    b) Update Qualifiers::FastWidth and FastMask.
    958   // 2. QualType:
    959   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
    960   //    b) Update remove{Volatile,Restrict}, defined near the end of
    961   //       this header.
    962   // 3. ASTContext:
    963   //    a) Update get{Volatile,Restrict}Type.
    964 
    965   /// Quals - the immutable set of qualifiers applied by this
    966   /// node;  always contains extended qualifiers.
    967   Qualifiers Quals;
    968 
    969   ExtQuals *this_() { return this; }
    970 
    971 public:
    972   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
    973     : ExtQualsTypeCommonBase(baseType,
    974                              canon.isNull() ? QualType(this_(), 0) : canon),
    975       Quals(quals)
    976   {
    977     assert(Quals.hasNonFastQualifiers()
    978            && "ExtQuals created with no fast qualifiers");
    979     assert(!Quals.hasFastQualifiers()
    980            && "ExtQuals created with fast qualifiers");
    981   }
    982 
    983   Qualifiers getQualifiers() const { return Quals; }
    984 
    985   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
    986   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
    987 
    988   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
    989   Qualifiers::ObjCLifetime getObjCLifetime() const {
    990     return Quals.getObjCLifetime();
    991   }
    992 
    993   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
    994   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
    995 
    996   const Type *getBaseType() const { return BaseType; }
    997 
    998 public:
    999   void Profile(llvm::FoldingSetNodeID &ID) const {
   1000     Profile(ID, getBaseType(), Quals);
   1001   }
   1002   static void Profile(llvm::FoldingSetNodeID &ID,
   1003                       const Type *BaseType,
   1004                       Qualifiers Quals) {
   1005     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1006     ID.AddPointer(BaseType);
   1007     Quals.Profile(ID);
   1008   }
   1009 };
   1010 
   1011 /// \brief The kind of C++0x ref-qualifier associated with a function type,
   1012 /// which determines whether a member function's "this" object can be an
   1013 /// lvalue, rvalue, or neither.
   1014 enum RefQualifierKind {
   1015   /// \brief No ref-qualifier was provided.
   1016   RQ_None = 0,
   1017   /// \brief An lvalue ref-qualifier was provided (\c &).
   1018   RQ_LValue,
   1019   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1020   RQ_RValue
   1021 };
   1022 
   1023 /// Type - This is the base class of the type hierarchy.  A central concept
   1024 /// with types is that each type always has a canonical type.  A canonical type
   1025 /// is the type with any typedef names stripped out of it or the types it
   1026 /// references.  For example, consider:
   1027 ///
   1028 ///  typedef int  foo;
   1029 ///  typedef foo* bar;
   1030 ///    'int *'    'foo *'    'bar'
   1031 ///
   1032 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1033 /// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
   1034 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1035 /// there is a PointerType that represents 'int*', which, like 'int', is
   1036 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1037 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1038 /// is also 'int*'.
   1039 ///
   1040 /// Non-canonical types are useful for emitting diagnostics, without losing
   1041 /// information about typedefs being used.  Canonical types are useful for type
   1042 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1043 /// about whether something has a particular form (e.g. is a function type),
   1044 /// because they implicitly, recursively, strip all typedefs out of a type.
   1045 ///
   1046 /// Types, once created, are immutable.
   1047 ///
   1048 class Type : public ExtQualsTypeCommonBase {
   1049 public:
   1050   enum TypeClass {
   1051 #define TYPE(Class, Base) Class,
   1052 #define LAST_TYPE(Class) TypeLast = Class,
   1053 #define ABSTRACT_TYPE(Class, Base)
   1054 #include "clang/AST/TypeNodes.def"
   1055     TagFirst = Record, TagLast = Enum
   1056   };
   1057 
   1058 private:
   1059   Type(const Type&);           // DO NOT IMPLEMENT.
   1060   void operator=(const Type&); // DO NOT IMPLEMENT.
   1061 
   1062   /// Bitfields required by the Type class.
   1063   class TypeBitfields {
   1064     friend class Type;
   1065     template <class T> friend class TypePropertyCache;
   1066 
   1067     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1068     unsigned TC : 8;
   1069 
   1070     /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
   1071     /// Note that this should stay at the end of the ivars for Type so that
   1072     /// subclasses can pack their bitfields into the same word.
   1073     unsigned Dependent : 1;
   1074 
   1075     /// \brief Whether this type somehow involves a template parameter, even
   1076     /// if the resolution of the type does not depend on a template parameter.
   1077     unsigned InstantiationDependent : 1;
   1078 
   1079     /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1080     unsigned VariablyModified : 1;
   1081 
   1082     /// \brief Whether this type contains an unexpanded parameter pack
   1083     /// (for C++0x variadic templates).
   1084     unsigned ContainsUnexpandedParameterPack : 1;
   1085 
   1086     /// \brief Nonzero if the cache (i.e. the bitfields here starting
   1087     /// with 'Cache') is valid.  If so, then this is a
   1088     /// LangOptions::VisibilityMode+1.
   1089     mutable unsigned CacheValidAndVisibility : 2;
   1090 
   1091     /// \brief Linkage of this type.
   1092     mutable unsigned CachedLinkage : 2;
   1093 
   1094     /// \brief Whether this type involves and local or unnamed types.
   1095     mutable unsigned CachedLocalOrUnnamed : 1;
   1096 
   1097     /// \brief FromAST - Whether this type comes from an AST file.
   1098     mutable unsigned FromAST : 1;
   1099 
   1100     bool isCacheValid() const {
   1101       return (CacheValidAndVisibility != 0);
   1102     }
   1103     Visibility getVisibility() const {
   1104       assert(isCacheValid() && "getting linkage from invalid cache");
   1105       return static_cast<Visibility>(CacheValidAndVisibility-1);
   1106     }
   1107     Linkage getLinkage() const {
   1108       assert(isCacheValid() && "getting linkage from invalid cache");
   1109       return static_cast<Linkage>(CachedLinkage);
   1110     }
   1111     bool hasLocalOrUnnamedType() const {
   1112       assert(isCacheValid() && "getting linkage from invalid cache");
   1113       return CachedLocalOrUnnamed;
   1114     }
   1115   };
   1116   enum { NumTypeBits = 18 };
   1117 
   1118 protected:
   1119   // These classes allow subclasses to somewhat cleanly pack bitfields
   1120   // into Type.
   1121 
   1122   class ArrayTypeBitfields {
   1123     friend class ArrayType;
   1124 
   1125     unsigned : NumTypeBits;
   1126 
   1127     /// IndexTypeQuals - CVR qualifiers from declarations like
   1128     /// 'int X[static restrict 4]'. For function parameters only.
   1129     unsigned IndexTypeQuals : 3;
   1130 
   1131     /// SizeModifier - storage class qualifiers from declarations like
   1132     /// 'int X[static restrict 4]'. For function parameters only.
   1133     /// Actually an ArrayType::ArraySizeModifier.
   1134     unsigned SizeModifier : 3;
   1135   };
   1136 
   1137   class BuiltinTypeBitfields {
   1138     friend class BuiltinType;
   1139 
   1140     unsigned : NumTypeBits;
   1141 
   1142     /// The kind (BuiltinType::Kind) of builtin type this is.
   1143     unsigned Kind : 8;
   1144   };
   1145 
   1146   class FunctionTypeBitfields {
   1147     friend class FunctionType;
   1148 
   1149     unsigned : NumTypeBits;
   1150 
   1151     /// Extra information which affects how the function is called, like
   1152     /// regparm and the calling convention.
   1153     unsigned ExtInfo : 8;
   1154 
   1155     /// Whether the function is variadic.  Only used by FunctionProtoType.
   1156     unsigned Variadic : 1;
   1157 
   1158     /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
   1159     /// other bitfields.
   1160     /// The qualifiers are part of FunctionProtoType because...
   1161     ///
   1162     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1163     /// cv-qualifier-seq, [...], are part of the function type.
   1164     unsigned TypeQuals : 3;
   1165 
   1166     /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   1167     ///
   1168     /// This is a value of type \c RefQualifierKind.
   1169     unsigned RefQualifier : 2;
   1170   };
   1171 
   1172   class ObjCObjectTypeBitfields {
   1173     friend class ObjCObjectType;
   1174 
   1175     unsigned : NumTypeBits;
   1176 
   1177     /// NumProtocols - The number of protocols stored directly on this
   1178     /// object type.
   1179     unsigned NumProtocols : 32 - NumTypeBits;
   1180   };
   1181 
   1182   class ReferenceTypeBitfields {
   1183     friend class ReferenceType;
   1184 
   1185     unsigned : NumTypeBits;
   1186 
   1187     /// True if the type was originally spelled with an lvalue sigil.
   1188     /// This is never true of rvalue references but can also be false
   1189     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1190     /// as follows:
   1191     ///
   1192     ///   typedef int &ref;    // lvalue, spelled lvalue
   1193     ///   typedef int &&rvref; // rvalue
   1194     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1195     ///   ref &&a;             // lvalue, inner ref
   1196     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1197     ///   rvref &&a;           // rvalue, inner ref
   1198     unsigned SpelledAsLValue : 1;
   1199 
   1200     /// True if the inner type is a reference type.  This only happens
   1201     /// in non-canonical forms.
   1202     unsigned InnerRef : 1;
   1203   };
   1204 
   1205   class TypeWithKeywordBitfields {
   1206     friend class TypeWithKeyword;
   1207 
   1208     unsigned : NumTypeBits;
   1209 
   1210     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1211     unsigned Keyword : 8;
   1212   };
   1213 
   1214   class VectorTypeBitfields {
   1215     friend class VectorType;
   1216 
   1217     unsigned : NumTypeBits;
   1218 
   1219     /// VecKind - The kind of vector, either a generic vector type or some
   1220     /// target-specific vector type such as for AltiVec or Neon.
   1221     unsigned VecKind : 3;
   1222 
   1223     /// NumElements - The number of elements in the vector.
   1224     unsigned NumElements : 29 - NumTypeBits;
   1225   };
   1226 
   1227   class AttributedTypeBitfields {
   1228     friend class AttributedType;
   1229 
   1230     unsigned : NumTypeBits;
   1231 
   1232     /// AttrKind - an AttributedType::Kind
   1233     unsigned AttrKind : 32 - NumTypeBits;
   1234   };
   1235 
   1236   union {
   1237     TypeBitfields TypeBits;
   1238     ArrayTypeBitfields ArrayTypeBits;
   1239     AttributedTypeBitfields AttributedTypeBits;
   1240     BuiltinTypeBitfields BuiltinTypeBits;
   1241     FunctionTypeBitfields FunctionTypeBits;
   1242     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1243     ReferenceTypeBitfields ReferenceTypeBits;
   1244     TypeWithKeywordBitfields TypeWithKeywordBits;
   1245     VectorTypeBitfields VectorTypeBits;
   1246   };
   1247 
   1248 private:
   1249   /// \brief Set whether this type comes from an AST file.
   1250   void setFromAST(bool V = true) const {
   1251     TypeBits.FromAST = V;
   1252   }
   1253 
   1254   template <class T> friend class TypePropertyCache;
   1255 
   1256 protected:
   1257   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1258   Type *this_() { return this; }
   1259   Type(TypeClass tc, QualType canon, bool Dependent,
   1260        bool InstantiationDependent, bool VariablyModified,
   1261        bool ContainsUnexpandedParameterPack)
   1262     : ExtQualsTypeCommonBase(this,
   1263                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1264     TypeBits.TC = tc;
   1265     TypeBits.Dependent = Dependent;
   1266     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1267     TypeBits.VariablyModified = VariablyModified;
   1268     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1269     TypeBits.CacheValidAndVisibility = 0;
   1270     TypeBits.CachedLocalOrUnnamed = false;
   1271     TypeBits.CachedLinkage = NoLinkage;
   1272     TypeBits.FromAST = false;
   1273   }
   1274   friend class ASTContext;
   1275 
   1276   void setDependent(bool D = true) {
   1277     TypeBits.Dependent = D;
   1278     if (D)
   1279       TypeBits.InstantiationDependent = true;
   1280   }
   1281   void setInstantiationDependent(bool D = true) {
   1282     TypeBits.InstantiationDependent = D; }
   1283   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1284   }
   1285   void setContainsUnexpandedParameterPack(bool PP = true) {
   1286     TypeBits.ContainsUnexpandedParameterPack = PP;
   1287   }
   1288 
   1289 public:
   1290   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1291 
   1292   /// \brief Whether this type comes from an AST file.
   1293   bool isFromAST() const { return TypeBits.FromAST; }
   1294 
   1295   /// \brief Whether this type is or contains an unexpanded parameter
   1296   /// pack, used to support C++0x variadic templates.
   1297   ///
   1298   /// A type that contains a parameter pack shall be expanded by the
   1299   /// ellipsis operator at some point. For example, the typedef in the
   1300   /// following example contains an unexpanded parameter pack 'T':
   1301   ///
   1302   /// \code
   1303   /// template<typename ...T>
   1304   /// struct X {
   1305   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1306   /// };
   1307   /// \endcode
   1308   ///
   1309   /// Note that this routine does not specify which
   1310   bool containsUnexpandedParameterPack() const {
   1311     return TypeBits.ContainsUnexpandedParameterPack;
   1312   }
   1313 
   1314   /// Determines if this type would be canonical if it had no further
   1315   /// qualification.
   1316   bool isCanonicalUnqualified() const {
   1317     return CanonicalType == QualType(this, 0);
   1318   }
   1319 
   1320   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1321   /// object types, function types, and incomplete types.
   1322 
   1323   /// isIncompleteType - Return true if this is an incomplete type.
   1324   /// A type that can describe objects, but which lacks information needed to
   1325   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1326   /// routine will need to determine if the size is actually required.
   1327   bool isIncompleteType() const;
   1328 
   1329   /// isIncompleteOrObjectType - Return true if this is an incomplete or object
   1330   /// type, in other words, not a function type.
   1331   bool isIncompleteOrObjectType() const {
   1332     return !isFunctionType();
   1333   }
   1334 
   1335   /// \brief Determine whether this type is an object type.
   1336   bool isObjectType() const {
   1337     // C++ [basic.types]p8:
   1338     //   An object type is a (possibly cv-qualified) type that is not a
   1339     //   function type, not a reference type, and not a void type.
   1340     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1341   }
   1342 
   1343   /// isLiteralType - Return true if this is a literal type
   1344   /// (C++0x [basic.types]p10)
   1345   bool isLiteralType() const;
   1346 
   1347   /// \brief Test if this type is a standard-layout type.
   1348   /// (C++0x [basic.type]p9)
   1349   bool isStandardLayoutType() const;
   1350 
   1351   /// Helper methods to distinguish type categories. All type predicates
   1352   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1353 
   1354   /// isBuiltinType - returns true if the type is a builtin type.
   1355   bool isBuiltinType() const;
   1356 
   1357   /// isSpecificBuiltinType - Test for a particular builtin type.
   1358   bool isSpecificBuiltinType(unsigned K) const;
   1359 
   1360   /// isPlaceholderType - Test for a type which does not represent an
   1361   /// actual type-system type but is instead used as a placeholder for
   1362   /// various convenient purposes within Clang.  All such types are
   1363   /// BuiltinTypes.
   1364   bool isPlaceholderType() const;
   1365   const BuiltinType *getAsPlaceholderType() const;
   1366 
   1367   /// isSpecificPlaceholderType - Test for a specific placeholder type.
   1368   bool isSpecificPlaceholderType(unsigned K) const;
   1369 
   1370   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1371   /// isComplexIntegerType() can be used to test for complex integers.
   1372   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1373   bool isEnumeralType() const;
   1374   bool isBooleanType() const;
   1375   bool isCharType() const;
   1376   bool isWideCharType() const;
   1377   bool isChar16Type() const;
   1378   bool isChar32Type() const;
   1379   bool isAnyCharacterType() const;
   1380   bool isIntegralType(ASTContext &Ctx) const;
   1381 
   1382   /// \brief Determine whether this type is an integral or enumeration type.
   1383   bool isIntegralOrEnumerationType() const;
   1384   /// \brief Determine whether this type is an integral or unscoped enumeration
   1385   /// type.
   1386   bool isIntegralOrUnscopedEnumerationType() const;
   1387 
   1388   /// Floating point categories.
   1389   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1390   /// isComplexType() does *not* include complex integers (a GCC extension).
   1391   /// isComplexIntegerType() can be used to test for complex integers.
   1392   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1393   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1394   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1395   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
   1396   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1397   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1398   bool isVoidType() const;         // C99 6.2.5p19
   1399   bool isDerivedType() const;      // C99 6.2.5p20
   1400   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1401   bool isAggregateType() const;
   1402   bool isFundamentalType() const;
   1403   bool isCompoundType() const;
   1404 
   1405   // Type Predicates: Check to see if this type is structurally the specified
   1406   // type, ignoring typedefs and qualifiers.
   1407   bool isFunctionType() const;
   1408   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1409   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1410   bool isPointerType() const;
   1411   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1412   bool isBlockPointerType() const;
   1413   bool isVoidPointerType() const;
   1414   bool isReferenceType() const;
   1415   bool isLValueReferenceType() const;
   1416   bool isRValueReferenceType() const;
   1417   bool isFunctionPointerType() const;
   1418   bool isMemberPointerType() const;
   1419   bool isMemberFunctionPointerType() const;
   1420   bool isMemberDataPointerType() const;
   1421   bool isArrayType() const;
   1422   bool isConstantArrayType() const;
   1423   bool isIncompleteArrayType() const;
   1424   bool isVariableArrayType() const;
   1425   bool isDependentSizedArrayType() const;
   1426   bool isRecordType() const;
   1427   bool isClassType() const;
   1428   bool isStructureType() const;
   1429   bool isStructureOrClassType() const;
   1430   bool isUnionType() const;
   1431   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1432   bool isVectorType() const;                    // GCC vector type.
   1433   bool isExtVectorType() const;                 // Extended vector type.
   1434   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1435   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1436   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1437   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1438   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1439   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1440   // for the common case.
