Home | History | Annotate | Download | only in AST
      1 //===--- Type.cpp - Type representation and manipulation ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements type-related functionality.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/CharUnits.h"
     16 #include "clang/AST/Type.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/PrettyPrinter.h"
     22 #include "clang/AST/TypeVisitor.h"
     23 #include "clang/Basic/Specifiers.h"
     24 #include "llvm/ADT/APSInt.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include <algorithm>
     28 using namespace clang;
     29 
     30 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
     31   return (*this != Other) &&
     32     // CVR qualifiers superset
     33     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
     34     // ObjC GC qualifiers superset
     35     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
     36      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
     37     // Address space superset.
     38     ((getAddressSpace() == Other.getAddressSpace()) ||
     39      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
     40     // Lifetime qualifier superset.
     41     ((getObjCLifetime() == Other.getObjCLifetime()) ||
     42      (hasObjCLifetime() && !Other.hasObjCLifetime()));
     43 }
     44 
     45 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
     46   const Type* ty = getTypePtr();
     47   NamedDecl *ND = NULL;
     48   if (ty->isPointerType() || ty->isReferenceType())
     49     return ty->getPointeeType().getBaseTypeIdentifier();
     50   else if (ty->isRecordType())
     51     ND = ty->getAs<RecordType>()->getDecl();
     52   else if (ty->isEnumeralType())
     53     ND = ty->getAs<EnumType>()->getDecl();
     54   else if (ty->getTypeClass() == Type::Typedef)
     55     ND = ty->getAs<TypedefType>()->getDecl();
     56   else if (ty->isArrayType())
     57     return ty->castAsArrayTypeUnsafe()->
     58         getElementType().getBaseTypeIdentifier();
     59 
     60   if (ND)
     61     return ND->getIdentifier();
     62   return NULL;
     63 }
     64 
     65 bool QualType::isConstant(QualType T, ASTContext &Ctx) {
     66   if (T.isConstQualified())
     67     return true;
     68 
     69   if (const ArrayType *AT = Ctx.getAsArrayType(T))
     70     return AT->getElementType().isConstant(Ctx);
     71 
     72   return false;
     73 }
     74 
     75 unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
     76                                                  QualType ElementType,
     77                                                const llvm::APInt &NumElements) {
     78   llvm::APSInt SizeExtended(NumElements, true);
     79   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
     80   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
     81                                               SizeExtended.getBitWidth()) * 2);
     82 
     83   uint64_t ElementSize
     84     = Context.getTypeSizeInChars(ElementType).getQuantity();
     85   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
     86   TotalSize *= SizeExtended;
     87 
     88   return TotalSize.getActiveBits();
     89 }
     90 
     91 unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
     92   unsigned Bits = Context.getTypeSize(Context.getSizeType());
     93 
     94   // GCC appears to only allow 63 bits worth of address space when compiling
     95   // for 64-bit, so we do the same.
     96   if (Bits == 64)
     97     --Bits;
     98 
     99   return Bits;
    100 }
    101 
    102 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
    103                                                  QualType et, QualType can,
    104                                                  Expr *e, ArraySizeModifier sm,
    105                                                  unsigned tq,
    106                                                  SourceRange brackets)
    107     : ArrayType(DependentSizedArray, et, can, sm, tq,
    108                 (et->containsUnexpandedParameterPack() ||
    109                  (e && e->containsUnexpandedParameterPack()))),
    110       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
    111 {
    112 }
    113 
    114 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
    115                                       const ASTContext &Context,
    116                                       QualType ET,
    117                                       ArraySizeModifier SizeMod,
    118                                       unsigned TypeQuals,
    119                                       Expr *E) {
    120   ID.AddPointer(ET.getAsOpaquePtr());
    121   ID.AddInteger(SizeMod);
    122   ID.AddInteger(TypeQuals);
    123   E->Profile(ID, Context, true);
    124 }
    125 
    126 DependentSizedExtVectorType::DependentSizedExtVectorType(const
    127                                                          ASTContext &Context,
    128                                                          QualType ElementType,
    129                                                          QualType can,
    130                                                          Expr *SizeExpr,
    131                                                          SourceLocation loc)
    132     : Type(DependentSizedExtVector, can, /*Dependent=*/true,
    133            /*InstantiationDependent=*/true,
    134            ElementType->isVariablyModifiedType(),
    135            (ElementType->containsUnexpandedParameterPack() ||
    136             (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
    137       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
    138       loc(loc)
    139 {
    140 }
    141 
    142 void
    143 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
    144                                      const ASTContext &Context,
    145                                      QualType ElementType, Expr *SizeExpr) {
    146   ID.AddPointer(ElementType.getAsOpaquePtr());
    147   SizeExpr->Profile(ID, Context, true);
    148 }
    149 
    150 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
    151                        VectorKind vecKind)
    152   : Type(Vector, canonType, vecType->isDependentType(),
    153          vecType->isInstantiationDependentType(),
    154          vecType->isVariablyModifiedType(),
    155          vecType->containsUnexpandedParameterPack()),
    156     ElementType(vecType)
    157 {
    158   VectorTypeBits.VecKind = vecKind;
    159   VectorTypeBits.NumElements = nElements;
    160 }
    161 
    162 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
    163                        QualType canonType, VectorKind vecKind)
    164   : Type(tc, canonType, vecType->isDependentType(),
    165          vecType->isInstantiationDependentType(),
    166          vecType->isVariablyModifiedType(),
    167          vecType->containsUnexpandedParameterPack()),
    168     ElementType(vecType)
    169 {
    170   VectorTypeBits.VecKind = vecKind;
    171   VectorTypeBits.NumElements = nElements;
    172 }
    173 
    174 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
    175 /// element type of the array, potentially with type qualifiers missing.
    176 /// This method should never be used when type qualifiers are meaningful.
    177 const Type *Type::getArrayElementTypeNoTypeQual() const {
    178   // If this is directly an array type, return it.
    179   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
    180     return ATy->getElementType().getTypePtr();
    181 
    182   // If the canonical form of this type isn't the right kind, reject it.
    183   if (!isa<ArrayType>(CanonicalType))
    184     return 0;
    185 
    186   // If this is a typedef for an array type, strip the typedef off without
    187   // losing all typedef information.