   1441   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1442   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1443   bool isObjCQualifiedIdType() const;           // id<foo>
   1444   bool isObjCQualifiedClassType() const;        // Class<foo>
   1445   bool isObjCObjectOrInterfaceType() const;
   1446   bool isObjCIdType() const;                    // id
   1447   bool isObjCClassType() const;                 // Class
   1448   bool isObjCSelType() const;                 // Class
   1449   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1450   bool isObjCARCBridgableType() const;
   1451   bool isCARCBridgableType() const;
   1452   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1453   bool isNullPtrType() const;                   // C++0x nullptr_t
   1454   bool isAtomicType() const;                    // C1X _Atomic()
   1455 
   1456   /// Determines if this type, which must satisfy
   1457   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1458   /// than implicitly __strong.
   1459   bool isObjCARCImplicitlyUnretainedType() const;
   1460 
   1461   /// Return the implicit lifetime for this type, which must not be dependent.
   1462   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1463 
   1464   enum ScalarTypeKind {
   1465     STK_CPointer,
   1466     STK_BlockPointer,
   1467     STK_ObjCObjectPointer,
   1468     STK_MemberPointer,
   1469     STK_Bool,
   1470     STK_Integral,
   1471     STK_Floating,
   1472     STK_IntegralComplex,
   1473     STK_FloatingComplex
   1474   };
   1475   /// getScalarTypeKind - Given that this is a scalar type, classify it.
   1476   ScalarTypeKind getScalarTypeKind() const;
   1477 
   1478   /// isDependentType - Whether this type is a dependent type, meaning
   1479   /// that its definition somehow depends on a template parameter
   1480   /// (C++ [temp.dep.type]).
   1481   bool isDependentType() const { return TypeBits.Dependent; }
   1482 
   1483   /// \brief Determine whether this type is an instantiation-dependent type,
   1484   /// meaning that the type involves a template parameter (even if the
   1485   /// definition does not actually depend on the type substituted for that
   1486   /// template parameter).
   1487   bool isInstantiationDependentType() const {
   1488     return TypeBits.InstantiationDependent;
   1489   }
   1490 
   1491   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1492   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1493 
   1494   /// \brief Whether this type involves a variable-length array type
   1495   /// with a definite size.
   1496   bool hasSizedVLAType() const;
   1497 
   1498   /// \brief Whether this type is or contains a local or unnamed type.
   1499   bool hasUnnamedOrLocalType() const;
   1500 
   1501   bool isOverloadableType() const;
   1502 
   1503   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1504   bool isElaboratedTypeSpecifier() const;
   1505 
   1506   bool canDecayToPointerType() const;
   1507 
   1508   /// hasPointerRepresentation - Whether this type is represented
   1509   /// natively as a pointer; this includes pointers, references, block
   1510   /// pointers, and Objective-C interface, qualified id, and qualified
   1511   /// interface types, as well as nullptr_t.
   1512   bool hasPointerRepresentation() const;
   1513 
   1514   /// hasObjCPointerRepresentation - Whether this type can represent
   1515   /// an objective pointer type for the purpose of GC'ability
   1516   bool hasObjCPointerRepresentation() const;
   1517 
   1518   /// \brief Determine whether this type has an integer representation
   1519   /// of some sort, e.g., it is an integer type or a vector.
   1520   bool hasIntegerRepresentation() const;
   1521 
   1522   /// \brief Determine whether this type has an signed integer representation
   1523   /// of some sort, e.g., it is an signed integer type or a vector.
   1524   bool hasSignedIntegerRepresentation() const;
   1525 
   1526   /// \brief Determine whether this type has an unsigned integer representation
   1527   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1528   bool hasUnsignedIntegerRepresentation() const;
   1529 
   1530   /// \brief Determine whether this type has a floating-point representation
   1531   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1532   bool hasFloatingRepresentation() const;
   1533 
   1534   // Type Checking Functions: Check to see if this type is structurally the
   1535   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1536   // the best type we can.
   1537   const RecordType *getAsStructureType() const;
   1538   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1539   const RecordType *getAsUnionType() const;
   1540   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1541   // The following is a convenience method that returns an ObjCObjectPointerType
   1542   // for object declared using an interface.
   1543   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1544   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1545   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1546   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1547   const CXXRecordDecl *getCXXRecordDeclForPointerType() const;
   1548 
   1549   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1550   /// because the type is a RecordType or because it is the injected-class-name
   1551   /// type of a class template or class template partial specialization.
   1552   CXXRecordDecl *getAsCXXRecordDecl() const;
   1553 
   1554   /// \brief Get the AutoType whose type will be deduced for a variable with
   1555   /// an initializer of this type. This looks through declarators like pointer
   1556   /// types, but not through decltype or typedefs.
   1557   AutoType *getContainedAutoType() const;
   1558 
   1559   /// Member-template getAs<specific type>'.  Look through sugar for
   1560   /// an instance of <specific type>.   This scheme will eventually
   1561   /// replace the specific getAsXXXX methods above.
   1562   ///
   1563   /// There are some specializations of this member template listed
   1564   /// immediately following this class.
   1565   template <typename T> const T *getAs() const;
   1566 
   1567   /// A variant of getAs<> for array types which silently discards
   1568   /// qualifiers from the outermost type.
   1569   const ArrayType *getAsArrayTypeUnsafe() const;
   1570 
   1571   /// Member-template castAs<specific type>.  Look through sugar for
   1572   /// the underlying instance of <specific type>.
   1573   ///
   1574   /// This method has the same relationship to getAs<T> as cast<T> has
   1575   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1576   /// have the intended type, and this method will never return null.
   1577   template <typename T> const T *castAs() const;
   1578 
   1579   /// A variant of castAs<> for array type which silently discards
   1580   /// qualifiers from the outermost type.
   1581   const ArrayType *castAsArrayTypeUnsafe() const;
   1582 
   1583   /// getBaseElementTypeUnsafe - Get the base element type of this
   1584   /// type, potentially discarding type qualifiers.  This method
   1585   /// should never be used when type qualifiers are meaningful.
   1586   const Type *getBaseElementTypeUnsafe() const;
   1587 
   1588   /// getArrayElementTypeNoTypeQual - If this is an array type, return the
   1589   /// element type of the array, potentially with type qualifiers missing.
   1590   /// This method should never be used when type qualifiers are meaningful.
   1591   const Type *getArrayElementTypeNoTypeQual() const;
   1592 
   1593   /// getPointeeType - If this is a pointer, ObjC object pointer, or block
   1594   /// pointer, this returns the respective pointee.
   1595   QualType getPointeeType() const;
   1596 
   1597   /// getUnqualifiedDesugaredType() - Return the specified type with
   1598   /// any "sugar" removed from the type, removing any typedefs,
   1599   /// typeofs, etc., as well as any qualifiers.
   1600   const Type *getUnqualifiedDesugaredType() const;
   1601 
   1602   /// More type predicates useful for type checking/promotion
   1603   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1604 
   1605   /// isSignedIntegerType - Return true if this is an integer type that is
   1606   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1607   /// or an enum decl which has a signed representation.
   1608   bool isSignedIntegerType() const;
   1609 
   1610   /// isUnsignedIntegerType - Return true if this is an integer type that is
   1611   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1612   /// or an enum decl which has an unsigned representation.
   1613   bool isUnsignedIntegerType() const;
   1614 
   1615   /// Determines whether this is an integer type that is signed or an
   1616   /// enumeration types whose underlying type is a signed integer type.
   1617   bool isSignedIntegerOrEnumerationType() const;
   1618 
   1619   /// Determines whether this is an integer type that is unsigned or an
   1620   /// enumeration types whose underlying type is a unsigned integer type.
   1621   bool isUnsignedIntegerOrEnumerationType() const;
   1622 
   1623   /// isConstantSizeType - Return true if this is not a variable sized type,
   1624   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1625   /// incomplete types.
   1626   bool isConstantSizeType() const;
   1627 
   1628   /// isSpecifierType - Returns true if this type can be represented by some
   1629   /// set of type specifiers.
   1630   bool isSpecifierType() const;
   1631 
   1632   /// \brief Determine the linkage of this type.
   1633   Linkage getLinkage() const;
   1634 
   1635   /// \brief Determine the visibility of this type.
   1636   Visibility getVisibility() const;
   1637 
   1638   /// \brief Determine the linkage and visibility of this type.
   1639   std::pair<Linkage,Visibility> getLinkageAndVisibility() const;
   1640 
   1641   /// \brief Note that the linkage is no longer known.
   1642   void ClearLinkageCache();
   1643 
   1644   const char *getTypeClassName() const;
   1645 
   1646   QualType getCanonicalTypeInternal() const {
   1647     return CanonicalType;
   1648   }
   1649   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   1650   void dump() const;
   1651 
   1652   static bool classof(const Type *) { return true; }
   1653 
   1654   friend class ASTReader;
   1655   friend class ASTWriter;
   1656 };
   1657 
   1658 template <> inline const TypedefType *Type::getAs() const {
   1659   return dyn_cast<TypedefType>(this);
   1660 }
   1661 
   1662 // We can do canonical leaf types faster, because we don't have to
   1663 // worry about preserving child type decoration.
   1664 #define TYPE(Class, Base)
   1665 #define LEAF_TYPE(Class) \
   1666 template <> inline const Class##Type *Type::getAs() const { \
   1667   return dyn_cast<Class##Type>(CanonicalType); \
   1668 } \
   1669 template <> inline const Class##Type *Type::castAs() const { \
   1670   return cast<Class##Type>(CanonicalType); \
   1671 }
   1672 #include "clang/AST/TypeNodes.def"
   1673 
   1674 
   1675 /// BuiltinType - This class is used for builtin types like 'int'.  Builtin
   1676 /// types are always canonical and have a literal name field.
   1677 class BuiltinType : public Type {
   1678 public:
   1679   enum Kind {
   1680 #define BUILTIN_TYPE(Id, SingletonId) Id,
   1681 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
   1682 #include "clang/AST/BuiltinTypes.def"
   1683   };
   1684 
   1685 public:
   1686   BuiltinType(Kind K)
   1687     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   1688            /*InstantiationDependent=*/(K == Dependent),
   1689            /*VariablyModified=*/false,
   1690            /*Unexpanded paramter pack=*/false) {
   1691     BuiltinTypeBits.Kind = K;
   1692   }
   1693 
   1694   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   1695   const char *getName(const PrintingPolicy &Policy) const;
   1696 
   1697   bool isSugared() const { return false; }
   1698   QualType desugar() const { return QualType(this, 0); }
   1699 
   1700   bool isInteger() const {
   1701     return getKind() >= Bool && getKind() <= Int128;
   1702   }
   1703 
   1704   bool isSignedInteger() const {
   1705     return getKind() >= Char_S && getKind() <= Int128;
   1706   }
   1707 
   1708   bool isUnsignedInteger() const {
   1709     return getKind() >= Bool && getKind() <= UInt128;
   1710   }
   1711 
   1712   bool isFloatingPoint() const {
   1713     return getKind() >= Half && getKind() <= LongDouble;
   1714   }
   1715 
   1716   /// Determines whether the given kind corresponds to a placeholder type.
   1717   static bool isPlaceholderTypeKind(Kind K) {
   1718     return K >= Overload;
   1719   }
   1720 
   1721   /// Determines whether this type is a placeholder type, i.e. a type
   1722   /// which cannot appear in arbitrary positions in a fully-formed
   1723   /// expression.
   1724   bool isPlaceholderType() const {
   1725     return isPlaceholderTypeKind(getKind());
   1726   }
   1727 
   1728   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   1729   static bool classof(const BuiltinType *) { return true; }
   1730 };
   1731 
   1732 /// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
   1733 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   1734 ///
   1735 class ComplexType : public Type, public llvm::FoldingSetNode {
   1736   QualType ElementType;
   1737   ComplexType(QualType Element, QualType CanonicalPtr) :
   1738     Type(Complex, CanonicalPtr, Element->isDependentType(),
   1739          Element->isInstantiationDependentType(),
   1740          Element->isVariablyModifiedType(),
   1741          Element->containsUnexpandedParameterPack()),
   1742     ElementType(Element) {
   1743   }
   1744   friend class ASTContext;  // ASTContext creates these.
   1745 
   1746 public:
   1747   QualType getElementType() const { return ElementType; }
   1748 
   1749   bool isSugared() const { return false; }
   1750   QualType desugar() const { return QualType(this, 0); }
   1751 
   1752   void Profile(llvm::FoldingSetNodeID &ID) {
   1753     Profile(ID, getElementType());
   1754   }
   1755   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   1756     ID.AddPointer(Element.getAsOpaquePtr());
   1757   }
   1758 
   1759   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   1760   static bool classof(const ComplexType *) { return true; }
   1761 };
   1762 
   1763 /// ParenType - Sugar for parentheses used when specifying types.
   1764 ///
   1765 class ParenType : public Type, public llvm::FoldingSetNode {
   1766   QualType Inner;
   1767 
   1768   ParenType(QualType InnerType, QualType CanonType) :
   1769     Type(Paren, CanonType, InnerType->isDependentType(),
   1770          InnerType->isInstantiationDependentType(),
   1771          InnerType->isVariablyModifiedType(),
   1772          InnerType->containsUnexpandedParameterPack()),
   1773     Inner(InnerType) {
   1774   }
   1775   friend class ASTContext;  // ASTContext creates these.
   1776 
   1777 public:
   1778 
   1779   QualType getInnerType() const { return Inner; }
   1780 
   1781   bool isSugared() const { return true; }
   1782   QualType desugar() const { return getInnerType(); }
   1783 
   1784   void Profile(llvm::FoldingSetNodeID &ID) {
   1785     Profile(ID, getInnerType());
   1786   }
   1787   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   1788     Inner.Profile(ID);
   1789   }
   1790 
   1791   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   1792   static bool classof(const ParenType *) { return true; }
   1793 };
   1794 
   1795 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   1796 ///
   1797 class PointerType : public Type, public llvm::FoldingSetNode {
   1798   QualType PointeeType;
   1799 
   1800   PointerType(QualType Pointee, QualType CanonicalPtr) :
   1801     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   1802          Pointee->isInstantiationDependentType(),
   1803          Pointee->isVariablyModifiedType(),
   1804          Pointee->containsUnexpandedParameterPack()),
   1805     PointeeType(Pointee) {
   1806   }
   1807   friend class ASTContext;  // ASTContext creates these.
   1808 
   1809 public:
   1810 
   1811   QualType getPointeeType() const { return PointeeType; }
   1812 
   1813   bool isSugared() const { return false; }
   1814   QualType desugar() const { return QualType(this, 0); }
   1815 
   1816   void Profile(llvm::FoldingSetNodeID &ID) {
   1817     Profile(ID, getPointeeType());
   1818   }
   1819   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1820     ID.AddPointer(Pointee.getAsOpaquePtr());
   1821   }
   1822 
   1823   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   1824   static bool classof(const PointerType *) { return true; }
   1825 };
   1826 
   1827 /// BlockPointerType - pointer to a block type.
   1828 /// This type is to represent types syntactically represented as
   1829 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   1830 ///
   1831 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   1832   QualType PointeeType;  // Block is some kind of pointer type
   1833   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   1834     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   1835          Pointee->isInstantiationDependentType(),
   1836          Pointee->isVariablyModifiedType(),
   1837          Pointee->containsUnexpandedParameterPack()),
   1838     PointeeType(Pointee) {
   1839   }
   1840   friend class ASTContext;  // ASTContext creates these.
   1841 
   1842 public:
   1843 
   1844   // Get the pointee type. Pointee is required to always be a function type.
   1845   QualType getPointeeType() const { return PointeeType; }
   1846 
   1847   bool isSugared() const { return false; }
   1848   QualType desugar() const { return QualType(this, 0); }
   1849 
   1850   void Profile(llvm::FoldingSetNodeID &ID) {
   1851       Profile(ID, getPointeeType());
   1852   }
   1853   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1854       ID.AddPointer(Pointee.getAsOpaquePtr());
   1855   }
   1856 
   1857   static bool classof(const Type *T) {
   1858     return T->getTypeClass() == BlockPointer;
   1859   }
   1860   static bool classof(const BlockPointerType *) { return true; }
   1861 };
   1862 
   1863 /// ReferenceType - Base for LValueReferenceType and RValueReferenceType
   1864 ///
   1865 class ReferenceType : public Type, public llvm::FoldingSetNode {
   1866   QualType PointeeType;
   1867 
   1868 protected:
   1869   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   1870                 bool SpelledAsLValue) :
   1871     Type(tc, CanonicalRef, Referencee->isDependentType(),
   1872          Referencee->isInstantiationDependentType(),
   1873          Referencee->isVariablyModifiedType(),
   1874          Referencee->containsUnexpandedParameterPack()),
   1875     PointeeType(Referencee)
   1876   {
   1877     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   1878     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   1879   }
   1880 
   1881 public:
   1882   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   1883   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   1884 
   1885   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   1886   QualType getPointeeType() const {
   1887     // FIXME: this might strip inner qualifiers; okay?