    188   return cast<ArrayType>(getUnqualifiedDesugaredType())
    189     ->getElementType().getTypePtr();
    190 }
    191 
    192 /// getDesugaredType - Return the specified type with any "sugar" removed from
    193 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    194 /// the type is already concrete, it returns it unmodified.  This is similar
    195 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    196 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    197 /// concrete.
    198 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
    199   SplitQualType split = getSplitDesugaredType(T);
    200   return Context.getQualifiedType(split.first, split.second);
    201 }
    202 
    203 QualType QualType::getSingleStepDesugaredType(const ASTContext &Context) const {
    204   QualifierCollector Qs;
    205 
    206   const Type *CurTy = Qs.strip(*this);
    207   switch (CurTy->getTypeClass()) {
    208 #define ABSTRACT_TYPE(Class, Parent)
    209 #define TYPE(Class, Parent) \
    210   case Type::Class: { \
    211     const Class##Type *Ty = cast<Class##Type>(CurTy); \
    212     if (!Ty->isSugared()) \
    213       return *this; \
    214     return Context.getQualifiedType(Ty->desugar(), Qs); \
    215     break; \
    216   }
    217 #include "clang/AST/TypeNodes.def"
    218   }
    219 
    220   return *this;
    221 }
    222 
    223 SplitQualType QualType::getSplitDesugaredType(QualType T) {
    224   QualifierCollector Qs;
    225 
    226   QualType Cur = T;
    227   while (true) {
    228     const Type *CurTy = Qs.strip(Cur);
    229     switch (CurTy->getTypeClass()) {
    230 #define ABSTRACT_TYPE(Class, Parent)
    231 #define TYPE(Class, Parent) \
    232     case Type::Class: { \
    233       const Class##Type *Ty = cast<Class##Type>(CurTy); \
    234       if (!Ty->isSugared()) \
    235         return SplitQualType(Ty, Qs); \
    236       Cur = Ty->desugar(); \
    237       break; \
    238     }
    239 #include "clang/AST/TypeNodes.def"
    240     }
    241   }
    242 }
    243 
    244 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
    245   SplitQualType split = type.split();
    246 
    247   // All the qualifiers we've seen so far.
    248   Qualifiers quals = split.second;
    249 
    250   // The last type node we saw with any nodes inside it.
    251   const Type *lastTypeWithQuals = split.first;
    252 
    253   while (true) {
    254     QualType next;
    255 
    256     // Do a single-step desugar, aborting the loop if the type isn't
    257     // sugared.
    258     switch (split.first->getTypeClass()) {
    259 #define ABSTRACT_TYPE(Class, Parent)
    260 #define TYPE(Class, Parent) \
    261     case Type::Class: { \
    262       const Class##Type *ty = cast<Class##Type>(split.first); \
    263       if (!ty->isSugared()) goto done; \
    264       next = ty->desugar(); \
    265       break; \
    266     }
    267 #include "clang/AST/TypeNodes.def"
    268     }
    269 
    270     // Otherwise, split the underlying type.  If that yields qualifiers,
    271     // update the information.
    272     split = next.split();
    273     if (!split.second.empty()) {
    274       lastTypeWithQuals = split.first;
    275       quals.addConsistentQualifiers(split.second);
    276     }
    277   }
    278 
    279  done:
    280   return SplitQualType(lastTypeWithQuals, quals);
    281 }
    282 
    283 QualType QualType::IgnoreParens(QualType T) {
    284   // FIXME: this seems inherently un-qualifiers-safe.
    285   while (const ParenType *PT = T->getAs<ParenType>())
    286     T = PT->getInnerType();
    287   return T;
    288 }
    289 
    290 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
    291 /// sugar off the given type.  This should produce an object of the
    292 /// same dynamic type as the canonical type.
    293 const Type *Type::getUnqualifiedDesugaredType() const {
    294   const Type *Cur = this;
    295 
    296   while (true) {
    297     switch (Cur->getTypeClass()) {
    298 #define ABSTRACT_TYPE(Class, Parent)
    299 #define TYPE(Class, Parent) \
    300     case Class: { \
    301       const Class##Type *Ty = cast<Class##Type>(Cur); \
    302       if (!Ty->isSugared()) return Cur; \
    303       Cur = Ty->desugar().getTypePtr(); \
    304       break; \
    305     }
    306 #include "clang/AST/TypeNodes.def"
    307     }
    308   }
    309 }
    310 
    311 /// isVoidType - Helper method to determine if this is the 'void' type.
    312 bool Type::isVoidType() const {
    313   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    314     return BT->getKind() == BuiltinType::Void;
    315   return false;
    316 }
    317 
    318 bool Type::isDerivedType() const {
    319   switch (CanonicalType->getTypeClass()) {
    320   case Pointer:
    321   case VariableArray:
    322   case ConstantArray:
    323   case IncompleteArray:
    324   case FunctionProto:
    325   case FunctionNoProto:
    326   case LValueReference:
    327   case RValueReference:
    328   case Record:
    329     return true;
    330   default:
    331     return false;
    332   }
    333 }
    334 bool Type::isClassType() const {
    335   if (const RecordType *RT = getAs<RecordType>())
    336     return RT->getDecl()->isClass();
    337   return false;
    338 }
    339 bool Type::isStructureType() const {
    340   if (const RecordType *RT = getAs<RecordType>())
    341     return RT->getDecl()->isStruct();
    342   return false;
    343 }
    344 bool Type::isStructureOrClassType() const {
    345   if (const RecordType *RT = getAs<RecordType>())
    346     return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
    347   return false;
    348 }
    349 bool Type::isVoidPointerType() const {
    350   if (const PointerType *PT = getAs<PointerType>())
    351     return PT->getPointeeType()->isVoidType();
    352   return false;
    353 }
    354 
    355 bool Type::isUnionType() const {
    356   if (const RecordType *RT = getAs<RecordType>())
    357     return RT->getDecl()->isUnion();
    358   return false;
    359 }
    360 
    361 bool Type::isComplexType() const {
    362   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    363     return CT->getElementType()->isFloatingType();
    364   return false;
    365 }
    366 
    367 bool Type::isComplexIntegerType() const {
    368   // Check for GCC complex integer extension.