   1888     const ReferenceType *T = this;
   1889     while (T->isInnerRef())
   1890       T = T->PointeeType->castAs<ReferenceType>();
   1891     return T->PointeeType;
   1892   }
   1893 
   1894   void Profile(llvm::FoldingSetNodeID &ID) {
   1895     Profile(ID, PointeeType, isSpelledAsLValue());
   1896   }
   1897   static void Profile(llvm::FoldingSetNodeID &ID,
   1898                       QualType Referencee,
   1899                       bool SpelledAsLValue) {
   1900     ID.AddPointer(Referencee.getAsOpaquePtr());
   1901     ID.AddBoolean(SpelledAsLValue);
   1902   }
   1903 
   1904   static bool classof(const Type *T) {
   1905     return T->getTypeClass() == LValueReference ||
   1906            T->getTypeClass() == RValueReference;
   1907   }
   1908   static bool classof(const ReferenceType *) { return true; }
   1909 };
   1910 
   1911 /// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
   1912 ///
   1913 class LValueReferenceType : public ReferenceType {
   1914   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   1915                       bool SpelledAsLValue) :
   1916     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   1917   {}
   1918   friend class ASTContext; // ASTContext creates these
   1919 public:
   1920   bool isSugared() const { return false; }
   1921   QualType desugar() const { return QualType(this, 0); }
   1922 
   1923   static bool classof(const Type *T) {
   1924     return T->getTypeClass() == LValueReference;
   1925   }
   1926   static bool classof(const LValueReferenceType *) { return true; }
   1927 };
   1928 
   1929 /// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
   1930 ///
   1931 class RValueReferenceType : public ReferenceType {
   1932   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   1933     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   1934   }
   1935   friend class ASTContext; // ASTContext creates these
   1936 public:
   1937   bool isSugared() const { return false; }
   1938   QualType desugar() const { return QualType(this, 0); }
   1939 
   1940   static bool classof(const Type *T) {
   1941     return T->getTypeClass() == RValueReference;
   1942   }
   1943   static bool classof(const RValueReferenceType *) { return true; }
   1944 };
   1945 
   1946 /// MemberPointerType - C++ 8.3.3 - Pointers to members
   1947 ///
   1948 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   1949   QualType PointeeType;
   1950   /// The class of which the pointee is a member. Must ultimately be a
   1951   /// RecordType, but could be a typedef or a template parameter too.
   1952   const Type *Class;
   1953 
   1954   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   1955     Type(MemberPointer, CanonicalPtr,
   1956          Cls->isDependentType() || Pointee->isDependentType(),
   1957          (Cls->isInstantiationDependentType() ||
   1958           Pointee->isInstantiationDependentType()),
   1959          Pointee->isVariablyModifiedType(),
   1960          (Cls->containsUnexpandedParameterPack() ||
   1961           Pointee->containsUnexpandedParameterPack())),
   1962     PointeeType(Pointee), Class(Cls) {
   1963   }
   1964   friend class ASTContext; // ASTContext creates these.
   1965 
   1966 public:
   1967   QualType getPointeeType() const { return PointeeType; }
   1968 
   1969   /// Returns true if the member type (i.e. the pointee type) is a
   1970   /// function type rather than a data-member type.
   1971   bool isMemberFunctionPointer() const {
   1972     return PointeeType->isFunctionProtoType();
   1973   }
   1974 
   1975   /// Returns true if the member type (i.e. the pointee type) is a
   1976   /// data type rather than a function type.
   1977   bool isMemberDataPointer() const {
   1978     return !PointeeType->isFunctionProtoType();
   1979   }
   1980 
   1981   const Type *getClass() const { return Class; }
   1982 
   1983   bool isSugared() const { return false; }
   1984   QualType desugar() const { return QualType(this, 0); }
   1985 
   1986   void Profile(llvm::FoldingSetNodeID &ID) {
   1987     Profile(ID, getPointeeType(), getClass());
   1988   }
   1989   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   1990                       const Type *Class) {
   1991     ID.AddPointer(Pointee.getAsOpaquePtr());
   1992     ID.AddPointer(Class);
   1993   }
   1994 
   1995   static bool classof(const Type *T) {
   1996     return T->getTypeClass() == MemberPointer;
   1997   }
   1998   static bool classof(const MemberPointerType *) { return true; }
   1999 };
   2000 
   2001 /// ArrayType - C99 6.7.5.2 - Array Declarators.
   2002 ///
   2003 class ArrayType : public Type, public llvm::FoldingSetNode {
   2004 public:
   2005   /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
   2006   /// an array with a static size (e.g. int X[static 4]), or an array
   2007   /// with a star size (e.g. int X[*]).
   2008   /// 'static' is only allowed on function parameters.
   2009   enum ArraySizeModifier {
   2010     Normal, Static, Star
   2011   };
   2012 private:
   2013   /// ElementType - The element type of the array.
   2014   QualType ElementType;
   2015 
   2016 protected:
   2017   // C++ [temp.dep.type]p1:
   2018   //   A type is dependent if it is...
   2019   //     - an array type constructed from any dependent type or whose
   2020   //       size is specified by a constant expression that is
   2021   //       value-dependent,
   2022   ArrayType(TypeClass tc, QualType et, QualType can,
   2023             ArraySizeModifier sm, unsigned tq,
   2024             bool ContainsUnexpandedParameterPack)
   2025     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2026            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2027            (tc == VariableArray || et->isVariablyModifiedType()),
   2028            ContainsUnexpandedParameterPack),
   2029       ElementType(et) {
   2030     ArrayTypeBits.IndexTypeQuals = tq;
   2031     ArrayTypeBits.SizeModifier = sm;
   2032   }
   2033 
   2034   friend class ASTContext;  // ASTContext creates these.
   2035 
   2036 public:
   2037   QualType getElementType() const { return ElementType; }
   2038   ArraySizeModifier getSizeModifier() const {
   2039     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2040   }
   2041   Qualifiers getIndexTypeQualifiers() const {
   2042     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2043   }
   2044   unsigned getIndexTypeCVRQualifiers() const {
   2045     return ArrayTypeBits.IndexTypeQuals;
   2046   }
   2047 
   2048   static bool classof(const Type *T) {
   2049     return T->getTypeClass() == ConstantArray ||
   2050            T->getTypeClass() == VariableArray ||
   2051            T->getTypeClass() == IncompleteArray ||
   2052            T->getTypeClass() == DependentSizedArray;
   2053   }
   2054   static bool classof(const ArrayType *) { return true; }
   2055 };
   2056 
   2057 /// ConstantArrayType - This class represents the canonical version of
   2058 /// C arrays with a specified constant size.  For example, the canonical
   2059 /// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
   2060 /// type is 'int' and the size is 404.
   2061 class ConstantArrayType : public ArrayType {
   2062   llvm::APInt Size; // Allows us to unique the type.
   2063 
   2064   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2065                     ArraySizeModifier sm, unsigned tq)
   2066     : ArrayType(ConstantArray, et, can, sm, tq,
   2067                 et->containsUnexpandedParameterPack()),
   2068       Size(size) {}
   2069 protected:
   2070   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2071                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2072     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2073       Size(size) {}
   2074   friend class ASTContext;  // ASTContext creates these.
   2075 public:
   2076   const llvm::APInt &getSize() const { return Size; }
   2077   bool isSugared() const { return false; }
   2078   QualType desugar() const { return QualType(this, 0); }
   2079 
   2080 
   2081   /// \brief Determine the number of bits required to address a member of
   2082   // an array with the given element type and number of elements.
   2083   static unsigned getNumAddressingBits(ASTContext &Context,
   2084                                        QualType ElementType,
   2085                                        const llvm::APInt &NumElements);
   2086 
   2087   /// \brief Determine the maximum number of active bits that an array's size
   2088   /// can require, which limits the maximum size of the array.
   2089   static unsigned getMaxSizeBits(ASTContext &Context);
   2090 
   2091   void Profile(llvm::FoldingSetNodeID &ID) {
   2092     Profile(ID, getElementType(), getSize(),
   2093             getSizeModifier(), getIndexTypeCVRQualifiers());
   2094   }
   2095   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2096                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2097                       unsigned TypeQuals) {
   2098     ID.AddPointer(ET.getAsOpaquePtr());
   2099     ID.AddInteger(ArraySize.getZExtValue());
   2100     ID.AddInteger(SizeMod);
   2101     ID.AddInteger(TypeQuals);
   2102   }
   2103   static bool classof(const Type *T) {
   2104     return T->getTypeClass() == ConstantArray;
   2105   }
   2106   static bool classof(const ConstantArrayType *) { return true; }
   2107 };
   2108 
   2109 /// IncompleteArrayType - This class represents C arrays with an unspecified
   2110 /// size.  For example 'int A[]' has an IncompleteArrayType where the element
   2111 /// type is 'int' and the size is unspecified.
   2112 class IncompleteArrayType : public ArrayType {
   2113 
   2114   IncompleteArrayType(QualType et, QualType can,
   2115                       ArraySizeModifier sm, unsigned tq)
   2116     : ArrayType(IncompleteArray, et, can, sm, tq,
   2117                 et->containsUnexpandedParameterPack()) {}
   2118   friend class ASTContext;  // ASTContext creates these.
   2119 public:
   2120   bool isSugared() const { return false; }
   2121   QualType desugar() const { return QualType(this, 0); }
   2122 
   2123   static bool classof(const Type *T) {
   2124     return T->getTypeClass() == IncompleteArray;
   2125   }
   2126   static bool classof(const IncompleteArrayType *) { return true; }
   2127 
   2128   friend class StmtIteratorBase;
   2129 
   2130   void Profile(llvm::FoldingSetNodeID &ID) {
   2131     Profile(ID, getElementType(), getSizeModifier(),
   2132             getIndexTypeCVRQualifiers());
   2133   }
   2134 
   2135   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2136                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2137     ID.AddPointer(ET.getAsOpaquePtr());
   2138     ID.AddInteger(SizeMod);
   2139     ID.AddInteger(TypeQuals);
   2140   }
   2141 };
   2142 
   2143 /// VariableArrayType - This class represents C arrays with a specified size
   2144 /// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
   2145 /// Since the size expression is an arbitrary expression, we store it as such.
   2146 ///
   2147 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2148 /// should not be: two lexically equivalent variable array types could mean
   2149 /// different things, for example, these variables do not have the same type
   2150 /// dynamically:
   2151 ///
   2152 /// void foo(int x) {
   2153 ///   int Y[x];
   2154 ///   ++x;
   2155 ///   int Z[x];
   2156 /// }
   2157 ///
   2158 class VariableArrayType : public ArrayType {
   2159   /// SizeExpr - An assignment expression. VLA's are only permitted within
   2160   /// a function block.
   2161   Stmt *SizeExpr;
   2162   /// Brackets - The left and right array brackets.
   2163   SourceRange Brackets;
   2164 
   2165   VariableArrayType(QualType et, QualType can, Expr *e,
   2166                     ArraySizeModifier sm, unsigned tq,
   2167                     SourceRange brackets)
   2168     : ArrayType(VariableArray, et, can, sm, tq,
   2169                 et->containsUnexpandedParameterPack()),
   2170       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2171   friend class ASTContext;  // ASTContext creates these.
   2172 
   2173 public:
   2174   Expr *getSizeExpr() const {
   2175     // We use C-style casts instead of cast<> here because we do not wish
   2176     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2177     return (Expr*) SizeExpr;
   2178   }
   2179   SourceRange getBracketsRange() const { return Brackets; }
   2180   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2181   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2182 
   2183   bool isSugared() const { return false; }
   2184   QualType desugar() const { return QualType(this, 0); }
   2185 
   2186   static bool classof(const Type *T) {
   2187     return T->getTypeClass() == VariableArray;
   2188   }
   2189   static bool classof(const VariableArrayType *) { return true; }
   2190 
   2191   friend class StmtIteratorBase;
   2192 
   2193   void Profile(llvm::FoldingSetNodeID &ID) {
   2194     llvm_unreachable("Cannot unique VariableArrayTypes.");
   2195   }
   2196 };
   2197 
   2198 /// DependentSizedArrayType - This type represents an array type in
   2199 /// C++ whose size is a value-dependent expression. For example:
   2200 ///
   2201 /// \code
   2202 /// template<typename T, int Size>
   2203 /// class array {
   2204 ///   T data[Size];
   2205 /// };
   2206 /// \endcode
   2207 ///
   2208 /// For these types, we won't actually know what the array bound is
   2209 /// until template instantiation occurs, at which point this will
   2210 /// become either a ConstantArrayType or a VariableArrayType.
   2211 class DependentSizedArrayType : public ArrayType {
   2212   const ASTContext &Context;
   2213 
   2214   /// \brief An assignment expression that will instantiate to the
   2215   /// size of the array.
   2216   ///
   2217   /// The expression itself might be NULL, in which case the array
   2218   /// type will have its size deduced from an initializer.
   2219   Stmt *SizeExpr;
   2220 
   2221   /// Brackets - The left and right array brackets.
   2222   SourceRange Brackets;
   2223 
   2224   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2225                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2226                           SourceRange brackets);
   2227 
   2228   friend class ASTContext;  // ASTContext creates these.
   2229 
   2230 public:
   2231   Expr *getSizeExpr() const {
   2232     // We use C-style casts instead of cast<> here because we do not wish
   2233     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2234     return (Expr*) SizeExpr;
   2235   }
   2236   SourceRange getBracketsRange() const { return Brackets; }
   2237   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2238   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2239 
   2240   bool isSugared() const { return false; }
   2241   QualType desugar() const { return QualType(this, 0); }
   2242 
   2243   static bool classof(const Type *T) {
   2244     return T->getTypeClass() == DependentSizedArray;
   2245   }
   2246   static bool classof(const DependentSizedArrayType *) { return true; }
   2247 
   2248   friend class StmtIteratorBase;
   2249 
   2250 
   2251   void Profile(llvm::FoldingSetNodeID &ID) {
   2252     Profile(ID, Context, getElementType(),
   2253             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2254   }
   2255 
   2256   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2257                       QualType ET, ArraySizeModifier SizeMod,
   2258                       unsigned TypeQuals, Expr *E);
   2259 };
   2260 
   2261 /// DependentSizedExtVectorType - This type represent an extended vector type
   2262 /// where either the type or size is dependent. For example:
   2263 /// @code
   2264 /// template<typename T, int Size>
   2265 /// class vector {
   2266 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2267 /// }
   2268 /// @endcode
   2269 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2270   const ASTContext &Context;
   2271   Expr *SizeExpr;
   2272   /// ElementType - The element type of the array.
   2273   QualType ElementType;
   2274   SourceLocation loc;
   2275 
   2276   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2277                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2278 
   2279   friend class ASTContext;
   2280 
   2281 public:
   2282   Expr *getSizeExpr() const { return SizeExpr; }
   2283   QualType getElementType() const { return ElementType; }
   2284   SourceLocation getAttributeLoc() const { return loc; }
   2285 
   2286   bool isSugared() const { return false; }
   2287   QualType desugar() const { return QualType(this, 0); }
   2288 
   2289   static bool classof(const Type *T) {
   2290     return T->getTypeClass() == DependentSizedExtVector;
   2291   }
   2292   static bool classof(const DependentSizedExtVectorType *) { return true; }
   2293 
   2294   void Profile(llvm::FoldingSetNodeID &ID) {
   2295     Profile(ID, Context, getElementType(), getSizeExpr());
   2296   }
   2297 
   2298   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2299                       QualType ElementType, Expr *SizeExpr);
   2300 };
   2301 
   2302 
   2303 /// VectorType - GCC generic vector type. This type is created using
   2304 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2305 /// bytes; or from an Altivec __vector or vector declaration.
   2306 /// Since the constructor takes the number of vector elements, the
   2307 /// client is responsible for converting the size into the number of elements.
   2308 class VectorType : public Type, public llvm::FoldingSetNode {
   2309 public:
   2310   enum VectorKind {
   2311     GenericVector,  // not a target-specific vector type
   2312     AltiVecVector,  // is AltiVec vector
   2313     AltiVecPixel,   // is AltiVec 'vector Pixel'
   2314     AltiVecBool,    // is AltiVec 'vector bool ...'
   2315     NeonVector,     // is ARM Neon vector
   2316     NeonPolyVector  // is ARM Neon polynomial vector
   2317   };
   2318 protected:
   2319   /// ElementType - The element type of the vector.
   2320   QualType ElementType;
   2321 
   2322   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2323              VectorKind vecKind);
   2324 
   2325   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2326              QualType canonType, VectorKind vecKind);
   2327 
   2328   friend class ASTContext;  // ASTContext creates these.
   2329 
   2330 public:
   2331 
   2332   QualType getElementType() const { return ElementType; }
   2333   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2334 
   2335   bool isSugared() const { return false; }
   2336   QualType desugar() const { return QualType(this, 0); }
   2337 
   2338   VectorKind getVectorKind() const {
   2339     return VectorKind(VectorTypeBits.VecKind);
   2340   }
   2341 
   2342   void Profile(llvm::FoldingSetNodeID &ID) {
   2343     Profile(ID, getElementType(), getNumElements(),
   2344             getTypeClass(), getVectorKind());
   2345   }
   2346   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2347                       unsigned NumElements, TypeClass TypeClass,
   2348                       VectorKind VecKind) {
   2349     ID.AddPointer(ElementType.getAsOpaquePtr());
   2350     ID.AddInteger(NumElements);
   2351     ID.AddInteger(TypeClass);
   2352     ID.AddInteger(VecKind);
   2353   }
   2354 
   2355   static bool classof(const Type *T) {
   2356     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2357   }
   2358   static bool classof(const VectorType *) { return true; }
   2359 };
   2360 
   2361 /// ExtVectorType - Extended vector type. This type is created using
   2362 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2363 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2364 /// class enables syntactic extensions, like Vector Components for accessing
   2365 /// points, colors, and textures (modeled after OpenGL Shading Language).
   2366 class ExtVectorType : public VectorType {
   2367   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2368     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2369   friend class ASTContext;  // ASTContext creates these.
   2370 public:
   2371   static int getPointAccessorIdx(char c) {
   2372     switch (c) {
   2373     default: return -1;
   2374     case 'x': case 'r': return 0;
   2375     case 'y': case 'g': return 1;
   2376     case 'z': case 'b': return 2;
   2377     case 'w': case 'a': return 3;
   2378     }
   2379   }
   2380   static int getNumericAccessorIdx(char c) {
   2381     switch (c) {
   2382       default: return -1;
   2383       case '0': return 0;
   2384       case '1': return 1;
   2385       case '2': return 2;
   2386       case '3': return 3;
   2387       case '4': return 4;
   2388       case '5': return 5;
   2389       case '6': return 6;
   2390       case '7': return 7;
   2391       case '8': return 8;
   2392       case '9': return 9;
   2393       case 'A':
   2394       case 'a': return 10;
   2395       case 'B':
   2396       case 'b': return 11;
   2397       case 'C':
   2398       case 'c': return 12;
   2399       case 'D':
   2400       case 'd': return 13;
   2401       case 'E':
   2402       case 'e': return 14;
   2403       case 'F':
   2404       case 'f': return 15;
   2405     }
   2406   }
   2407 
   2408   static int getAccessorIdx(char c) {
   2409     if (int idx = getPointAccessorIdx(c)+1) return idx-1;
   2410     return getNumericAccessorIdx(c);
   2411   }
   2412 
   2413   bool isAccessorWithinNumElements(char c) const {
   2414     if (int idx = getAccessorIdx(c)+1)
   2415       return unsigned(idx-1) < getNumElements();
   2416     return false;
   2417   }
   2418   bool isSugared() const { return false; }
   2419   QualType desugar() const { return QualType(this, 0); }
   2420 
   2421   static bool classof(const Type *T) {
   2422     return T->getTypeClass() == ExtVector;
   2423   }
   2424   static bool classof(const ExtVectorType *) { return true; }
   2425 };
   2426 
   2427 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2428 /// class of FunctionNoProtoType and FunctionProtoType.