    369   return getAsComplexIntegerType();
    370 }
    371 
    372 const ComplexType *Type::getAsComplexIntegerType() const {
    373   if (const ComplexType *Complex = getAs<ComplexType>())
    374     if (Complex->getElementType()->isIntegerType())
    375       return Complex;
    376   return 0;
    377 }
    378 
    379 QualType Type::getPointeeType() const {
    380   if (const PointerType *PT = getAs<PointerType>())
    381     return PT->getPointeeType();
    382   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    383     return OPT->getPointeeType();
    384   if (const BlockPointerType *BPT = getAs<BlockPointerType>())
    385     return BPT->getPointeeType();
    386   if (const ReferenceType *RT = getAs<ReferenceType>())
    387     return RT->getPointeeType();
    388   return QualType();
    389 }
    390 
    391 const RecordType *Type::getAsStructureType() const {
    392   // If this is directly a structure type, return it.
    393   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    394     if (RT->getDecl()->isStruct())
    395       return RT;
    396   }
    397 
    398   // If the canonical form of this type isn't the right kind, reject it.
    399   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    400     if (!RT->getDecl()->isStruct())
    401       return 0;
    402 
    403     // If this is a typedef for a structure type, strip the typedef off without
    404     // losing all typedef information.
    405     return cast<RecordType>(getUnqualifiedDesugaredType());
    406   }
    407   return 0;
    408 }
    409 
    410 const RecordType *Type::getAsUnionType() const {
    411   // If this is directly a union type, return it.
    412   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    413     if (RT->getDecl()->isUnion())
    414       return RT;
    415   }
    416 
    417   // If the canonical form of this type isn't the right kind, reject it.
    418   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    419     if (!RT->getDecl()->isUnion())
    420       return 0;
    421 
    422     // If this is a typedef for a union type, strip the typedef off without
    423     // losing all typedef information.
    424     return cast<RecordType>(getUnqualifiedDesugaredType());
    425   }
    426 
    427   return 0;
    428 }
    429 
    430 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
    431                                ObjCProtocolDecl * const *Protocols,
    432                                unsigned NumProtocols)
    433   : Type(ObjCObject, Canonical, false, false, false, false),
    434     BaseType(Base)
    435 {
    436   ObjCObjectTypeBits.NumProtocols = NumProtocols;
    437   assert(getNumProtocols() == NumProtocols &&
    438          "bitfield overflow in protocol count");
    439   if (NumProtocols)
    440     memcpy(getProtocolStorage(), Protocols,
    441            NumProtocols * sizeof(ObjCProtocolDecl*));
    442 }
    443 
    444 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
    445   // There is no sugar for ObjCObjectType's, just return the canonical
    446   // type pointer if it is the right class.  There is no typedef information to
    447   // return and these cannot be Address-space qualified.
    448   if (const ObjCObjectType *T = getAs<ObjCObjectType>())
    449     if (T->getNumProtocols() && T->getInterface())
    450       return T;
    451   return 0;
    452 }
    453 
    454 bool Type::isObjCQualifiedInterfaceType() const {
    455   return getAsObjCQualifiedInterfaceType() != 0;
    456 }
    457 
    458 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
    459   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
    460   // type pointer if it is the right class.
    461   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    462     if (OPT->isObjCQualifiedIdType())
    463       return OPT;
    464   }
    465   return 0;
    466 }
    467 
    468 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
    469   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
    470   // type pointer if it is the right class.
    471   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    472     if (OPT->isObjCQualifiedClassType())
    473       return OPT;
    474   }
    475   return 0;
    476 }
    477 
    478 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
    479   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
    480     if (OPT->getInterfaceType())
    481       return OPT;
    482   }
    483   return 0;
    484 }
    485 
    486 const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
    487   if (const PointerType *PT = getAs<PointerType>())
    488     if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
    489       return dyn_cast<CXXRecordDecl>(RT->getDecl());
    490   return 0;
    491 }
    492 
    493 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
    494   if (const RecordType *RT = getAs<RecordType>())
    495     return dyn_cast<CXXRecordDecl>(RT->getDecl());
    496   else if (const InjectedClassNameType *Injected
    497                                   = getAs<InjectedClassNameType>())
    498     return Injected->getDecl();
    499 
    500   return 0;
    501 }
    502 
    503 namespace {
    504   class GetContainedAutoVisitor :
    505     public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
    506   public:
    507     using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
    508     AutoType *Visit(QualType T) {
    509       if (T.isNull())
    510         return 0;
    511       return Visit(T.getTypePtr());
    512     }
    513 
    514     // The 'auto' type itself.
    515     AutoType *VisitAutoType(const AutoType *AT) {
    516       return const_cast<AutoType*>(AT);
    517     }
    518 
    519     // Only these types can contain the desired 'auto' type.
    520     AutoType *VisitPointerType(const PointerType *T) {
    521       return Visit(T->getPointeeType());
    522     }
    523     AutoType *VisitBlockPointerType(const BlockPointerType *T) {
    524       return Visit(T->getPointeeType());
    525     }
    526     AutoType *VisitReferenceType(const ReferenceType *T) {
    527       return Visit(T->getPointeeTypeAsWritten());
    528     }
    529     AutoType *VisitMemberPointerType(const MemberPointerType *T) {
    530       return Visit(T->getPointeeType());
    531     }
    532     AutoType *VisitArrayType(const ArrayType *T) {
    533       return Visit(T->getElementType());
    534     }
    535     AutoType *VisitDependentSizedExtVectorType(
    536       const DependentSizedExtVectorType *T) {
    537       return Visit(T->getElementType());
    538     }
    539     AutoType *VisitVectorType(const VectorType *T) {
    540       return Visit(T->getElementType());
    541     }
    542     AutoType *VisitFunctionType(const FunctionType *T) {
    543       return Visit(T->getResultType());
    544     }
    545     AutoType *VisitParenType(const ParenType *T) {
    546       return Visit(T->getInnerType());
    547     }
    548     AutoType *VisitAttributedType(const AttributedType *T) {
    549       return Visit(T->getModifiedType());
    550     }
    551   };
    552 }
    553 
    554 AutoType *Type::getContainedAutoType() const {
    555   return GetContainedAutoVisitor().Visit(this);
    556 }
    557 
    558 bool Type::isIntegerType() const {
    559   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    560     return BT->getKind() >= BuiltinType::Bool &&
    561            BT->getKind() <= BuiltinType::Int128;
    562   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    563     // Incomplete enum types are not treated as integer types.