   2429 ///
   2430 class FunctionType : public Type {
   2431   // The type returned by the function.
   2432   QualType ResultType;
   2433 
   2434  public:
   2435   /// ExtInfo - A class which abstracts out some details necessary for
   2436   /// making a call.
   2437   ///
   2438   /// It is not actually used directly for storing this information in
   2439   /// a FunctionType, although FunctionType does currently use the
   2440   /// same bit-pattern.
   2441   ///
   2442   // If you add a field (say Foo), other than the obvious places (both,
   2443   // constructors, compile failures), what you need to update is
   2444   // * Operator==
   2445   // * getFoo
   2446   // * withFoo
   2447   // * functionType. Add Foo, getFoo.
   2448   // * ASTContext::getFooType
   2449   // * ASTContext::mergeFunctionTypes
   2450   // * FunctionNoProtoType::Profile
   2451   // * FunctionProtoType::Profile
   2452   // * TypePrinter::PrintFunctionProto
   2453   // * AST read and write
   2454   // * Codegen
   2455   class ExtInfo {
   2456     // Feel free to rearrange or add bits, but if you go over 8,
   2457     // you'll need to adjust both the Bits field below and
   2458     // Type::FunctionTypeBitfields.
   2459 
   2460     //   |  CC  |noreturn|produces|regparm|
   2461     //   |0 .. 2|   3    |    4   | 5 .. 7|
   2462     //
   2463     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2464     enum { CallConvMask = 0x7 };
   2465     enum { NoReturnMask = 0x8 };
   2466     enum { ProducesResultMask = 0x10 };
   2467     enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
   2468            RegParmOffset = 5 }; // Assumed to be the last field
   2469 
   2470     uint16_t Bits;
   2471 
   2472     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   2473 
   2474     friend class FunctionType;
   2475 
   2476    public:
   2477     // Constructor with no defaults. Use this when you know that you
   2478     // have all the elements (when reading an AST file for example).
   2479     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   2480             bool producesResult) {
   2481       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   2482       Bits = ((unsigned) cc) |
   2483              (noReturn ? NoReturnMask : 0) |
   2484              (producesResult ? ProducesResultMask : 0) |
   2485              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   2486     }
   2487 
   2488     // Constructor with all defaults. Use when for example creating a
   2489     // function know to use defaults.
   2490     ExtInfo() : Bits(0) {}
   2491 
   2492     bool getNoReturn() const { return Bits & NoReturnMask; }
   2493     bool getProducesResult() const { return Bits & ProducesResultMask; }
   2494     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   2495     unsigned getRegParm() const {
   2496       unsigned RegParm = Bits >> RegParmOffset;
   2497       if (RegParm > 0)
   2498         --RegParm;
   2499       return RegParm;
   2500     }
   2501     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   2502 
   2503     bool operator==(ExtInfo Other) const {
   2504       return Bits == Other.Bits;
   2505     }
   2506     bool operator!=(ExtInfo Other) const {
   2507       return Bits != Other.Bits;
   2508     }
   2509 
   2510     // Note that we don't have setters. That is by design, use
   2511     // the following with methods instead of mutating these objects.
   2512 
   2513     ExtInfo withNoReturn(bool noReturn) const {
   2514       if (noReturn)
   2515         return ExtInfo(Bits | NoReturnMask);
   2516       else
   2517         return ExtInfo(Bits & ~NoReturnMask);
   2518     }
   2519 
   2520     ExtInfo withProducesResult(bool producesResult) const {
   2521       if (producesResult)
   2522         return ExtInfo(Bits | ProducesResultMask);
   2523       else
   2524         return ExtInfo(Bits & ~ProducesResultMask);
   2525     }
   2526 
   2527     ExtInfo withRegParm(unsigned RegParm) const {
   2528       assert(RegParm < 7 && "Invalid regparm value");
   2529       return ExtInfo((Bits & ~RegParmMask) |
   2530                      ((RegParm + 1) << RegParmOffset));
   2531     }
   2532 
   2533     ExtInfo withCallingConv(CallingConv cc) const {
   2534       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   2535     }
   2536 
   2537     void Profile(llvm::FoldingSetNodeID &ID) const {
   2538       ID.AddInteger(Bits);
   2539     }
   2540   };
   2541 
   2542 protected:
   2543   FunctionType(TypeClass tc, QualType res, bool variadic,
   2544                unsigned typeQuals, RefQualifierKind RefQualifier,
   2545                QualType Canonical, bool Dependent,
   2546                bool InstantiationDependent,
   2547                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   2548                ExtInfo Info)
   2549     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   2550            ContainsUnexpandedParameterPack),
   2551       ResultType(res) {
   2552     FunctionTypeBits.ExtInfo = Info.Bits;
   2553     FunctionTypeBits.Variadic = variadic;
   2554     FunctionTypeBits.TypeQuals = typeQuals;
   2555     FunctionTypeBits.RefQualifier = static_cast<unsigned>(RefQualifier);
   2556   }
   2557   bool isVariadic() const { return FunctionTypeBits.Variadic; }
   2558   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   2559 
   2560   RefQualifierKind getRefQualifier() const {
   2561     return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
   2562   }
   2563 
   2564 public:
   2565 
   2566   QualType getResultType() const { return ResultType; }
   2567 
   2568   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   2569   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   2570   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   2571   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   2572   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   2573 
   2574   /// \brief Determine the type of an expression that calls a function of
   2575   /// this type.
   2576   QualType getCallResultType(ASTContext &Context) const {
   2577     return getResultType().getNonLValueExprType(Context);
   2578   }
   2579 
   2580   static StringRef getNameForCallConv(CallingConv CC);
   2581 
   2582   static bool classof(const Type *T) {
   2583     return T->getTypeClass() == FunctionNoProto ||
   2584            T->getTypeClass() == FunctionProto;
   2585   }
   2586   static bool classof(const FunctionType *) { return true; }
   2587 };
   2588 
   2589 /// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
   2590 /// no information available about its arguments.
   2591 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   2592   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   2593     : FunctionType(FunctionNoProto, Result, false, 0, RQ_None, Canonical,
   2594                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   2595                    Result->isVariablyModifiedType(),
   2596                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   2597 
   2598   friend class ASTContext;  // ASTContext creates these.
   2599 
   2600 public:
   2601   // No additional state past what FunctionType provides.
   2602 
   2603   bool isSugared() const { return false; }
   2604   QualType desugar() const { return QualType(this, 0); }
   2605 
   2606   void Profile(llvm::FoldingSetNodeID &ID) {
   2607     Profile(ID, getResultType(), getExtInfo());
   2608   }
   2609   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   2610                       ExtInfo Info) {
   2611     Info.Profile(ID);
   2612     ID.AddPointer(ResultType.getAsOpaquePtr());
   2613   }
   2614 
   2615   static bool classof(const Type *T) {
   2616     return T->getTypeClass() == FunctionNoProto;
   2617   }
   2618   static bool classof(const FunctionNoProtoType *) { return true; }
   2619 };
   2620 
   2621 /// FunctionProtoType - Represents a prototype with argument type info, e.g.
   2622 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   2623 /// arguments, not as having a single void argument. Such a type can have an
   2624 /// exception specification, but this specification is not part of the canonical
   2625 /// type.
   2626 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   2627 public:
   2628   /// ExtProtoInfo - Extra information about a function prototype.
   2629   struct ExtProtoInfo {
   2630     ExtProtoInfo() :
   2631       Variadic(false), ExceptionSpecType(EST_None), TypeQuals(0),
   2632       RefQualifier(RQ_None), NumExceptions(0), Exceptions(0), NoexceptExpr(0),
   2633       ConsumedArguments(0) {}
   2634 
   2635     FunctionType::ExtInfo ExtInfo;
   2636     bool Variadic;
   2637     ExceptionSpecificationType ExceptionSpecType;
   2638     unsigned char TypeQuals;
   2639     RefQualifierKind RefQualifier;
   2640     unsigned NumExceptions;
   2641     const QualType *Exceptions;
   2642     Expr *NoexceptExpr;
   2643     const bool *ConsumedArguments;
   2644   };
   2645 
   2646 private:
   2647   /// \brief Determine whether there are any argument types that
   2648   /// contain an unexpanded parameter pack.
   2649   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   2650                                                  unsigned numArgs) {
   2651     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   2652       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   2653         return true;
   2654 
   2655     return false;
   2656   }
   2657 
   2658   FunctionProtoType(QualType result, const QualType *args, unsigned numArgs,
   2659                     QualType canonical, const ExtProtoInfo &epi);
   2660 
   2661   /// NumArgs - The number of arguments this function has, not counting '...'.
   2662   unsigned NumArgs : 19;
   2663 
   2664   /// NumExceptions - The number of types in the exception spec, if any.
   2665   unsigned NumExceptions : 9;
   2666 
   2667   /// ExceptionSpecType - The type of exception specification this function has.
   2668   unsigned ExceptionSpecType : 3;
   2669 
   2670   /// HasAnyConsumedArgs - Whether this function has any consumed arguments.
   2671   unsigned HasAnyConsumedArgs : 1;
   2672 
   2673   // ArgInfo - There is an variable size array after the class in memory that
   2674   // holds the argument types.
   2675 
   2676   // Exceptions - There is another variable size array after ArgInfo that
   2677   // holds the exception types.
   2678 
   2679   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   2680   // to the expression in the noexcept() specifier.
   2681 
   2682   // ConsumedArgs - A variable size array, following Exceptions
   2683   // and of length NumArgs, holding flags indicating which arguments
   2684   // are consumed.  This only appears if HasAnyConsumedArgs is true.
   2685 
   2686   friend class ASTContext;  // ASTContext creates these.
   2687 
   2688   const bool *getConsumedArgsBuffer() const {
   2689     assert(hasAnyConsumedArgs());
   2690 
   2691     // Find the end of the exceptions.
   2692     Expr * const *eh_end = reinterpret_cast<Expr * const *>(arg_type_end());
   2693     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2694       eh_end += NumExceptions;
   2695     else
   2696       eh_end += 1; // NoexceptExpr
   2697 
   2698     return reinterpret_cast<const bool*>(eh_end);
   2699   }
   2700 
   2701 public:
   2702   unsigned getNumArgs() const { return NumArgs; }
   2703   QualType getArgType(unsigned i) const {
   2704     assert(i < NumArgs && "Invalid argument number!");
   2705     return arg_type_begin()[i];
   2706   }
   2707 
   2708   ExtProtoInfo getExtProtoInfo() const {
   2709     ExtProtoInfo EPI;
   2710     EPI.ExtInfo = getExtInfo();
   2711     EPI.Variadic = isVariadic();
   2712     EPI.ExceptionSpecType = getExceptionSpecType();
   2713     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   2714     EPI.RefQualifier = getRefQualifier();
   2715     if (EPI.ExceptionSpecType == EST_Dynamic) {
   2716       EPI.NumExceptions = NumExceptions;
   2717       EPI.Exceptions = exception_begin();
   2718     } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2719       EPI.NoexceptExpr = getNoexceptExpr();
   2720     }
   2721     if (hasAnyConsumedArgs())
   2722       EPI.ConsumedArguments = getConsumedArgsBuffer();
   2723     return EPI;
   2724   }
   2725 
   2726   /// \brief Get the kind of exception specification on this function.
   2727   ExceptionSpecificationType getExceptionSpecType() const {
   2728     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   2729   }
   2730   /// \brief Return whether this function has any kind of exception spec.
   2731   bool hasExceptionSpec() const {
   2732     return getExceptionSpecType() != EST_None;
   2733   }
   2734   /// \brief Return whether this function has a dynamic (throw) exception spec.
   2735   bool hasDynamicExceptionSpec() const {
   2736     return isDynamicExceptionSpec(getExceptionSpecType());
   2737   }
   2738   /// \brief Return whether this function has a noexcept exception spec.
   2739   bool hasNoexceptExceptionSpec() const {
   2740     return isNoexceptExceptionSpec(getExceptionSpecType());
   2741   }
   2742   /// \brief Result type of getNoexceptSpec().
   2743   enum NoexceptResult {
   2744     NR_NoNoexcept,  ///< There is no noexcept specifier.
   2745     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   2746     NR_Dependent,   ///< The noexcept specifier is dependent.
   2747     NR_Throw,       ///< The noexcept specifier evaluates to false.
   2748     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   2749   };
   2750   /// \brief Get the meaning of the noexcept spec on this function, if any.
   2751   NoexceptResult getNoexceptSpec(ASTContext &Ctx) const;
   2752   unsigned getNumExceptions() const { return NumExceptions; }
   2753   QualType getExceptionType(unsigned i) const {
   2754     assert(i < NumExceptions && "Invalid exception number!");
   2755     return exception_begin()[i];
   2756   }
   2757   Expr *getNoexceptExpr() const {
   2758     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2759       return 0;
   2760     // NoexceptExpr sits where the arguments end.
   2761     return *reinterpret_cast<Expr *const *>(arg_type_end());
   2762   }
   2763   bool isNothrow(ASTContext &Ctx) const {
   2764     ExceptionSpecificationType EST = getExceptionSpecType();
   2765     assert(EST != EST_Delayed);
   2766     if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
   2767       return true;
   2768     if (EST != EST_ComputedNoexcept)
   2769       return false;
   2770     return getNoexceptSpec(Ctx) == NR_Nothrow;
   2771   }
   2772 
   2773   using FunctionType::isVariadic;
   2774 
   2775   /// \brief Determines whether this function prototype contains a
   2776   /// parameter pack at the end.
   2777   ///
   2778   /// A function template whose last parameter is a parameter pack can be
   2779   /// called with an arbitrary number of arguments, much like a variadic
   2780   /// function. However,
   2781   bool isTemplateVariadic() const;
   2782 
   2783   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   2784 
   2785 
   2786   /// \brief Retrieve the ref-qualifier associated with this function type.
   2787   RefQualifierKind getRefQualifier() const {
   2788     return FunctionType::getRefQualifier();
   2789   }
   2790 
   2791   typedef const QualType *arg_type_iterator;
   2792   arg_type_iterator arg_type_begin() const {
   2793     return reinterpret_cast<const QualType *>(this+1);
   2794   }
   2795   arg_type_iterator arg_type_end() const { return arg_type_begin()+NumArgs; }
   2796 
   2797   typedef const QualType *exception_iterator;
   2798   exception_iterator exception_begin() const {
   2799     // exceptions begin where arguments end
   2800     return arg_type_end();
   2801   }
   2802   exception_iterator exception_end() const {
   2803     if (getExceptionSpecType() != EST_Dynamic)
   2804       return exception_begin();
   2805     return exception_begin() + NumExceptions;
   2806   }
   2807 
   2808   bool hasAnyConsumedArgs() const {
   2809     return HasAnyConsumedArgs;
   2810   }
   2811   bool isArgConsumed(unsigned I) const {
   2812     assert(I < getNumArgs() && "argument index out of range!");
   2813     if (hasAnyConsumedArgs())
   2814       return getConsumedArgsBuffer()[I];
   2815     return false;
   2816   }
   2817 
   2818   bool isSugared() const { return false; }
   2819   QualType desugar() const { return QualType(this, 0); }
   2820 
   2821   static bool classof(const Type *T) {
   2822     return T->getTypeClass() == FunctionProto;
   2823   }
   2824   static bool classof(const FunctionProtoType *) { return true; }
   2825 
   2826   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   2827   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   2828                       arg_type_iterator ArgTys, unsigned NumArgs,
   2829                       const ExtProtoInfo &EPI, const ASTContext &Context);
   2830 };
   2831 
   2832 
   2833 /// \brief Represents the dependent type named by a dependently-scoped
   2834 /// typename using declaration, e.g.
   2835 ///   using typename Base<T>::foo;
   2836 /// Template instantiation turns these into the underlying type.
   2837 class UnresolvedUsingType : public Type {
   2838   UnresolvedUsingTypenameDecl *Decl;
   2839 
   2840   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   2841     : Type(UnresolvedUsing, QualType(), true, true, false,
   2842            /*ContainsUnexpandedParameterPack=*/false),
   2843       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   2844   friend class ASTContext; // ASTContext creates these.
   2845 public:
   2846 
   2847   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   2848 
   2849   bool isSugared() const { return false; }
   2850   QualType desugar() const { return QualType(this, 0); }
   2851 
   2852   static bool classof(const Type *T) {
   2853     return T->getTypeClass() == UnresolvedUsing;
   2854   }
   2855   static bool classof(const UnresolvedUsingType *) { return true; }
   2856 
   2857   void Profile(llvm::FoldingSetNodeID &ID) {
   2858     return Profile(ID, Decl);
   2859   }
   2860   static void Profile(llvm::FoldingSetNodeID &ID,
   2861                       UnresolvedUsingTypenameDecl *D) {
   2862     ID.AddPointer(D);
   2863   }
   2864 };
   2865 
   2866 
   2867 class TypedefType : public Type {
   2868   TypedefNameDecl *Decl;
   2869 protected:
   2870   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   2871     : Type(tc, can, can->isDependentType(),
   2872            can->isInstantiationDependentType(),
   2873            can->isVariablyModifiedType(),
   2874            /*ContainsUnexpandedParameterPack=*/false),
   2875       Decl(const_cast<TypedefNameDecl*>(D)) {
   2876     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   2877   }
   2878   friend class ASTContext;  // ASTContext creates these.