    564     // FIXME: In C++, enum types are never integer types.
    565     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
    566   return false;
    567 }
    568 
    569 bool Type::hasIntegerRepresentation() const {
    570   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    571     return VT->getElementType()->isIntegerType();
    572   else
    573     return isIntegerType();
    574 }
    575 
    576 /// \brief Determine whether this type is an integral type.
    577 ///
    578 /// This routine determines whether the given type is an integral type per
    579 /// C++ [basic.fundamental]p7. Although the C standard does not define the
    580 /// term "integral type", it has a similar term "integer type", and in C++
    581 /// the two terms are equivalent. However, C's "integer type" includes
    582 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
    583 /// parameter is used to determine whether we should be following the C or
    584 /// C++ rules when determining whether this type is an integral/integer type.
    585 ///
    586 /// For cases where C permits "an integer type" and C++ permits "an integral
    587 /// type", use this routine.
    588 ///
    589 /// For cases where C permits "an integer type" and C++ permits "an integral
    590 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
    591 ///
    592 /// \param Ctx The context in which this type occurs.
    593 ///
    594 /// \returns true if the type is considered an integral type, false otherwise.
    595 bool Type::isIntegralType(ASTContext &Ctx) const {
    596   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    597     return BT->getKind() >= BuiltinType::Bool &&
    598     BT->getKind() <= BuiltinType::Int128;
    599 
    600   if (!Ctx.getLangOptions().CPlusPlus)
    601     if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    602       return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
    603 
    604   return false;
    605 }
    606 
    607 bool Type::isIntegralOrEnumerationType() const {
    608   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    609     return BT->getKind() >= BuiltinType::Bool &&
    610            BT->getKind() <= BuiltinType::Int128;
    611 
    612   // Check for a complete enum type; incomplete enum types are not properly an
    613   // enumeration type in the sense required here.
    614   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    615     return ET->getDecl()->isComplete();
    616 
    617   return false;
    618 }
    619 
    620 bool Type::isIntegralOrUnscopedEnumerationType() const {
    621   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    622     return BT->getKind() >= BuiltinType::Bool &&
    623            BT->getKind() <= BuiltinType::Int128;
    624 
    625   // Check for a complete enum type; incomplete enum types are not properly an
    626   // enumeration type in the sense required here.
    627   // C++0x: However, if the underlying type of the enum is fixed, it is
    628   // considered complete.
    629   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    630     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
    631 
    632   return false;
    633 }
    634 
    635 
    636 bool Type::isBooleanType() const {
    637   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    638     return BT->getKind() == BuiltinType::Bool;
    639   return false;
    640 }
    641 
    642 bool Type::isCharType() const {
    643   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    644     return BT->getKind() == BuiltinType::Char_U ||
    645            BT->getKind() == BuiltinType::UChar ||
    646            BT->getKind() == BuiltinType::Char_S ||
    647            BT->getKind() == BuiltinType::SChar;
    648   return false;
    649 }
    650 
    651 bool Type::isWideCharType() const {
    652   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    653     return BT->getKind() == BuiltinType::WChar_S ||
    654            BT->getKind() == BuiltinType::WChar_U;
    655   return false;
    656 }
    657 
    658 bool Type::isChar16Type() const {
    659   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    660     return BT->getKind() == BuiltinType::Char16;
    661   return false;
    662 }
    663 
    664 bool Type::isChar32Type() const {
    665   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    666     return BT->getKind() == BuiltinType::Char32;
    667   return false;
    668 }
    669 
    670 /// \brief Determine whether this type is any of the built-in character
    671 /// types.
    672 bool Type::isAnyCharacterType() const {
    673   const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
    674   if (BT == 0) return false;
    675   switch (BT->getKind()) {
    676   default: return false;
    677   case BuiltinType::Char_U:
    678   case BuiltinType::UChar:
    679   case BuiltinType::WChar_U:
    680   case BuiltinType::Char16:
    681   case BuiltinType::Char32:
    682   case BuiltinType::Char_S:
    683   case BuiltinType::SChar:
    684   case BuiltinType::WChar_S:
    685     return true;
    686   }
    687 }
    688 
    689 /// isSignedIntegerType - Return true if this is an integer type that is
    690 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
    691 /// an enum decl which has a signed representation
    692 bool Type::isSignedIntegerType() const {
    693   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    694     return BT->getKind() >= BuiltinType::Char_S &&
    695            BT->getKind() <= BuiltinType::Int128;
    696   }
    697 
    698   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    699     // Incomplete enum types are not treated as integer types.
    700     // FIXME: In C++, enum types are never integer types.
    701     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
    702       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
    703   }
    704 
    705   return false;
    706 }
    707 
    708 bool Type::isSignedIntegerOrEnumerationType() const {
    709   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    710     return BT->getKind() >= BuiltinType::Char_S &&
    711     BT->getKind() <= BuiltinType::Int128;
    712   }
    713 
    714   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    715     if (ET->getDecl()->isComplete())
    716       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
    717   }
    718 
    719   return false;
    720 }
    721 
    722 bool Type::hasSignedIntegerRepresentation() const {
    723   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    724     return VT->getElementType()->isSignedIntegerType();
    725   else
    726     return isSignedIntegerType();
    727 }
    728 
    729 /// isUnsignedIntegerType - Return true if this is an integer type that is
    730 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
    731 /// decl which has an unsigned representation
    732 bool Type::isUnsignedIntegerType() const {
    733   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    734     return BT->getKind() >= BuiltinType::Bool &&
    735            BT->getKind() <= BuiltinType::UInt128;
    736   }
    737 
    738   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    739     // Incomplete enum types are not treated as integer types.
    740     // FIXME: In C++, enum types are never integer types.