   2879 public:
   2880 
   2881   TypedefNameDecl *getDecl() const { return Decl; }
   2882 
   2883   bool isSugared() const { return true; }
   2884   QualType desugar() const;
   2885 
   2886   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   2887   static bool classof(const TypedefType *) { return true; }
   2888 };
   2889 
   2890 /// TypeOfExprType (GCC extension).
   2891 class TypeOfExprType : public Type {
   2892   Expr *TOExpr;
   2893 
   2894 protected:
   2895   TypeOfExprType(Expr *E, QualType can = QualType());
   2896   friend class ASTContext;  // ASTContext creates these.
   2897 public:
   2898   Expr *getUnderlyingExpr() const { return TOExpr; }
   2899 
   2900   /// \brief Remove a single level of sugar.
   2901   QualType desugar() const;
   2902 
   2903   /// \brief Returns whether this type directly provides sugar.
   2904   bool isSugared() const;
   2905 
   2906   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   2907   static bool classof(const TypeOfExprType *) { return true; }
   2908 };
   2909 
   2910 /// \brief Internal representation of canonical, dependent
   2911 /// typeof(expr) types.
   2912 ///
   2913 /// This class is used internally by the ASTContext to manage
   2914 /// canonical, dependent types, only. Clients will only see instances
   2915 /// of this class via TypeOfExprType nodes.
   2916 class DependentTypeOfExprType
   2917   : public TypeOfExprType, public llvm::FoldingSetNode {
   2918   const ASTContext &Context;
   2919 
   2920 public:
   2921   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   2922     : TypeOfExprType(E), Context(Context) { }
   2923 
   2924   void Profile(llvm::FoldingSetNodeID &ID) {
   2925     Profile(ID, Context, getUnderlyingExpr());
   2926   }
   2927 
   2928   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2929                       Expr *E);
   2930 };
   2931 
   2932 /// TypeOfType (GCC extension).
   2933 class TypeOfType : public Type {
   2934   QualType TOType;
   2935   TypeOfType(QualType T, QualType can)
   2936     : Type(TypeOf, can, T->isDependentType(),
   2937            T->isInstantiationDependentType(),
   2938            T->isVariablyModifiedType(),
   2939            T->containsUnexpandedParameterPack()),
   2940       TOType(T) {
   2941     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   2942   }
   2943   friend class ASTContext;  // ASTContext creates these.
   2944 public:
   2945   QualType getUnderlyingType() const { return TOType; }
   2946 
   2947   /// \brief Remove a single level of sugar.
   2948   QualType desugar() const { return getUnderlyingType(); }
   2949 
   2950   /// \brief Returns whether this type directly provides sugar.
   2951   bool isSugared() const { return true; }
   2952 
   2953   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   2954   static bool classof(const TypeOfType *) { return true; }
   2955 };
   2956 
   2957 /// DecltypeType (C++0x)
   2958 class DecltypeType : public Type {
   2959   Expr *E;
   2960 
   2961   // FIXME: We could get rid of UnderlyingType if we wanted to: We would have to
   2962   // Move getDesugaredType to ASTContext so that it can call getDecltypeForExpr
   2963   // from it.
   2964   QualType UnderlyingType;
   2965 
   2966 protected:
   2967   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   2968   friend class ASTContext;  // ASTContext creates these.
   2969 public:
   2970   Expr *getUnderlyingExpr() const { return E; }
   2971   QualType getUnderlyingType() const { return UnderlyingType; }
   2972 
   2973   /// \brief Remove a single level of sugar.
   2974   QualType desugar() const;
   2975 
   2976   /// \brief Returns whether this type directly provides sugar.
   2977   bool isSugared() const;
   2978 
   2979   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   2980   static bool classof(const DecltypeType *) { return true; }
   2981 };
   2982 
   2983 /// \brief Internal representation of canonical, dependent
   2984 /// decltype(expr) types.
   2985 ///
   2986 /// This class is used internally by the ASTContext to manage
   2987 /// canonical, dependent types, only. Clients will only see instances
   2988 /// of this class via DecltypeType nodes.
   2989 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   2990   const ASTContext &Context;
   2991 
   2992 public:
   2993   DependentDecltypeType(const ASTContext &Context, Expr *E);
   2994 
   2995   void Profile(llvm::FoldingSetNodeID &ID) {
   2996     Profile(ID, Context, getUnderlyingExpr());
   2997   }
   2998 
   2999   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3000                       Expr *E);
   3001 };
   3002 
   3003 /// \brief A unary type transform, which is a type constructed from another
   3004 class UnaryTransformType : public Type {
   3005 public:
   3006   enum UTTKind {
   3007     EnumUnderlyingType
   3008   };
   3009 
   3010 private:
   3011   /// The untransformed type.
   3012   QualType BaseType;
   3013   /// The transformed type if not dependent, otherwise the same as BaseType.
   3014   QualType UnderlyingType;
   3015 
   3016   UTTKind UKind;
   3017 protected:
   3018   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3019                      QualType CanonicalTy);
   3020   friend class ASTContext;
   3021 public:
   3022   bool isSugared() const { return !isDependentType(); }
   3023   QualType desugar() const { return UnderlyingType; }
   3024 
   3025   QualType getUnderlyingType() const { return UnderlyingType; }
   3026   QualType getBaseType() const { return BaseType; }
   3027 
   3028   UTTKind getUTTKind() const { return UKind; }
   3029 
   3030   static bool classof(const Type *T) {
   3031     return T->getTypeClass() == UnaryTransform;
   3032   }
   3033   static bool classof(const UnaryTransformType *) { return true; }
   3034 };
   3035 
   3036 class TagType : public Type {
   3037   /// Stores the TagDecl associated with this type. The decl may point to any
   3038   /// TagDecl that declares the entity.
   3039   TagDecl * decl;
   3040 
   3041 protected:
   3042   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3043 
   3044 public:
   3045   TagDecl *getDecl() const;
   3046 
   3047   /// @brief Determines whether this type is in the process of being
   3048   /// defined.
   3049   bool isBeingDefined() const;
   3050 
   3051   static bool classof(const Type *T) {
   3052     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3053   }
   3054   static bool classof(const TagType *) { return true; }
   3055   static bool classof(const RecordType *) { return true; }
   3056   static bool classof(const EnumType *) { return true; }
   3057 };
   3058 
   3059 /// RecordType - This is a helper class that allows the use of isa/cast/dyncast
   3060 /// to detect TagType objects of structs/unions/classes.
   3061 class RecordType : public TagType {
   3062 protected:
   3063   explicit RecordType(const RecordDecl *D)
   3064     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3065   explicit RecordType(TypeClass TC, RecordDecl *D)
   3066     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3067   friend class ASTContext;   // ASTContext creates these.
   3068 public:
   3069 
   3070   RecordDecl *getDecl() const {
   3071     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3072   }
   3073 
   3074   // FIXME: This predicate is a helper to QualType/Type. It needs to
   3075   // recursively check all fields for const-ness. If any field is declared
   3076   // const, it needs to return false.
   3077   bool hasConstFields() const { return false; }
   3078 
   3079   bool isSugared() const { return false; }
   3080   QualType desugar() const { return QualType(this, 0); }
   3081 
   3082   static bool classof(const TagType *T);
   3083   static bool classof(const Type *T) {
   3084     return isa<TagType>(T) && classof(cast<TagType>(T));
   3085   }
   3086   static bool classof(const RecordType *) { return true; }
   3087 };
   3088 
   3089 /// EnumType - This is a helper class that allows the use of isa/cast/dyncast
   3090 /// to detect TagType objects of enums.
   3091 class EnumType : public TagType {
   3092   explicit EnumType(const EnumDecl *D)
   3093     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3094   friend class ASTContext;   // ASTContext creates these.
   3095 public:
   3096 
   3097   EnumDecl *getDecl() const {
   3098     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3099   }
   3100 
   3101   bool isSugared() const { return false; }
   3102   QualType desugar() const { return QualType(this, 0); }
   3103 
   3104   static bool classof(const TagType *T);
   3105   static bool classof(const Type *T) {
   3106     return isa<TagType>(T) && classof(cast<TagType>(T));
   3107   }
   3108   static bool classof(const EnumType *) { return true; }
   3109 };
   3110 
   3111 /// AttributedType - An attributed type is a type to which a type
   3112 /// attribute has been applied.  The "modified type" is the
   3113 /// fully-sugared type to which the attributed type was applied;
   3114 /// generally it is not canonically equivalent to the attributed type.
   3115 /// The "equivalent type" is the minimally-desugared type which the
   3116 /// type is canonically equivalent to.
   3117 ///
   3118 /// For example, in the following attributed type:
   3119 ///     int32_t __attribute__((vector_size(16)))
   3120 ///   - the modified type is the TypedefType for int32_t
   3121 ///   - the equivalent type is VectorType(16, int32_t)
   3122 ///   - the canonical type is VectorType(16, int)
   3123 class AttributedType : public Type, public llvm::FoldingSetNode {
   3124 public:
   3125   // It is really silly to have yet another attribute-kind enum, but
   3126   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3127   enum Kind {
   3128     // Expression operand.
   3129     attr_address_space,
   3130     attr_regparm,
   3131     attr_vector_size,
   3132     attr_neon_vector_type,
   3133     attr_neon_polyvector_type,
   3134 
   3135     FirstExprOperandKind = attr_address_space,
   3136     LastExprOperandKind = attr_neon_polyvector_type,
   3137 
   3138     // Enumerated operand (string or keyword).
   3139     attr_objc_gc,
   3140     attr_objc_ownership,
   3141     attr_pcs,
   3142 
   3143     FirstEnumOperandKind = attr_objc_gc,
   3144     LastEnumOperandKind = attr_pcs,
   3145 
   3146     // No operand.
   3147     attr_noreturn,
   3148     attr_cdecl,
   3149     attr_fastcall,
   3150     attr_stdcall,
   3151     attr_thiscall,
   3152     attr_pascal
   3153   };
   3154 
   3155 private:
   3156   QualType ModifiedType;
   3157   QualType EquivalentType;
   3158 
   3159   friend class ASTContext; // creates these
   3160 
   3161   AttributedType(QualType canon, Kind attrKind,
   3162                  QualType modified, QualType equivalent)
   3163     : Type(Attributed, canon, canon->isDependentType(),
   3164            canon->isInstantiationDependentType(),
   3165            canon->isVariablyModifiedType(),
   3166            canon->containsUnexpandedParameterPack()),
   3167       ModifiedType(modified), EquivalentType(equivalent) {
   3168     AttributedTypeBits.AttrKind = attrKind;
   3169   }
   3170 
   3171 public:
   3172   Kind getAttrKind() const {
   3173     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3174   }
   3175 
   3176   QualType getModifiedType() const { return ModifiedType; }
   3177   QualType getEquivalentType() const { return EquivalentType; }
   3178 
   3179   bool isSugared() const { return true; }
   3180   QualType desugar() const { return getEquivalentType(); }
   3181 
   3182   void Profile(llvm::FoldingSetNodeID &ID) {
   3183     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   3184   }
   3185 
   3186   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   3187                       QualType modified, QualType equivalent) {
   3188     ID.AddInteger(attrKind);
   3189     ID.AddPointer(modified.getAsOpaquePtr());
   3190     ID.AddPointer(equivalent.getAsOpaquePtr());
   3191   }
   3192 
   3193   static bool classof(const Type *T) {
   3194     return T->getTypeClass() == Attributed;
   3195   }
   3196   static bool classof(const AttributedType *T) { return true; }
   3197 };
   3198 
   3199 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3200   // Helper data collector for canonical types.
   3201   struct CanonicalTTPTInfo {
   3202     unsigned Depth : 15;
   3203     unsigned ParameterPack : 1;
   3204     unsigned Index : 16;
   3205   };
   3206 
   3207   union {
   3208     // Info for the canonical type.
   3209     CanonicalTTPTInfo CanTTPTInfo;
   3210     // Info for the non-canonical type.
   3211     TemplateTypeParmDecl *TTPDecl;
   3212   };
   3213 
   3214   /// Build a non-canonical type.
   3215   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   3216     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   3217            /*InstantiationDependent=*/true,
   3218            /*VariablyModified=*/false,
   3219            Canon->containsUnexpandedParameterPack()),
   3220       TTPDecl(TTPDecl) { }
   3221 
   3222   /// Build the canonical type.
   3223   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   3224     : Type(TemplateTypeParm, QualType(this, 0),
   3225            /*Dependent=*/true,
   3226            /*InstantiationDependent=*/true,
   3227            /*VariablyModified=*/false, PP) {
   3228     CanTTPTInfo.Depth = D;
   3229     CanTTPTInfo.Index = I;
   3230     CanTTPTInfo.ParameterPack = PP;
   3231   }
   3232 
   3233   friend class ASTContext;  // ASTContext creates these
   3234 
   3235   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   3236     QualType Can = getCanonicalTypeInternal();
   3237     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   3238   }
   3239 
   3240 public:
   3241   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   3242   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   3243   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   3244 
   3245   TemplateTypeParmDecl *getDecl() const {
   3246     return isCanonicalUnqualified() ? 0 : TTPDecl;
   3247   }
   3248 
   3249   IdentifierInfo *getIdentifier() const;
   3250 
   3251   bool isSugared() const { return false; }
   3252   QualType desugar() const { return QualType(this, 0); }
   3253 
   3254   void Profile(llvm::FoldingSetNodeID &ID) {
   3255     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   3256   }
   3257 
   3258   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   3259                       unsigned Index, bool ParameterPack,
   3260                       TemplateTypeParmDecl *TTPDecl) {
   3261     ID.AddInteger(Depth);
   3262     ID.AddInteger(Index);
   3263     ID.AddBoolean(ParameterPack);
   3264     ID.AddPointer(TTPDecl);
   3265   }
   3266 
   3267   static bool classof(const Type *T) {
   3268     return T->getTypeClass() == TemplateTypeParm;
   3269   }
   3270   static bool classof(const TemplateTypeParmType *T) { return true; }
   3271 };
   3272 
   3273 /// \brief Represents the result of substituting a type for a template
   3274 /// type parameter.
   3275 ///
   3276 /// Within an instantiated template, all template type parameters have
   3277 /// been replaced with these.  They are used solely to record that a
   3278 /// type was originally written as a template type parameter;
   3279 /// therefore they are never canonical.
   3280 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3281   // The original type parameter.
   3282   const TemplateTypeParmType *Replaced;
   3283 
   3284   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   3285     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   3286            Canon->isInstantiationDependentType(),
   3287            Canon->isVariablyModifiedType(),
   3288            Canon->containsUnexpandedParameterPack()),
   3289       Replaced(Param) { }
   3290 
   3291   friend class ASTContext;
   3292 
   3293 public:
   3294   /// Gets the template parameter that was substituted for.
   3295   const TemplateTypeParmType *getReplacedParameter() const {
   3296     return Replaced;
   3297   }
   3298 
   3299   /// Gets the type that was substituted for the template
   3300   /// parameter.
   3301   QualType getReplacementType() const {
   3302     return getCanonicalTypeInternal();
   3303   }
   3304 
   3305   bool isSugared() const { return true; }
   3306   QualType desugar() const { return getReplacementType(); }
   3307 
   3308   void Profile(llvm::FoldingSetNodeID &ID) {
   3309     Profile(ID, getReplacedParameter(), getReplacementType());
   3310   }
   3311   static void Profile(llvm::FoldingSetNodeID &ID,
   3312                       const TemplateTypeParmType *Replaced,
   3313                       QualType Replacement) {
   3314     ID.AddPointer(Replaced);
   3315     ID.AddPointer(Replacement.getAsOpaquePtr());
   3316   }
   3317 
   3318   static bool classof(const Type *T) {
   3319     return T->getTypeClass() == SubstTemplateTypeParm;
   3320   }
   3321   static bool classof(const SubstTemplateTypeParmType *T) { return true; }
   3322 };
   3323 
   3324 /// \brief Represents the result of substituting a set of types for a template
   3325 /// type parameter pack.
   3326 ///
   3327 /// When a pack expansion in the source code contains multiple parameter packs
   3328 /// and those parameter packs correspond to different levels of template
   3329 /// parameter lists, this type node is used to represent a template type
   3330 /// parameter pack from an outer level, which has already had its argument pack
   3331 /// substituted but that still lives within a pack expansion that itself
   3332 /// could not be instantiated. When actually performing a substitution into
   3333 /// that pack expansion (e.g., when all template parameters have corresponding
   3334 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   3335 /// at the current pack substitution index.
   3336 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   3337   /// \brief The original type parameter.
   3338   const TemplateTypeParmType *Replaced;
   3339 
   3340   /// \brief A pointer to the set of template arguments that this
   3341   /// parameter pack is instantiated with.
   3342   const TemplateArgument *Arguments;
   3343 
   3344   /// \brief The number of template arguments in \c Arguments.
   3345   unsigned NumArguments;
   3346 
   3347   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   3348                                 QualType Canon,
   3349                                 const TemplateArgument &ArgPack);
   3350 
   3351   friend class ASTContext;
   3352 
   3353 public:
   3354   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   3355 
   3356   /// Gets the template parameter that was substituted for.
   3357   const TemplateTypeParmType *getReplacedParameter() const {
   3358     return Replaced;
   3359   }
   3360 
   3361   bool isSugared() const { return false; }
   3362   QualType desugar() const { return QualType(this, 0); }
   3363 
   3364   TemplateArgument getArgumentPack() const;
   3365 
   3366   void Profile(llvm::FoldingSetNodeID &ID);
   3367   static void Profile(llvm::FoldingSetNodeID &ID,
   3368                       const TemplateTypeParmType *Replaced,
   3369                       const TemplateArgument &ArgPack);
   3370 
   3371   static bool classof(const Type *T) {
   3372     return T->getTypeClass() == SubstTemplateTypeParmPack;
   3373   }
   3374   static bool classof(const SubstTemplateTypeParmPackType *T) { return true; }
   3375 };
   3376 
   3377 /// \brief Represents a C++0x auto type.