    741     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
    742       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
    743   }
    744 
    745   return false;
    746 }
    747 
    748 bool Type::isUnsignedIntegerOrEnumerationType() const {
    749   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
    750     return BT->getKind() >= BuiltinType::Bool &&
    751     BT->getKind() <= BuiltinType::UInt128;
    752   }
    753 
    754   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
    755     if (ET->getDecl()->isComplete())
    756       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
    757   }
    758 
    759   return false;
    760 }
    761 
    762 bool Type::hasUnsignedIntegerRepresentation() const {
    763   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    764     return VT->getElementType()->isUnsignedIntegerType();
    765   else
    766     return isUnsignedIntegerType();
    767 }
    768 
    769 bool Type::isHalfType() const {
    770   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    771     return BT->getKind() == BuiltinType::Half;
    772   // FIXME: Should we allow complex __fp16? Probably not.
    773   return false;
    774 }
    775 
    776 bool Type::isFloatingType() const {
    777   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    778     return BT->getKind() >= BuiltinType::Half &&
    779            BT->getKind() <= BuiltinType::LongDouble;
    780   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    781     return CT->getElementType()->isFloatingType();
    782   return false;
    783 }
    784 
    785 bool Type::hasFloatingRepresentation() const {
    786   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
    787     return VT->getElementType()->isFloatingType();
    788   else
    789     return isFloatingType();
    790 }
    791 
    792 bool Type::isRealFloatingType() const {
    793   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    794     return BT->isFloatingPoint();
    795   return false;
    796 }
    797 
    798 bool Type::isRealType() const {
    799   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    800     return BT->getKind() >= BuiltinType::Bool &&
    801            BT->getKind() <= BuiltinType::LongDouble;
    802   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    803       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
    804   return false;
    805 }
    806 
    807 bool Type::isArithmeticType() const {
    808   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    809     return BT->getKind() >= BuiltinType::Bool &&
    810            BT->getKind() <= BuiltinType::LongDouble;
    811   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    812     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
    813     // If a body isn't seen by the time we get here, return false.
    814     //
    815     // C++0x: Enumerations are not arithmetic types. For now, just return
    816     // false for scoped enumerations since that will disable any
    817     // unwanted implicit conversions.
    818     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
    819   return isa<ComplexType>(CanonicalType);
    820 }
    821 
    822 bool Type::isScalarType() const {
    823   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
    824     return BT->getKind() > BuiltinType::Void &&
    825            BT->getKind() <= BuiltinType::NullPtr;
    826   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
    827     // Enums are scalar types, but only if they are defined.  Incomplete enums
    828     // are not treated as scalar types.
    829     return ET->getDecl()->isComplete();
    830   return isa<PointerType>(CanonicalType) ||
    831          isa<BlockPointerType>(CanonicalType) ||
    832          isa<MemberPointerType>(CanonicalType) ||
    833          isa<ComplexType>(CanonicalType) ||
    834          isa<ObjCObjectPointerType>(CanonicalType);
    835 }
    836 
    837 Type::ScalarTypeKind Type::getScalarTypeKind() const {
    838   assert(isScalarType());
    839 
    840   const Type *T = CanonicalType.getTypePtr();
    841   if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
    842     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
    843     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
    844     if (BT->isInteger()) return STK_Integral;
    845     if (BT->isFloatingPoint()) return STK_Floating;
    846     llvm_unreachable("unknown scalar builtin type");
    847   } else if (isa<PointerType>(T)) {
    848     return STK_CPointer;
    849   } else if (isa<BlockPointerType>(T)) {
    850     return STK_BlockPointer;
    851   } else if (isa<ObjCObjectPointerType>(T)) {
    852     return STK_ObjCObjectPointer;
    853   } else if (isa<MemberPointerType>(T)) {
    854     return STK_MemberPointer;
    855   } else if (isa<EnumType>(T)) {
    856     assert(cast<EnumType>(T)->getDecl()->isComplete());
    857     return STK_Integral;
    858   } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
    859     if (CT->getElementType()->isRealFloatingType())
    860       return STK_FloatingComplex;
    861     return STK_IntegralComplex;
    862   }
    863 
    864   llvm_unreachable("unknown scalar type");
    865 }
    866 
    867 /// \brief Determines whether the type is a C++ aggregate type or C
    868 /// aggregate or union type.
    869 ///
    870 /// An aggregate type is an array or a class type (struct, union, or
    871 /// class) that has no user-declared constructors, no private or
    872 /// protected non-static data members, no base classes, and no virtual
    873 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
    874 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
    875 /// includes union types.
    876 bool Type::isAggregateType() const {
    877   if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
    878     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
    879       return ClassDecl->isAggregate();
    880 
    881     return true;
    882   }
    883 
    884   return isa<ArrayType>(CanonicalType);
    885 }
    886 
    887 /// isConstantSizeType - Return true if this is not a variable sized type,
    888 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
    889 /// incomplete types or dependent types.
    890 bool Type::isConstantSizeType() const {
    891   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
    892   assert(!isDependentType() && "This doesn't make sense for dependent types");
    893   // The VAT must have a size, as it is known to be complete.
    894   return !isa<VariableArrayType>(CanonicalType);
    895 }
    896 
    897 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
    898 /// - a type that can describe objects, but which lacks information needed to
    899 /// determine its size.
    900 bool Type::isIncompleteType() const {
    901   switch (CanonicalType->getTypeClass()) {
    902   default: return false;
    903   case Builtin:
    904     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
    905     // be completed.
    906     return isVoidType();
    907   case Enum:
    908     // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
    909     if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
    910         return false;
    911     // Fall through.
    912   case Record:
    913     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
    914     // forward declaration, but not a full definition (C99 6.2.5p22).
    915     return !cast<TagType>(CanonicalType)->getDecl()->isCompleteDefinition();
    916   case ConstantArray:
    917     // An array is incomplete if its element type is incomplete
    918     // (C++ [dcl.array]p1).
    919     // We don't handle variable arrays (they're not allowed in C++) or
    920     // dependent-sized arrays (dependent types are never treated as incomplete).
    921     return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
    922   case IncompleteArray:
    923     // An array of unknown size is an incomplete type (C99 6.2.5p22).
    924     return true;
    925   case ObjCObject:
    926     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
    927                                                          ->isIncompleteType();
    928   case ObjCInterface:
    929     // ObjC interfaces are incomplete if they are @class, not @interface.
    930     return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
    931   }
    932 }
    933 
    934 bool QualType::isPODType(ASTContext &Context) const {
    935   // The compiler shouldn't query this for incomplete types, but the user might.