   3378 ///
   3379 /// These types are usually a placeholder for a deduced type. However, within
   3380 /// templates and before the initializer is attached, there is no deduced type
   3381 /// and an auto type is type-dependent and canonical.
   3382 class AutoType : public Type, public llvm::FoldingSetNode {
   3383   AutoType(QualType DeducedType)
   3384     : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
   3385            /*Dependent=*/DeducedType.isNull(),
   3386            /*InstantiationDependent=*/DeducedType.isNull(),
   3387            /*VariablyModified=*/false, /*ContainsParameterPack=*/false) {
   3388     assert((DeducedType.isNull() || !DeducedType->isDependentType()) &&
   3389            "deduced a dependent type for auto");
   3390   }
   3391 
   3392   friend class ASTContext;  // ASTContext creates these
   3393 
   3394 public:
   3395   bool isSugared() const { return isDeduced(); }
   3396   QualType desugar() const { return getCanonicalTypeInternal(); }
   3397 
   3398   QualType getDeducedType() const {
   3399     return isDeduced() ? getCanonicalTypeInternal() : QualType();
   3400   }
   3401   bool isDeduced() const {
   3402     return !isDependentType();
   3403   }
   3404 
   3405   void Profile(llvm::FoldingSetNodeID &ID) {
   3406     Profile(ID, getDeducedType());
   3407   }
   3408 
   3409   static void Profile(llvm::FoldingSetNodeID &ID,
   3410                       QualType Deduced) {
   3411     ID.AddPointer(Deduced.getAsOpaquePtr());
   3412   }
   3413 
   3414   static bool classof(const Type *T) {
   3415     return T->getTypeClass() == Auto;
   3416   }
   3417   static bool classof(const AutoType *T) { return true; }
   3418 };
   3419 
   3420 /// \brief Represents a type template specialization; the template
   3421 /// must be a class template, a type alias template, or a template
   3422 /// template parameter.  A template which cannot be resolved to one of
   3423 /// these, e.g. because it is written with a dependent scope
   3424 /// specifier, is instead represented as a
   3425 /// @c DependentTemplateSpecializationType.
   3426 ///
   3427 /// A non-dependent template specialization type is always "sugar",
   3428 /// typically for a @c RecordType.  For example, a class template
   3429 /// specialization type of @c vector<int> will refer to a tag type for
   3430 /// the instantiation @c std::vector<int, std::allocator<int>>
   3431 ///
   3432 /// Template specializations are dependent if either the template or
   3433 /// any of the template arguments are dependent, in which case the
   3434 /// type may also be canonical.
   3435 ///
   3436 /// Instances of this type are allocated with a trailing array of
   3437 /// TemplateArguments, followed by a QualType representing the
   3438 /// non-canonical aliased type when the template is a type alias
   3439 /// template.
   3440 class TemplateSpecializationType
   3441   : public Type, public llvm::FoldingSetNode {
   3442   /// \brief The name of the template being specialized.  This is
   3443   /// either a TemplateName::Template (in which case it is a
   3444   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   3445   /// TypeAliasTemplateDecl*), a
   3446   /// TemplateName::SubstTemplateTemplateParmPack, or a
   3447   /// TemplateName::SubstTemplateTemplateParm (in which case the
   3448   /// replacement must, recursively, be one of these).
   3449   TemplateName Template;
   3450 
   3451   /// \brief - The number of template arguments named in this class
   3452   /// template specialization.
   3453   unsigned NumArgs;
   3454 
   3455   TemplateSpecializationType(TemplateName T,
   3456                              const TemplateArgument *Args,
   3457                              unsigned NumArgs, QualType Canon,
   3458                              QualType Aliased);
   3459 
   3460   friend class ASTContext;  // ASTContext creates these
   3461 
   3462 public:
   3463   /// \brief Determine whether any of the given template arguments are
   3464   /// dependent.
   3465   static bool anyDependentTemplateArguments(const TemplateArgument *Args,
   3466                                             unsigned NumArgs,
   3467                                             bool &InstantiationDependent);
   3468 
   3469   static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
   3470                                             unsigned NumArgs,
   3471                                             bool &InstantiationDependent);
   3472 
   3473   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   3474                                             bool &InstantiationDependent);
   3475 
   3476   /// \brief Print a template argument list, including the '<' and '>'
   3477   /// enclosing the template arguments.
   3478   static std::string PrintTemplateArgumentList(const TemplateArgument *Args,
   3479                                                unsigned NumArgs,
   3480                                                const PrintingPolicy &Policy,
   3481                                                bool SkipBrackets = false);
   3482 
   3483   static std::string PrintTemplateArgumentList(const TemplateArgumentLoc *Args,
   3484                                                unsigned NumArgs,
   3485                                                const PrintingPolicy &Policy);
   3486 
   3487   static std::string PrintTemplateArgumentList(const TemplateArgumentListInfo &,
   3488                                                const PrintingPolicy &Policy);
   3489 
   3490   /// True if this template specialization type matches a current
   3491   /// instantiation in the context in which it is found.
   3492   bool isCurrentInstantiation() const {
   3493     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   3494   }
   3495 
   3496   /// True if this template specialization type is for a type alias
   3497   /// template.
   3498   bool isTypeAlias() const;
   3499   /// Get the aliased type, if this is a specialization of a type alias
   3500   /// template.
   3501   QualType getAliasedType() const {
   3502     assert(isTypeAlias() && "not a type alias template specialization");
   3503     return *reinterpret_cast<const QualType*>(end());
   3504   }
   3505 
   3506   typedef const TemplateArgument * iterator;
   3507 
   3508   iterator begin() const { return getArgs(); }
   3509   iterator end() const; // defined inline in TemplateBase.h
   3510 
   3511   /// \brief Retrieve the name of the template that we are specializing.
   3512   TemplateName getTemplateName() const { return Template; }
   3513 
   3514   /// \brief Retrieve the template arguments.
   3515   const TemplateArgument *getArgs() const {
   3516     return reinterpret_cast<const TemplateArgument *>(this + 1);
   3517   }
   3518 
   3519   /// \brief Retrieve the number of template arguments.
   3520   unsigned getNumArgs() const { return NumArgs; }
   3521 
   3522   /// \brief Retrieve a specific template argument as a type.
   3523   /// \precondition @c isArgType(Arg)
   3524   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3525 
   3526   bool isSugared() const {
   3527     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   3528   }
   3529   QualType desugar() const { return getCanonicalTypeInternal(); }
   3530 
   3531   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   3532     Profile(ID, Template, getArgs(), NumArgs, Ctx);
   3533     if (isTypeAlias())
   3534       getAliasedType().Profile(ID);
   3535   }
   3536 
   3537   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   3538                       const TemplateArgument *Args,
   3539                       unsigned NumArgs,
   3540                       const ASTContext &Context);
   3541 
   3542   static bool classof(const Type *T) {
   3543     return T->getTypeClass() == TemplateSpecialization;
   3544   }
   3545   static bool classof(const TemplateSpecializationType *T) { return true; }
   3546 };
   3547 
   3548 /// \brief The injected class name of a C++ class template or class
   3549 /// template partial specialization.  Used to record that a type was
   3550 /// spelled with a bare identifier rather than as a template-id; the
   3551 /// equivalent for non-templated classes is just RecordType.
   3552 ///
   3553 /// Injected class name types are always dependent.  Template
   3554 /// instantiation turns these into RecordTypes.
   3555 ///
   3556 /// Injected class name types are always canonical.  This works
   3557 /// because it is impossible to compare an injected class name type
   3558 /// with the corresponding non-injected template type, for the same
   3559 /// reason that it is impossible to directly compare template
   3560 /// parameters from different dependent contexts: injected class name
   3561 /// types can only occur within the scope of a particular templated
   3562 /// declaration, and within that scope every template specialization
   3563 /// will canonicalize to the injected class name (when appropriate
   3564 /// according to the rules of the language).
   3565 class InjectedClassNameType : public Type {
   3566   CXXRecordDecl *Decl;
   3567 
   3568   /// The template specialization which this type represents.
   3569   /// For example, in
   3570   ///   template <class T> class A { ... };
   3571   /// this is A<T>, whereas in
   3572   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   3573   /// this is A<B<X,Y> >.
   3574   ///
   3575   /// It is always unqualified, always a template specialization type,
   3576   /// and always dependent.
   3577   QualType InjectedType;
   3578 
   3579   friend class ASTContext; // ASTContext creates these.
   3580   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   3581                           // currently suitable for AST reading, too much
   3582                           // interdependencies.
   3583   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   3584     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   3585            /*InstantiationDependent=*/true,
   3586            /*VariablyModified=*/false,
   3587            /*ContainsUnexpandedParameterPack=*/false),
   3588       Decl(D), InjectedType(TST) {
   3589     assert(isa<TemplateSpecializationType>(TST));
   3590     assert(!TST.hasQualifiers());
   3591     assert(TST->isDependentType());
   3592   }
   3593 
   3594 public:
   3595   QualType getInjectedSpecializationType() const { return InjectedType; }
   3596   const TemplateSpecializationType *getInjectedTST() const {
   3597     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   3598   }
   3599 
   3600   CXXRecordDecl *getDecl() const;
   3601 
   3602   bool isSugared() const { return false; }
   3603   QualType desugar() const { return QualType(this, 0); }
   3604 
   3605   static bool classof(const Type *T) {
   3606     return T->getTypeClass() == InjectedClassName;
   3607   }
   3608   static bool classof(const InjectedClassNameType *T) { return true; }
   3609 };
   3610 
   3611 /// \brief The kind of a tag type.
   3612 enum TagTypeKind {
   3613   /// \brief The "struct" keyword.
   3614   TTK_Struct,
   3615   /// \brief The "union" keyword.
   3616   TTK_Union,
   3617   /// \brief The "class" keyword.
   3618   TTK_Class,
   3619   /// \brief The "enum" keyword.
   3620   TTK_Enum
   3621 };
   3622 
   3623 /// \brief The elaboration keyword that precedes a qualified type name or
   3624 /// introduces an elaborated-type-specifier.
   3625 enum ElaboratedTypeKeyword {
   3626   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   3627   ETK_Struct,
   3628   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   3629   ETK_Union,
   3630   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   3631   ETK_Class,
   3632   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   3633   ETK_Enum,
   3634   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   3635   /// \c typename T::type.
   3636   ETK_Typename,
   3637   /// \brief No keyword precedes the qualified type name.
   3638   ETK_None
   3639 };
   3640 
   3641 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   3642 /// The keyword in stored in the free bits of the base class.
   3643 /// Also provides a few static helpers for converting and printing
   3644 /// elaborated type keyword and tag type kind enumerations.
   3645 class TypeWithKeyword : public Type {
   3646 protected:
   3647   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   3648                   QualType Canonical, bool Dependent,
   3649                   bool InstantiationDependent, bool VariablyModified,
   3650                   bool ContainsUnexpandedParameterPack)
   3651   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3652          ContainsUnexpandedParameterPack) {
   3653     TypeWithKeywordBits.Keyword = Keyword;
   3654   }
   3655 
   3656 public:
   3657   ElaboratedTypeKeyword getKeyword() const {
   3658     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   3659   }
   3660 
   3661   /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3662   /// into an elaborated type keyword.
   3663   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   3664 
   3665   /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3666   /// into a tag type kind.  It is an error to provide a type specifier
   3667   /// which *isn't* a tag kind here.
   3668   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   3669 
   3670   /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
   3671   /// elaborated type keyword.
   3672   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   3673 
   3674   /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
   3675   // a TagTypeKind. It is an error to provide an elaborated type keyword
   3676   /// which *isn't* a tag kind here.
   3677   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   3678 
   3679   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   3680 
   3681   static const char *getKeywordName(ElaboratedTypeKeyword Keyword);
   3682 
   3683   static const char *getTagTypeKindName(TagTypeKind Kind) {
   3684     return getKeywordName(getKeywordForTagTypeKind(Kind));
   3685   }
   3686 
   3687   class CannotCastToThisType {};
   3688   static CannotCastToThisType classof(const Type *);
   3689 };
   3690 
   3691 /// \brief Represents a type that was referred to using an elaborated type
   3692 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   3693 /// or both.
   3694 ///
   3695 /// This type is used to keep track of a type name as written in the
   3696 /// source code, including tag keywords and any nested-name-specifiers.
   3697 /// The type itself is always "sugar", used to express what was written
   3698 /// in the source code but containing no additional semantic information.
   3699 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   3700 
   3701   /// \brief The nested name specifier containing the qualifier.
   3702   NestedNameSpecifier *NNS;
   3703 
   3704   /// \brief The type that this qualified name refers to.
   3705   QualType NamedType;
   3706 
   3707   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   3708                  QualType NamedType, QualType CanonType)
   3709     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   3710                       NamedType->isDependentType(),
   3711                       NamedType->isInstantiationDependentType(),
   3712                       NamedType->isVariablyModifiedType(),
   3713                       NamedType->containsUnexpandedParameterPack()),
   3714       NNS(NNS), NamedType(NamedType) {
   3715     assert(!(Keyword == ETK_None && NNS == 0) &&
   3716            "ElaboratedType cannot have elaborated type keyword "
   3717            "and name qualifier both null.");
   3718   }
   3719 
   3720   friend class ASTContext;  // ASTContext creates these
   3721 
   3722 public:
   3723   ~ElaboratedType();
   3724 
   3725   /// \brief Retrieve the qualification on this type.
   3726   NestedNameSpecifier *getQualifier() const { return NNS; }
   3727 
   3728   /// \brief Retrieve the type named by the qualified-id.
   3729   QualType getNamedType() const { return NamedType; }
   3730 
   3731   /// \brief Remove a single level of sugar.
   3732   QualType desugar() const { return getNamedType(); }
   3733 
   3734   /// \brief Returns whether this type directly provides sugar.
   3735   bool isSugared() const { return true; }
   3736 
   3737   void Profile(llvm::FoldingSetNodeID &ID) {
   3738     Profile(ID, getKeyword(), NNS, NamedType);
   3739   }
   3740 
   3741   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   3742                       NestedNameSpecifier *NNS, QualType NamedType) {
   3743     ID.AddInteger(Keyword);
   3744     ID.AddPointer(NNS);
   3745     NamedType.Profile(ID);
   3746   }
   3747 
   3748   static bool classof(const Type *T) {
   3749     return T->getTypeClass() == Elaborated;
   3750   }
   3751   static bool classof(const ElaboratedType *T) { return true; }
   3752 };
   3753 
   3754 /// \brief Represents a qualified type name for which the type name is
   3755 /// dependent.
   3756 ///
   3757 /// DependentNameType represents a class of dependent types that involve a
   3758 /// dependent nested-name-specifier (e.g., "T::") followed by a (dependent)
   3759 /// name of a type. The DependentNameType may start with a "typename" (for a
   3760 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   3761 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   3762 /// know that we must be referring to a type, e.g., in a base class specifier).
   3763 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   3764 
   3765   /// \brief The nested name specifier containing the qualifier.
   3766   NestedNameSpecifier *NNS;
   3767 
   3768   /// \brief The type that this typename specifier refers to.
   3769   const IdentifierInfo *Name;
   3770 
   3771   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   3772                     const IdentifierInfo *Name, QualType CanonType)
   3773     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   3774                       /*InstantiationDependent=*/true,
   3775                       /*VariablyModified=*/false,
   3776                       NNS->containsUnexpandedParameterPack()),
   3777       NNS(NNS), Name(Name) {
   3778     assert(NNS->isDependent() &&
   3779            "DependentNameType requires a dependent nested-name-specifier");
   3780   }
   3781 
   3782   friend class ASTContext;  // ASTContext creates these
   3783 
   3784 public:
   3785   /// \brief Retrieve the qualification on this type.
   3786   NestedNameSpecifier *getQualifier() const { return NNS; }
   3787 
   3788   /// \brief Retrieve the type named by the typename specifier as an
   3789   /// identifier.
   3790   ///
   3791   /// This routine will return a non-NULL identifier pointer when the
   3792   /// form of the original typename was terminated by an identifier,
   3793   /// e.g., "typename T::type".
   3794   const IdentifierInfo *getIdentifier() const {
   3795     return Name;
   3796   }
   3797 
   3798   bool isSugared() const { return false; }
   3799   QualType desugar() const { return QualType(this, 0); }
   3800 
   3801   void Profile(llvm::FoldingSetNodeID &ID) {
   3802     Profile(ID, getKeyword(), NNS, Name);
   3803   }
   3804 
   3805   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   3806                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   3807     ID.AddInteger(Keyword);
   3808     ID.AddPointer(NNS);
   3809     ID.AddPointer(Name);
   3810   }
   3811 
   3812   static bool classof(const Type *T) {
   3813     return T->getTypeClass() == DependentName;
   3814   }
   3815   static bool classof(const DependentNameType *T) { return true; }
   3816 };
   3817 
   3818 /// DependentTemplateSpecializationType - Represents a template
   3819 /// specialization type whose template cannot be resolved, e.g.
   3820 ///   A<T>::template B<T>
   3821 class DependentTemplateSpecializationType :
   3822   public TypeWithKeyword, public llvm::FoldingSetNode {
   3823 
   3824   /// \brief The nested name specifier containing the qualifier.
   3825   NestedNameSpecifier *NNS;
   3826 
   3827   /// \brief The identifier of the template.
   3828   const IdentifierInfo *Name;
   3829 
   3830   /// \brief - The number of template arguments named in this class
   3831   /// template specialization.
   3832   unsigned NumArgs;
   3833 
   3834   const TemplateArgument *getArgBuffer() const {
   3835     return reinterpret_cast<const TemplateArgument*>(this+1);
   3836   }
   3837   TemplateArgument *getArgBuffer() {
   3838     return reinterpret_cast<TemplateArgument*>(this+1);
   3839   }
   3840 
   3841   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   3842                                       NestedNameSpecifier *NNS,
   3843                                       const IdentifierInfo *Name,
   3844                                       unsigned NumArgs,
   3845                                       const TemplateArgument *Args,
   3846                                       QualType Canon);
   3847 
   3848   friend class ASTContext;  // ASTContext creates these
   3849 
   3850 public:
   3851   NestedNameSpecifier *getQualifier() const { return NNS; }
   3852   const IdentifierInfo *getIdentifier() const { return Name; }
   3853 
   3854   /// \brief Retrieve the template arguments.
   3855   const TemplateArgument *getArgs() const {
   3856     return getArgBuffer();
   3857   }
   3858 
   3859   /// \brief Retrieve the number of template arguments.
   3860   unsigned getNumArgs() const { return NumArgs; }
   3861 
   3862   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3863 
   3864   typedef const TemplateArgument * iterator;
   3865   iterator begin() const { return getArgs(); }
   3866   iterator end() const; // inline in TemplateBase.h
   3867 
   3868   bool isSugared() const { return false; }
   3869   QualType desugar() const { return QualType(this, 0); }
   3870 
   3871   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   3872     Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
   3873   }
   3874 
   3875   static void Profile(llvm::FoldingSetNodeID &ID,
   3876                       const ASTContext &Context,
   3877                       ElaboratedTypeKeyword Keyword,
   3878                       NestedNameSpecifier *Qualifier,
   3879                       const IdentifierInfo *Name,
   3880                       unsigned NumArgs,
   3881                       const TemplateArgument *Args);
   3882 
   3883   static bool classof(const Type *T) {
   3884     return T->getTypeClass() == DependentTemplateSpecialization;
   3885   }
   3886   static bool classof(const DependentTemplateSpecializationType *T) {
   3887     return true;
   3888   }
   3889 };
   3890 
   3891 /// \brief Represents a pack expansion of types.
   3892 ///
   3893 /// Pack expansions are part of C++0x variadic templates. A pack
   3894 /// expansion contains a pattern, which itself contains one or more
   3895 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   3896 /// produces a series of types, each instantiated from the pattern of
   3897 /// the expansion, where the Ith instantiation of the pattern uses the
   3898 /// Ith arguments bound to each of the unexpanded parameter packs. The
   3899 /// pack expansion is considered to "expand" these unexpanded
   3900 /// parameter packs.
   3901 ///
   3902 /// \code
   3903 /// template<typename ...Types> struct tuple;
   3904 ///
   3905 /// template<typename ...Types>
   3906 /// struct tuple_of_references {
   3907 ///   typedef tuple<Types&...> type;
   3908 /// };
   3909 /// \endcode
   3910 ///
   3911 /// Here, the pack expansion \c Types&... is represented via a
   3912 /// PackExpansionType whose pattern is Types&.
   3913 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   3914   /// \brief The pattern of the pack expansion.
   3915   QualType Pattern;
   3916 
   3917   /// \brief The number of expansions that this pack expansion will
   3918   /// generate when substituted (+1), or indicates that
   3919   ///
   3920   /// This field will only have a non-zero value when some of the parameter
   3921   /// packs that occur within the pattern have been substituted but others have
   3922   /// not.
   3923   unsigned NumExpansions;
   3924 
   3925   PackExpansionType(QualType Pattern, QualType Canon,
   3926                     llvm::Optional<unsigned> NumExpansions)
   3927     : Type(PackExpansion, Canon, /*Dependent=*/true,
   3928            /*InstantiationDependent=*/true,
   3929            /*VariableModified=*/Pattern->isVariablyModifiedType(),
   3930            /*ContainsUnexpandedParameterPack=*/false),
   3931       Pattern(Pattern),
   3932       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   3933 
   3934   friend class ASTContext;  // ASTContext creates these
   3935 
   3936 public:
   3937   /// \brief Retrieve the pattern of this pack expansion, which is the
   3938   /// type that will be repeatedly instantiated when instantiating the
   3939   /// pack expansion itself.
   3940   QualType getPattern() const { return Pattern; }
   3941 
   3942   /// \brief Retrieve the number of expansions that this pack expansion will
   3943   /// generate, if known.
   3944   llvm::Optional<unsigned> getNumExpansions() const {
   3945     if (NumExpansions)
   3946       return NumExpansions - 1;
   3947 
   3948     return llvm::Optional<unsigned>();
   3949   }
   3950 
   3951   bool isSugared() const { return false; }
   3952   QualType desugar() const { return QualType(this, 0); }
   3953 
   3954   void Profile(llvm::FoldingSetNodeID &ID) {
   3955     Profile(ID, getPattern(), getNumExpansions());
   3956   }
   3957 
   3958   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   3959                       llvm::Optional<unsigned> NumExpansions) {
   3960     ID.AddPointer(Pattern.getAsOpaquePtr());
   3961     ID.AddBoolean(NumExpansions);
   3962     if (NumExpansions)
   3963       ID.AddInteger(*NumExpansions);
   3964   }
   3965 
   3966   static bool classof(const Type *T) {
   3967     return T->getTypeClass() == PackExpansion;
   3968   }
   3969   static bool classof(const PackExpansionType *T) {
   3970     return true;
   3971   }
   3972 };
   3973 
   3974 /// ObjCObjectType - Represents a class type in Objective C.
   3975 /// Every Objective C type is a combination of a base type and a
   3976 /// list of protocols.
   3977 ///
   3978 /// Given the following declarations:
   3979 ///   @class C;
   3980 ///   @protocol P;
   3981 ///
   3982 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   3983 /// with base C and no protocols.
   3984 ///
   3985 /// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
   3986 ///
   3987 /// 'id' is a TypedefType which is sugar for an ObjCPointerType whose
   3988 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   3989 /// and no protocols.
   3990 ///
   3991 /// 'id<P>' is an ObjCPointerType whose pointee is an ObjCObjecType
   3992 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   3993 /// this should get its own sugar class to better represent the source.
   3994 class ObjCObjectType : public Type {
   3995   // ObjCObjectType.NumProtocols - the number of protocols stored
   3996   // after the ObjCObjectPointerType node.
   3997   //
   3998   // These protocols are those written directly on the type.  If
   3999   // protocol qualifiers ever become additive, the iterators will need
   4000   // to get kindof complicated.
   4001   //
   4002   // In the canonical object type, these are sorted alphabetically
   4003   // and uniqued.
   4004 
   4005   /// Either a BuiltinType or an InterfaceType or sugar for either.
   4006   QualType BaseType;
   4007 
   4008   ObjCProtocolDecl * const *getProtocolStorage() const {
   4009     return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
   4010   }
   4011 
   4012   ObjCProtocolDecl **getProtocolStorage();
   4013 
   4014 protected:
   4015   ObjCObjectType(QualType Canonical, QualType Base,
   4016                  ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
   4017 
   4018   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   4019   ObjCObjectType(enum Nonce_ObjCInterface)
   4020         : Type(ObjCInterface, QualType(), false, false, false, false),
   4021       BaseType(QualType(this_(), 0)) {
   4022     ObjCObjectTypeBits.NumProtocols = 0;
   4023   }
   4024 
   4025 public:
   4026   /// getBaseType - Gets the base type of this object type.  This is
   4027   /// always (possibly sugar for) one of:
   4028   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   4029   ///    user, which is a typedef for an ObjCPointerType)
   4030   ///  - the 'Class' builtin type (same caveat)
   4031   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   4032   QualType getBaseType() const { return BaseType; }
   4033 
   4034   bool isObjCId() const {
   4035     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   4036   }
   4037   bool isObjCClass() const {
   4038     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   4039   }
   4040   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   4041   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   4042   bool isObjCUnqualifiedIdOrClass() const {
   4043     if (!qual_empty()) return false;
   4044     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   4045       return T->getKind() == BuiltinType::ObjCId ||
   4046              T->getKind() == BuiltinType::ObjCClass;
   4047     return false;
   4048   }
   4049   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   4050   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   4051 
   4052   /// Gets the interface declaration for this object type, if the base type
   4053   /// really is an interface.
   4054   ObjCInterfaceDecl *getInterface() const;
   4055 
   4056   typedef ObjCProtocolDecl * const *qual_iterator;
   4057 
   4058   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4059   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4060 
   4061   bool qual_empty() const { return getNumProtocols() == 0; }
   4062 
   4063   /// getNumProtocols - Return the number of qualifying protocols in this
   4064   /// interface type, or 0 if there are none.
   4065   unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
   4066 
   4067   /// \brief Fetch a protocol by index.
   4068   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4069     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4070     return qual_begin()[I];
   4071   }
   4072 
   4073   bool isSugared() const { return false; }
   4074   QualType desugar() const { return QualType(this, 0); }
   4075 
   4076   static bool classof(const Type *T) {
   4077     return T->getTypeClass() == ObjCObject ||
   4078            T->getTypeClass() == ObjCInterface;
   4079   }
   4080   static bool classof(const ObjCObjectType *) { return true; }
   4081 };
   4082 
   4083 /// ObjCObjectTypeImpl - A class providing a concrete implementation
   4084 /// of ObjCObjectType, so as to not increase the footprint of
   4085 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   4086 /// system should not reference this type.
   4087 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   4088   friend class ASTContext;
   4089 
   4090   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   4091   // will need to be modified.
   4092 
   4093   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   4094                      ObjCProtocolDecl * const *Protocols,
   4095                      unsigned NumProtocols)
   4096     : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
   4097 
   4098 public:
   4099   void Profile(llvm::FoldingSetNodeID &ID);
   4100   static void Profile(llvm::FoldingSetNodeID &ID,
   4101                       QualType Base,
   4102                       ObjCProtocolDecl *const *protocols,
   4103                       unsigned NumProtocols);
   4104 };
   4105 
   4106 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
   4107   return reinterpret_cast<ObjCProtocolDecl**>(
   4108             static_cast<ObjCObjectTypeImpl*>(this) + 1);
   4109 }
   4110 
   4111 /// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
   4112 /// object oriented design.  They basically correspond to C++ classes.  There
   4113 /// are two kinds of interface types, normal interfaces like "NSString" and
   4114 /// qualified interfaces, which are qualified with a protocol list like
   4115 /// "NSString<NSCopyable, NSAmazing>".
   4116 ///
   4117 /// ObjCInterfaceType guarantees the following properties when considered
   4118 /// as a subtype of its superclass, ObjCObjectType:
   4119 ///   - There are no protocol qualifiers.  To reinforce this, code which
   4120 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   4121 ///     fail to compile.
   4122 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   4123 ///     T->getBaseType() == QualType(T, 0).
   4124 class ObjCInterfaceType : public ObjCObjectType {
   4125   ObjCInterfaceDecl *Decl;
   4126 
   4127   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   4128     : ObjCObjectType(Nonce_ObjCInterface),
   4129       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   4130   friend class ASTContext;  // ASTContext creates these.
   4131 
   4132 public:
   4133   /// getDecl - Get the declaration of this interface.
   4134   ObjCInterfaceDecl *getDecl() const { return Decl; }
   4135 
   4136   bool isSugared() const { return false; }
   4137   QualType desugar() const { return QualType(this, 0); }
   4138 
   4139   static bool classof(const Type *T) {
   4140     return T->getTypeClass() == ObjCInterface;
   4141   }
   4142   static bool classof(const ObjCInterfaceType *) { return true; }
   4143 
   4144   // Nonsense to "hide" certain members of ObjCObjectType within this
   4145   // class.  People asking for protocols on an ObjCInterfaceType are
   4146   // not going to get what they want: ObjCInterfaceTypes are
   4147   // guaranteed to have no protocols.
   4148   enum {
   4149     qual_iterator,
   4150     qual_begin,
   4151     qual_end,
   4152     getNumProtocols,
   4153     getProtocol
   4154   };
   4155 };
   4156 
   4157 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   4158   if (const ObjCInterfaceType *T =
   4159         getBaseType()->getAs<ObjCInterfaceType>())
   4160     return T->getDecl();
   4161   return 0;
   4162 }
   4163 
   4164 /// ObjCObjectPointerType - Used to represent a pointer to an
   4165 /// Objective C object.  These are constructed from pointer
   4166 /// declarators when the pointee type is an ObjCObjectType (or sugar
   4167 /// for one).  In addition, the 'id' and 'Class' types are typedefs
   4168 /// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
   4169 /// are translated into these.
   4170 ///
   4171 /// Pointers to pointers to Objective C objects are still PointerTypes;
   4172 /// only the first level of pointer gets it own type implementation.
   4173 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   4174   QualType PointeeType;
   4175 
   4176   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   4177     : Type(ObjCObjectPointer, Canonical, false, false, false, false),
   4178       PointeeType(Pointee) {}
   4179   friend class ASTContext;  // ASTContext creates these.
   4180 
   4181 public:
   4182   /// getPointeeType - Gets the type pointed to by this ObjC pointer.
   4183   /// The result will always be an ObjCObjectType or sugar thereof.
   4184   QualType getPointeeType() const { return PointeeType; }
   4185 
   4186   /// getObjCObjectType - Gets the type pointed to by this ObjC
   4187   /// pointer.  This method always returns non-null.
   4188   ///
   4189   /// This method is equivalent to getPointeeType() except that
   4190   /// it discards any typedefs (or other sugar) between this
   4191   /// type and the "outermost" object type.  So for:
   4192   ///   @class A; @protocol P; @protocol Q;
   4193   ///   typedef A<P> AP;
   4194   ///   typedef A A1;
   4195   ///   typedef A1<P> A1P;
   4196   ///   typedef A1P<Q> A1PQ;
   4197   /// For 'A*', getObjectType() will return 'A'.
   4198   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   4199   /// For 'AP*', getObjectType() will return 'A<P>'.
   4200   /// For 'A1*', getObjectType() will return 'A'.
   4201   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   4202   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   4203   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   4204   ///   adding protocols to a protocol-qualified base discards the
   4205   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   4206   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   4207   ///   qualifiers more complicated).
   4208   const ObjCObjectType *getObjectType() const {
   4209     return PointeeType->castAs<ObjCObjectType>();
   4210   }
   4211 
   4212   /// getInterfaceType - If this pointer points to an Objective C
   4213   /// @interface type, gets the type for that interface.  Any protocol
   4214   /// qualifiers on the interface are ignored.
   4215   ///
   4216   /// \return null if the base type for this pointer is 'id' or 'Class'
   4217   const ObjCInterfaceType *getInterfaceType() const {
   4218     return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
   4219   }
   4220 
   4221   /// getInterfaceDecl - If this pointer points to an Objective @interface
   4222   /// type, gets the declaration for that interface.
   4223   ///
   4224   /// \return null if the base type for this pointer is 'id' or 'Class'
   4225   ObjCInterfaceDecl *getInterfaceDecl() const {
   4226     return getObjectType()->getInterface();
   4227   }
   4228 
   4229   /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
   4230   /// its object type is the primitive 'id' type with no protocols.
   4231   bool isObjCIdType() const {
   4232     return getObjectType()->isObjCUnqualifiedId();
   4233   }
   4234 
   4235   /// isObjCClassType - True if this is equivalent to the 'Class' type,
   4236   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   4237   bool isObjCClassType() const {
   4238     return getObjectType()->isObjCUnqualifiedClass();
   4239   }
   4240 
   4241   /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
   4242   /// non-empty set of protocols.
   4243   bool isObjCQualifiedIdType() const {
   4244     return getObjectType()->isObjCQualifiedId();
   4245   }
   4246 
   4247   /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
   4248   /// some non-empty set of protocols.
   4249   bool isObjCQualifiedClassType() const {
   4250     return getObjectType()->isObjCQualifiedClass();
   4251   }
   4252 
   4253   /// An iterator over the qualifiers on the object type.  Provided
   4254   /// for convenience.  This will always iterate over the full set of
   4255   /// protocols on a type, not just those provided directly.
   4256   typedef ObjCObjectType::qual_iterator qual_iterator;
   4257 
   4258   qual_iterator qual_begin() const {
   4259     return getObjectType()->qual_begin();
   4260   }
   4261   qual_iterator qual_end() const {
   4262     return getObjectType()->qual_end();
   4263   }
   4264   bool qual_empty() const { return getObjectType()->qual_empty(); }
   4265 
   4266   /// getNumProtocols - Return the number of qualifying protocols on
   4267   /// the object type.
   4268   unsigned getNumProtocols() const {
   4269     return getObjectType()->getNumProtocols();
   4270   }
   4271 
   4272   /// \brief Retrieve a qualifying protocol by index on the object
   4273   /// type.
   4274   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4275     return getObjectType()->getProtocol(I);
   4276   }
   4277 
   4278   bool isSugared() const { return false; }
   4279   QualType desugar() const { return QualType(this, 0); }
   4280 
   4281   void Profile(llvm::FoldingSetNodeID &ID) {
   4282     Profile(ID, getPointeeType());
   4283   }
   4284   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4285     ID.AddPointer(T.getAsOpaquePtr());
   4286   }
   4287   static bool classof(const Type *T) {
   4288     return T->getTypeClass() == ObjCObjectPointer;
   4289   }
   4290   static bool classof(const ObjCObjectPointerType *) { return true; }
   4291 };
   4292 
   4293 class AtomicType : public Type, public llvm::FoldingSetNode {
   4294   QualType ValueType;
   4295 
   4296   AtomicType(QualType ValTy, QualType Canonical)
   4297     : Type(Atomic, Canonical, ValTy->isDependentType(),
   4298            ValTy->isInstantiationDependentType(),
   4299            ValTy->isVariablyModifiedType(),
   4300            ValTy->containsUnexpandedParameterPack()),
   4301       ValueType(ValTy) {}
   4302   friend class ASTContext;  // ASTContext creates these.
   4303 
   4304   public:
   4305   /// getValueType - Gets the type contained by this atomic type, i.e.
   4306   /// the type returned by performing an atomic load of this atomic type.
   4307   QualType getValueType() const { return ValueType; }
   4308 
   4309   bool isSugared() const { return false; }
   4310   QualType desugar() const { return QualType(this, 0); }
   4311 
   4312   void Profile(llvm::FoldingSetNodeID &ID) {
   4313     Profile(ID, getValueType());
   4314   }
   4315   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4316     ID.AddPointer(T.getAsOpaquePtr());
   4317   }
   4318   static bool classof(const Type *T) {
   4319     return T->getTypeClass() == Atomic;
   4320   }
   4321   static bool classof(const AtomicType *) { return true; }
   4322 };
   4323 
   4324 /// A qualifier set is used to build a set of qualifiers.