    936   // We return false for that case. Except for incomplete arrays of PODs, which
    937   // are PODs according to the standard.
    938   if (isNull())
    939     return 0;
    940 
    941   if ((*this)->isIncompleteArrayType())
    942     return Context.getBaseElementType(*this).isPODType(Context);
    943 
    944   if ((*this)->isIncompleteType())
    945     return false;
    946 
    947   if (Context.getLangOptions().ObjCAutoRefCount) {
    948     switch (getObjCLifetime()) {
    949     case Qualifiers::OCL_ExplicitNone:
    950       return true;
    951 
    952     case Qualifiers::OCL_Strong:
    953     case Qualifiers::OCL_Weak:
    954     case Qualifiers::OCL_Autoreleasing:
    955       return false;
    956 
    957     case Qualifiers::OCL_None:
    958       break;
    959     }
    960   }
    961 
    962   QualType CanonicalType = getTypePtr()->CanonicalType;
    963   switch (CanonicalType->getTypeClass()) {
    964     // Everything not explicitly mentioned is not POD.
    965   default: return false;
    966   case Type::VariableArray:
    967   case Type::ConstantArray:
    968     // IncompleteArray is handled above.
    969     return Context.getBaseElementType(*this).isPODType(Context);
    970 
    971   case Type::ObjCObjectPointer:
    972   case Type::BlockPointer:
    973   case Type::Builtin:
    974   case Type::Complex:
    975   case Type::Pointer:
    976   case Type::MemberPointer:
    977   case Type::Vector:
    978   case Type::ExtVector:
    979     return true;
    980 
    981   case Type::Enum:
    982     return true;
    983 
    984   case Type::Record:
    985     if (CXXRecordDecl *ClassDecl
    986           = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
    987       return ClassDecl->isPOD();
    988 
    989     // C struct/union is POD.
    990     return true;
    991   }
    992 }
    993 
    994 bool QualType::isTrivialType(ASTContext &Context) const {
    995   // The compiler shouldn't query this for incomplete types, but the user might.
    996   // We return false for that case. Except for incomplete arrays of PODs, which
    997   // are PODs according to the standard.
    998   if (isNull())
    999     return 0;
   1000 
   1001   if ((*this)->isArrayType())
   1002     return Context.getBaseElementType(*this).isTrivialType(Context);
   1003 
   1004   // Return false for incomplete types after skipping any incomplete array
   1005   // types which are expressly allowed by the standard and thus our API.
   1006   if ((*this)->isIncompleteType())
   1007     return false;
   1008 
   1009   if (Context.getLangOptions().ObjCAutoRefCount) {
   1010     switch (getObjCLifetime()) {
   1011     case Qualifiers::OCL_ExplicitNone:
   1012       return true;
   1013 
   1014     case Qualifiers::OCL_Strong:
   1015     case Qualifiers::OCL_Weak:
   1016     case Qualifiers::OCL_Autoreleasing:
   1017       return false;
   1018 
   1019     case Qualifiers::OCL_None:
   1020       if ((*this)->isObjCLifetimeType())
   1021         return false;
   1022       break;
   1023     }
   1024   }
   1025 
   1026   QualType CanonicalType = getTypePtr()->CanonicalType;
   1027   if (CanonicalType->isDependentType())
   1028     return false;
   1029 
   1030   // C++0x [basic.types]p9:
   1031   //   Scalar types, trivial class types, arrays of such types, and
   1032   //   cv-qualified versions of these types are collectively called trivial
   1033   //   types.
   1034 
   1035   // As an extension, Clang treats vector types as Scalar types.
   1036   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
   1037     return true;
   1038   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
   1039     if (const CXXRecordDecl *ClassDecl =
   1040         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   1041       // C++0x [class]p5:
   1042       //   A trivial class is a class that has a trivial default constructor
   1043       if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
   1044       //   and is trivially copyable.
   1045       if (!ClassDecl->isTriviallyCopyable()) return false;
   1046     }
   1047 
   1048     return true;
   1049   }
   1050 
   1051   // No other types can match.
   1052   return false;
   1053 }
   1054 
   1055 bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
   1056   if ((*this)->isArrayType())
   1057     return Context.getBaseElementType(*this).isTrivialType(Context);
   1058 
   1059   if (Context.getLangOptions().ObjCAutoRefCount) {
   1060     switch (getObjCLifetime()) {
   1061     case Qualifiers::OCL_ExplicitNone:
   1062       return true;
   1063 
   1064     case Qualifiers::OCL_Strong:
   1065     case Qualifiers::OCL_Weak:
   1066     case Qualifiers::OCL_Autoreleasing:
   1067       return false;
   1068 
   1069     case Qualifiers::OCL_None:
   1070       if ((*this)->isObjCLifetimeType())
   1071         return false;
   1072       break;
   1073     }
   1074   }
   1075 
   1076   // C++0x [basic.types]p9
   1077   //   Scalar types, trivially copyable class types, arrays of such types, and
   1078   //   cv-qualified versions of these types are collectively called trivial
   1079   //   types.
   1080 
   1081   QualType CanonicalType = getCanonicalType();
   1082   if (CanonicalType->isDependentType())
   1083     return false;
   1084 
   1085   // Return false for incomplete types after skipping any incomplete array types
   1086   // which are expressly allowed by the standard and thus our API.
   1087   if (CanonicalType->isIncompleteType())
   1088     return false;
   1089 
   1090   // As an extension, Clang treats vector types as Scalar types.
   1091   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
   1092     return true;
   1093 
   1094   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
   1095     if (const CXXRecordDecl *ClassDecl =
   1096           dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   1097       if (!ClassDecl->isTriviallyCopyable()) return false;
   1098     }
   1099 
   1100     return true;
   1101   }
   1102 
   1103   // No other types can match.
   1104   return false;
   1105 }
   1106 
   1107 
   1108 
   1109 bool Type::isLiteralType() const {
   1110   if (isDependentType())
   1111     return false;
   1112 
   1113   // C++0x [basic.types]p10:
   1114   //   A type is a literal type if it is:
   1115   //   [...]
   1116   //   -- an array of literal type.
   1117   // Extension: variable arrays cannot be literal types, since they're
   1118   // runtime-sized.
   1119   if (isVariableArrayType())
   1120     return false;
   1121   const Type *BaseTy = getBaseElementTypeUnsafe();
   1122   assert(BaseTy && "NULL element type");
   1123 
   1124   // Return false for incomplete types after skipping any incomplete array
   1125   // types; those are expressly allowed by the standard and thus our API.
   1126   if (BaseTy->isIncompleteType())
   1127     return false;
   1128 
   1129   // Objective-C lifetime types are not literal types.
   1130   if (BaseTy->isObjCRetainableType())
   1131     return false;
   1132 
   1133   // C++0x [basic.types]p10:
   1134   //   A type is a literal type if it is:
   1135   //    -- a scalar type; or
   1136   // As an extension, Clang treats vector types as literal types.
   1137   if (BaseTy->isScalarType() || BaseTy->isVectorType())
   1138     return true;
   1139   //    -- a reference type; or
   1140   if (BaseTy->isReferenceType())
   1141     return true;
   1142   //    -- a class type that has all of the following properties:
   1143   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   1144     //    -- a trivial destructor,
   1145     //    -- every constructor call and full-expression in the
   1146     //       brace-or-equal-initializers for non-static data members (if any)
   1147     //       is a constant expression,
   1148     //    -- it is an aggregate type or has at least one constexpr
   1149     //       constructor or constructor template that is not a copy or move
   1150     //       constructor, and
   1151     //    -- all non-static data members and base classes of literal types
   1152     //
   1153     // We resolve DR1361 by ignoring the second bullet.
   1154     if (const CXXRecordDecl *ClassDecl =
   1155         dyn_cast<CXXRecordDecl>(RT->getDecl()))
   1156       return ClassDecl->isLiteral();
   1157 
   1158     return true;
   1159   }
   1160 
   1161   return false;
   1162 }
   1163 
   1164 bool Type::isStandardLayoutType() const {
   1165   if (isDependentType())
   1166     return false;
   1167 
   1168   // C++0x [basic.types]p9:
   1169   //   Scalar types, standard-layout class types, arrays of such types, and
   1170   //   cv-qualified versions of these types are collectively called
   1171   //   standard-layout types.
   1172   const Type *BaseTy = getBaseElementTypeUnsafe();
   1173   assert(BaseTy && "NULL element type");
   1174 
   1175   // Return false for incomplete types after skipping any incomplete array
   1176   // types which are expressly allowed by the standard and thus our API.
   1177   if (BaseTy->isIncompleteType())
   1178     return false;
   1179 
   1180   // As an extension, Clang treats vector types as Scalar types.
   1181   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
   1182   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   1183     if (const CXXRecordDecl *ClassDecl =
   1184         dyn_cast<CXXRecordDecl>(RT->getDecl()))
   1185       if (!ClassDecl->isStandardLayout())
   1186         return false;
   1187 
   1188     // Default to 'true' for non-C++ class types.
   1189     // FIXME: This is a bit dubious, but plain C structs should trivially meet
   1190     // all the requirements of standard layout classes.
   1191     return true;
   1192   }
   1193 
   1194   // No other types can match.
   1195   return false;
   1196 }
   1197 
   1198 // This is effectively the intersection of isTrivialType and
   1199 // isStandardLayoutType. We implement it directly to avoid redundant
   1200 // conversions from a type to a CXXRecordDecl.
   1201 bool QualType::isCXX11PODType(ASTContext &Context) const {
   1202   const Type *ty = getTypePtr();
   1203   if (ty->isDependentType())
   1204     return false;
   1205 
   1206   if (Context.getLangOptions().ObjCAutoRefCount) {
   1207     switch (getObjCLifetime()) {
   1208     case Qualifiers::OCL_ExplicitNone:
   1209       return true;
   1210 
   1211     case Qualifiers::OCL_Strong:
   1212     case Qualifiers::OCL_Weak:
   1213     case Qualifiers::OCL_Autoreleasing:
   1214       return false;
   1215 
   1216     case Qualifiers::OCL_None:
   1217       if (ty->isObjCLifetimeType())
   1218         return false;
   1219       break;
   1220     }
   1221   }
   1222 
   1223   // C++11 [basic.types]p9:
   1224   //   Scalar types, POD classes, arrays of such types, and cv-qualified
   1225   //   versions of these types are collectively called trivial types.
   1226   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
   1227   assert(BaseTy && "NULL element type");
   1228 
   1229   // Return false for incomplete types after skipping any incomplete array
   1230   // types which are expressly allowed by the standard and thus our API.
   1231   if (BaseTy->isIncompleteType())
   1232     return false;
   1233 
   1234   // As an extension, Clang treats vector types as Scalar types.
   1235   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
   1236   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   1237     if (const CXXRecordDecl *ClassDecl =
   1238         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   1239       // C++11 [class]p10:
   1240       //   A POD struct is a non-union class that is both a trivial class [...]
   1241       if (!ClassDecl->isTrivial()) return false;
   1242 
   1243       // C++11 [class]p10:
   1244       //   A POD struct is a non-union class that is both a trivial class and
   1245       //   a standard-layout class [...]
   1246       if (!ClassDecl->isStandardLayout()) return false;
   1247 
   1248       // C++11 [class]p10:
   1249       //   A POD struct is a non-union class that is both a trivial class and
   1250       //   a standard-layout class, and has no non-static data members of type
   1251       //   non-POD struct, non-POD union (or array of such types). [...]
   1252       //
   1253       // We don't directly query the recursive aspect as the requiremets for
   1254       // both standard-layout classes and trivial classes apply recursively
   1255       // already.
   1256     }
   1257 
   1258     return true;
   1259   }
   1260 
   1261   // No other types can match.