   4325 class QualifierCollector : public Qualifiers {
   4326 public:
   4327   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   4328 
   4329   /// Collect any qualifiers on the given type and return an
   4330   /// unqualified type.  The qualifiers are assumed to be consistent
   4331   /// with those already in the type.
   4332   const Type *strip(QualType type) {
   4333     addFastQualifiers(type.getLocalFastQualifiers());
   4334     if (!type.hasLocalNonFastQualifiers())
   4335       return type.getTypePtrUnsafe();
   4336 
   4337     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   4338     addConsistentQualifiers(extQuals->getQualifiers());
   4339     return extQuals->getBaseType();
   4340   }
   4341 
   4342   /// Apply the collected qualifiers to the given type.
   4343   QualType apply(const ASTContext &Context, QualType QT) const;
   4344 
   4345   /// Apply the collected qualifiers to the given type.
   4346   QualType apply(const ASTContext &Context, const Type* T) const;
   4347 };
   4348 
   4349 
   4350 // Inline function definitions.
   4351 
   4352 inline const Type *QualType::getTypePtr() const {
   4353   return getCommonPtr()->BaseType;
   4354 }
   4355 
   4356 inline const Type *QualType::getTypePtrOrNull() const {
   4357   return (isNull() ? 0 : getCommonPtr()->BaseType);
   4358 }
   4359 
   4360 inline SplitQualType QualType::split() const {
   4361   if (!hasLocalNonFastQualifiers())
   4362     return SplitQualType(getTypePtrUnsafe(),
   4363                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   4364 
   4365   const ExtQuals *eq = getExtQualsUnsafe();
   4366   Qualifiers qs = eq->getQualifiers();
   4367   qs.addFastQualifiers(getLocalFastQualifiers());
   4368   return SplitQualType(eq->getBaseType(), qs);
   4369 }
   4370 
   4371 inline Qualifiers QualType::getLocalQualifiers() const {
   4372   Qualifiers Quals;
   4373   if (hasLocalNonFastQualifiers())
   4374     Quals = getExtQualsUnsafe()->getQualifiers();
   4375   Quals.addFastQualifiers(getLocalFastQualifiers());
   4376   return Quals;
   4377 }
   4378 
   4379 inline Qualifiers QualType::getQualifiers() const {
   4380   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   4381   quals.addFastQualifiers(getLocalFastQualifiers());
   4382   return quals;
   4383 }
   4384 
   4385 inline unsigned QualType::getCVRQualifiers() const {
   4386   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   4387   cvr |= getLocalCVRQualifiers();
   4388   return cvr;
   4389 }
   4390 
   4391 inline QualType QualType::getCanonicalType() const {
   4392   QualType canon = getCommonPtr()->CanonicalType;
   4393   return canon.withFastQualifiers(getLocalFastQualifiers());
   4394 }
   4395 
   4396 inline bool QualType::isCanonical() const {
   4397   return getTypePtr()->isCanonicalUnqualified();
   4398 }
   4399 
   4400 inline bool QualType::isCanonicalAsParam() const {
   4401   if (!isCanonical()) return false;
   4402   if (hasLocalQualifiers()) return false;
   4403 
   4404   const Type *T = getTypePtr();
   4405   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   4406     return false;
   4407 
   4408   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   4409 }
   4410 
   4411 inline bool QualType::isConstQualified() const {
   4412   return isLocalConstQualified() ||
   4413          getCommonPtr()->CanonicalType.isLocalConstQualified();
   4414 }
   4415 
   4416 inline bool QualType::isRestrictQualified() const {
   4417   return isLocalRestrictQualified() ||
   4418          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   4419 }
   4420 
   4421 
   4422 inline bool QualType::isVolatileQualified() const {
   4423   return isLocalVolatileQualified() ||
   4424          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   4425 }
   4426 
   4427 inline bool QualType::hasQualifiers() const {
   4428   return hasLocalQualifiers() ||
   4429          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   4430 }
   4431 
   4432 inline QualType QualType::getUnqualifiedType() const {
   4433   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4434     return QualType(getTypePtr(), 0);
   4435 
   4436   return QualType(getSplitUnqualifiedTypeImpl(*this).first, 0);
   4437 }
   4438 
   4439 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   4440   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4441     return split();
   4442 
   4443   return getSplitUnqualifiedTypeImpl(*this);
   4444 }
   4445 
   4446 inline void QualType::removeLocalConst() {
   4447   removeLocalFastQualifiers(Qualifiers::Const);
   4448 }
   4449 
   4450 inline void QualType::removeLocalRestrict() {
   4451   removeLocalFastQualifiers(Qualifiers::Restrict);
   4452 }
   4453 
   4454 inline void QualType::removeLocalVolatile() {
   4455   removeLocalFastQualifiers(Qualifiers::Volatile);
   4456 }
   4457 
   4458 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   4459   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   4460   assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
   4461 
   4462   // Fast path: we don't need to touch the slow qualifiers.
   4463   removeLocalFastQualifiers(Mask);
   4464 }
   4465 
   4466 /// getAddressSpace - Return the address space of this type.
   4467 inline unsigned QualType::getAddressSpace() const {
   4468   return getQualifiers().getAddressSpace();
   4469 }
   4470 
   4471 /// getObjCGCAttr - Return the gc attribute of this type.
   4472 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   4473   return getQualifiers().getObjCGCAttr();
   4474 }
   4475 
   4476 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   4477   if (const PointerType *PT = t.getAs<PointerType>()) {
   4478     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   4479       return FT->getExtInfo();
   4480   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   4481     return FT->getExtInfo();
   4482 
   4483   return FunctionType::ExtInfo();
   4484 }
   4485 
   4486 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   4487   return getFunctionExtInfo(*t);
   4488 }
   4489 
   4490 /// isMoreQualifiedThan - Determine whether this type is more
   4491 /// qualified than the Other type. For example, "const volatile int"
   4492 /// is more qualified than "const int", "volatile int", and
   4493 /// "int". However, it is not more qualified than "const volatile
   4494 /// int".
   4495 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   4496   Qualifiers myQuals = getQualifiers();
   4497   Qualifiers otherQuals = other.getQualifiers();
   4498   return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
   4499 }
   4500 
   4501 /// isAtLeastAsQualifiedAs - Determine whether this type is at last
   4502 /// as qualified as the Other type. For example, "const volatile
   4503 /// int" is at least as qualified as "const int", "volatile int",
   4504 /// "int", and "const volatile int".
   4505 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   4506   return getQualifiers().compatiblyIncludes(other.getQualifiers());
   4507 }
   4508 
   4509 /// getNonReferenceType - If Type is a reference type (e.g., const
   4510 /// int&), returns the type that the reference refers to ("const
   4511 /// int"). Otherwise, returns the type itself. This routine is used
   4512 /// throughout Sema to implement C++ 5p6:
   4513 ///
   4514 ///   If an expression initially has the type "reference to T" (8.3.2,
   4515 ///   8.5.3), the type is adjusted to "T" prior to any further
   4516 ///   analysis, the expression designates the object or function
   4517 ///   denoted by the reference, and the expression is an lvalue.
   4518 inline QualType QualType::getNonReferenceType() const {
   4519   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   4520     return RefType->getPointeeType();
   4521   else
   4522     return *this;
   4523 }
   4524 
   4525 inline bool QualType::isCForbiddenLValueType() const {
   4526   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   4527           getTypePtr()->isFunctionType());
   4528 }
   4529 
   4530 /// \brief Tests whether the type is categorized as a fundamental type.
   4531 ///
   4532 /// \returns True for types specified in C++0x [basic.fundamental].
   4533 inline bool Type::isFundamentalType() const {
   4534   return isVoidType() ||
   4535          // FIXME: It's really annoying that we don't have an
   4536          // 'isArithmeticType()' which agrees with the standard definition.
   4537          (isArithmeticType() && !isEnumeralType());
   4538 }
   4539 
   4540 /// \brief Tests whether the type is categorized as a compound type.
   4541 ///
   4542 /// \returns True for types specified in C++0x [basic.compound].
   4543 inline bool Type::isCompoundType() const {
   4544   // C++0x [basic.compound]p1:
   4545   //   Compound types can be constructed in the following ways:
   4546   //    -- arrays of objects of a given type [...];
   4547   return isArrayType() ||
   4548   //    -- functions, which have parameters of given types [...];
   4549          isFunctionType() ||
   4550   //    -- pointers to void or objects or functions [...];
   4551          isPointerType() ||
   4552   //    -- references to objects or functions of a given type. [...]
   4553          isReferenceType() ||
   4554   //    -- classes containing a sequence of objects of various types, [...];
   4555          isRecordType() ||
   4556   //    -- unions, which ar classes capable of containing objects of different types at different times;
   4557          isUnionType() ||
   4558   //    -- enumerations, which comprise a set of named constant values. [...];
   4559          isEnumeralType() ||
   4560   //    -- pointers to non-static class members, [...].
   4561          isMemberPointerType();
   4562 }
   4563 
   4564 inline bool Type::isFunctionType() const {
   4565   return isa<FunctionType>(CanonicalType);
   4566 }
   4567 inline bool Type::isPointerType() const {
   4568   return isa<PointerType>(CanonicalType);
   4569 }
   4570 inline bool Type::isAnyPointerType() const {
   4571   return isPointerType() || isObjCObjectPointerType();
   4572 }
   4573 inline bool Type::isBlockPointerType() const {
   4574   return isa<BlockPointerType>(CanonicalType);
   4575 }
   4576 inline bool Type::isReferenceType() const {
   4577   return isa<ReferenceType>(CanonicalType);
   4578 }
   4579 inline bool Type::isLValueReferenceType() const {
   4580   return isa<LValueReferenceType>(CanonicalType);
   4581 }
   4582 inline bool Type::isRValueReferenceType() const {
   4583   return isa<RValueReferenceType>(CanonicalType);
   4584 }
   4585 inline bool Type::isFunctionPointerType() const {
   4586   if (const PointerType *T = getAs<PointerType>())
   4587     return T->getPointeeType()->isFunctionType();
   4588   else
   4589     return false;
   4590 }
   4591 inline bool Type::isMemberPointerType() const {
   4592   return isa<MemberPointerType>(CanonicalType);
   4593 }
   4594 inline bool Type::isMemberFunctionPointerType() const {
   4595   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4596     return T->isMemberFunctionPointer();
   4597   else
   4598     return false;
   4599 }
   4600 inline bool Type::isMemberDataPointerType() const {
   4601   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4602     return T->isMemberDataPointer();
   4603   else
   4604     return false;
   4605 }
   4606 inline bool Type::isArrayType() const {
   4607   return isa<ArrayType>(CanonicalType);
   4608 }
   4609 inline bool Type::isConstantArrayType() const {
   4610   return isa<ConstantArrayType>(CanonicalType);
   4611 }
   4612 inline bool Type::isIncompleteArrayType() const {
   4613   return isa<IncompleteArrayType>(CanonicalType);
   4614 }
   4615 inline bool Type::isVariableArrayType() const {
   4616   return isa<VariableArrayType>(CanonicalType);
   4617 }
   4618 inline bool Type::isDependentSizedArrayType() const {
   4619   return isa<DependentSizedArrayType>(CanonicalType);
   4620 }
   4621 inline bool Type::isBuiltinType() const {
   4622   return isa<BuiltinType>(CanonicalType);
   4623 }
   4624 inline bool Type::isRecordType() const {
   4625   return isa<RecordType>(CanonicalType);
   4626 }
   4627 inline bool Type::isEnumeralType() const {
   4628   return isa<EnumType>(CanonicalType);
   4629 }
   4630 inline bool Type::isAnyComplexType() const {
   4631   return isa<ComplexType>(CanonicalType);
   4632 }
   4633 inline bool Type::isVectorType() const {
   4634   return isa<VectorType>(CanonicalType);
   4635 }
   4636 inline bool Type::isExtVectorType() const {
   4637   return isa<ExtVectorType>(CanonicalType);
   4638 }
   4639 inline bool Type::isObjCObjectPointerType() const {
   4640   return isa<ObjCObjectPointerType>(CanonicalType);
   4641 }
   4642 inline bool Type::isObjCObjectType() const {
   4643   return isa<ObjCObjectType>(CanonicalType);
   4644 }
   4645 inline bool Type::isObjCObjectOrInterfaceType() const {
   4646   return isa<ObjCInterfaceType>(CanonicalType) ||
   4647     isa<ObjCObjectType>(CanonicalType);
   4648 }
   4649 inline bool Type::isAtomicType() const {
   4650   return isa<AtomicType>(CanonicalType);
   4651 }
   4652 
   4653 inline bool Type::isObjCQualifiedIdType() const {
   4654   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4655     return OPT->isObjCQualifiedIdType();
   4656   return false;
   4657 }
   4658 inline bool Type::isObjCQualifiedClassType() const {
   4659   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4660     return OPT->isObjCQualifiedClassType();
   4661   return false;
   4662 }
   4663 inline bool Type::isObjCIdType() const {
   4664   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4665     return OPT->isObjCIdType();
   4666   return false;
   4667 }
   4668 inline bool Type::isObjCClassType() const {
   4669   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4670     return OPT->isObjCClassType();
   4671   return false;
   4672 }
   4673 inline bool Type::isObjCSelType() const {
   4674   if (const PointerType *OPT = getAs<PointerType>())
   4675     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   4676   return false;
   4677 }
   4678 inline bool Type::isObjCBuiltinType() const {
   4679   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   4680 }
   4681 inline bool Type::isTemplateTypeParmType() const {
   4682   return isa<TemplateTypeParmType>(CanonicalType);
   4683 }
   4684 
   4685 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   4686   if (const BuiltinType *BT = getAs<BuiltinType>())
   4687     if (BT->getKind() == (BuiltinType::Kind) K)
   4688       return true;
   4689   return false;
   4690 }
   4691 
   4692 inline bool Type::isPlaceholderType() const {
   4693   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4694     return BT->isPlaceholderType();
   4695   return false;
   4696 }
   4697 
   4698 inline const BuiltinType *Type::getAsPlaceholderType() const {
   4699   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4700     if (BT->isPlaceholderType())
   4701       return BT;
   4702   return 0;
   4703 }
   4704 
   4705 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   4706   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
   4707   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   4708     return (BT->getKind() == (BuiltinType::Kind) K);
   4709   return false;
   4710 }
   4711 
   4712 /// \brief Determines whether this is a type for which one can define
   4713 /// an overloaded operator.
   4714 inline bool Type::isOverloadableType() const {
   4715   return isDependentType() || isRecordType() || isEnumeralType();
   4716 }
   4717 
   4718 /// \brief Determines whether this type can decay to a pointer type.
   4719 inline bool Type::canDecayToPointerType() const {
   4720   return isFunctionType() || isArrayType();
   4721 }
   4722 
   4723 inline bool Type::hasPointerRepresentation() const {
   4724   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   4725           isObjCObjectPointerType() || isNullPtrType());
   4726 }
   4727 
   4728 inline bool Type::hasObjCPointerRepresentation() const {
   4729   return isObjCObjectPointerType();
   4730 }
   4731 
   4732 inline const Type *Type::getBaseElementTypeUnsafe() const {
   4733   const Type *type = this;
   4734   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   4735     type = arrayType->getElementType().getTypePtr();
   4736   return type;
   4737 }
   4738 
   4739 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   4740 /// diagnostic with <<.
   4741 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   4742                                            QualType T) {
   4743   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   4744                   DiagnosticsEngine::ak_qualtype);
   4745   return DB;
   4746 }
   4747 
   4748 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   4749 /// into a diagnostic with <<.
   4750 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   4751                                            QualType T) {
   4752   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   4753                   DiagnosticsEngine::ak_qualtype);
   4754   return PD;
   4755 }
   4756 
   4757 // Helper class template that is used by Type::getAs to ensure that one does
   4758 // not try to look through a qualified type to get to an array type.
   4759 template<typename T,
   4760          bool isArrayType = (llvm::is_same<T, ArrayType>::value ||
   4761                              llvm::is_base_of<ArrayType, T>::value)>
   4762 struct ArrayType_cannot_be_used_with_getAs { };
   4763 
   4764 template<typename T>
   4765 struct ArrayType_cannot_be_used_with_getAs<T, true>;
   4766 
   4767 /// Member-template getAs<specific type>'.
   4768 template <typename T> const T *Type::getAs() const {
   4769   ArrayType_cannot_be_used_with_getAs<T> at;
   4770   (void)at;
   4771 
   4772   // If this is directly a T type, return it.
   4773   if (const T *Ty = dyn_cast<T>(this))
   4774     return Ty;
   4775 
   4776   // If the canonical form of this type isn't the right kind, reject it.
   4777   if (!isa<T>(CanonicalType))
   4778     return 0;
   4779 
   4780   // If this is a typedef for the type, strip the typedef off without
   4781   // losing all typedef information.
   4782   return cast<T>(getUnqualifiedDesugaredType());
   4783 }
   4784 
   4785 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   4786   // If this is directly an array type, return it.
   4787   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   4788     return arr;
   4789 
   4790   // If the canonical form of this type isn't the right kind, reject it.
   4791   if (!isa<ArrayType>(CanonicalType))
   4792     return 0;
   4793 
   4794   // If this is a typedef for the type, strip the typedef off without
   4795   // losing all typedef information.
   4796   return cast<ArrayType>(getUnqualifiedDesugaredType());
   4797 }
   4798 
   4799 template <typename T> const T *Type::castAs() const {
   4800   ArrayType_cannot_be_used_with_getAs<T> at;
   4801   (void) at;
   4802 
   4803   assert(isa<T>(CanonicalType));
   4804   if (const T *ty = dyn_cast<T>(this)) return ty;
   4805   return cast<T>(getUnqualifiedDesugaredType());
   4806 }
   4807 
   4808 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   4809   assert(isa<ArrayType>(CanonicalType));
   4810   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   4811   return cast<ArrayType>(getUnqualifiedDesugaredType());
   4812 }
   4813 
   4814 }  // end namespace clang
   4815 
   4816 #endif
   4817