   1262   return false;
   1263 }
   1264 
   1265 bool Type::isPromotableIntegerType() const {
   1266   if (const BuiltinType *BT = getAs<BuiltinType>())
   1267     switch (BT->getKind()) {
   1268     case BuiltinType::Bool:
   1269     case BuiltinType::Char_S:
   1270     case BuiltinType::Char_U:
   1271     case BuiltinType::SChar:
   1272     case BuiltinType::UChar:
   1273     case BuiltinType::Short:
   1274     case BuiltinType::UShort:
   1275       return true;
   1276     default:
   1277       return false;
   1278     }
   1279 
   1280   // Enumerated types are promotable to their compatible integer types
   1281   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
   1282   if (const EnumType *ET = getAs<EnumType>()){
   1283     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
   1284         || ET->getDecl()->isScoped())
   1285       return false;
   1286 
   1287     const BuiltinType *BT
   1288       = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
   1289     return BT->getKind() == BuiltinType::Int
   1290            || BT->getKind() == BuiltinType::UInt;
   1291   }
   1292 
   1293   return false;
   1294 }
   1295 
   1296 bool Type::isNullPtrType() const {
   1297   if (const BuiltinType *BT = getAs<BuiltinType>())
   1298     return BT->getKind() == BuiltinType::NullPtr;
   1299   return false;
   1300 }
   1301 
   1302 bool Type::isSpecifierType() const {
   1303   // Note that this intentionally does not use the canonical type.
   1304   switch (getTypeClass()) {
   1305   case Builtin:
   1306   case Record:
   1307   case Enum:
   1308   case Typedef:
   1309   case Complex:
   1310   case TypeOfExpr:
   1311   case TypeOf:
   1312   case TemplateTypeParm:
   1313   case SubstTemplateTypeParm:
   1314   case TemplateSpecialization:
   1315   case Elaborated:
   1316   case DependentName:
   1317   case DependentTemplateSpecialization:
   1318   case ObjCInterface:
   1319   case ObjCObject:
   1320   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
   1321     return true;
   1322   default:
   1323     return false;
   1324   }
   1325 }
   1326 
   1327 ElaboratedTypeKeyword
   1328 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
   1329   switch (TypeSpec) {
   1330   default: return ETK_None;
   1331   case TST_typename: return ETK_Typename;
   1332   case TST_class: return ETK_Class;
   1333   case TST_struct: return ETK_Struct;
   1334   case TST_union: return ETK_Union;
   1335   case TST_enum: return ETK_Enum;
   1336   }
   1337 }
   1338 
   1339 TagTypeKind
   1340 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
   1341   switch(TypeSpec) {
   1342   case TST_class: return TTK_Class;
   1343   case TST_struct: return TTK_Struct;
   1344   case TST_union: return TTK_Union;
   1345   case TST_enum: return TTK_Enum;
   1346   }
   1347 
   1348   llvm_unreachable("Type specifier is not a tag type kind.");
   1349   return TTK_Union;
   1350 }
   1351 
   1352 ElaboratedTypeKeyword
   1353 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
   1354   switch (Kind) {
   1355   case TTK_Class: return ETK_Class;
   1356   case TTK_Struct: return ETK_Struct;
   1357   case TTK_Union: return ETK_Union;
   1358   case TTK_Enum: return ETK_Enum;
   1359   }
   1360   llvm_unreachable("Unknown tag type kind.");
   1361 }
   1362 
   1363 TagTypeKind
   1364 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
   1365   switch (Keyword) {
   1366   case ETK_Class: return TTK_Class;
   1367   case ETK_Struct: return TTK_Struct;
   1368   case ETK_Union: return TTK_Union;
   1369   case ETK_Enum: return TTK_Enum;
   1370   case ETK_None: // Fall through.
   1371   case ETK_Typename:
   1372     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
   1373   }
   1374   llvm_unreachable("Unknown elaborated type keyword.");
   1375 }
   1376 
   1377 bool
   1378 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
   1379   switch (Keyword) {
   1380   case ETK_None:
   1381   case ETK_Typename:
   1382     return false;
   1383   case ETK_Class:
   1384   case ETK_Struct:
   1385   case ETK_Union:
   1386   case ETK_Enum:
   1387     return true;
   1388   }
   1389   llvm_unreachable("Unknown elaborated type keyword.");
   1390 }
   1391 
   1392 const char*
   1393 TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
   1394   switch (Keyword) {
   1395   case ETK_None: return "";
   1396   case ETK_Typename: return "typename";
   1397   case ETK_Class:  return "class";
   1398   case ETK_Struct: return "struct";
   1399   case ETK_Union:  return "union";
   1400   case ETK_Enum:   return "enum";
   1401   }
   1402 
   1403   llvm_unreachable("Unknown elaborated type keyword.");
   1404   return "";
   1405 }
   1406 
   1407 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
   1408                          ElaboratedTypeKeyword Keyword,
   1409                          NestedNameSpecifier *NNS, const IdentifierInfo *Name,
   1410                          unsigned NumArgs, const TemplateArgument *Args,
   1411                          QualType Canon)
   1412   : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
   1413                     /*VariablyModified=*/false,
   1414                     NNS && NNS->containsUnexpandedParameterPack()),
   1415     NNS(NNS), Name(Name), NumArgs(NumArgs) {
   1416   assert((!NNS || NNS->isDependent()) &&
   1417          "DependentTemplateSpecializatonType requires dependent qualifier");
   1418   for (unsigned I = 0; I != NumArgs; ++I) {
   1419     if (Args[I].containsUnexpandedParameterPack())
   1420       setContainsUnexpandedParameterPack();
   1421 
   1422     new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
   1423   }
   1424 }
   1425 
   1426 void
   1427 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
   1428                                              const ASTContext &Context,
   1429                                              ElaboratedTypeKeyword Keyword,
   1430                                              NestedNameSpecifier *Qualifier,
   1431                                              const IdentifierInfo *Name,
   1432                                              unsigned NumArgs,
   1433                                              const TemplateArgument *Args) {
   1434   ID.AddInteger(Keyword);
   1435   ID.AddPointer(Qualifier);
   1436   ID.AddPointer(Name);
   1437   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
   1438     Args[Idx].Profile(ID, Context);
   1439 }
   1440 
   1441 bool Type::isElaboratedTypeSpecifier() const {
   1442   ElaboratedTypeKeyword Keyword;
   1443   if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
   1444     Keyword = Elab->getKeyword();
   1445   else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
   1446     Keyword = DepName->getKeyword();
   1447   else if (const DependentTemplateSpecializationType *DepTST =
   1448              dyn_cast<DependentTemplateSpecializationType>(this))
   1449     Keyword = DepTST->getKeyword();
   1450   else
   1451     return false;
   1452 
   1453   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
   1454 }
   1455 
   1456 const char *Type::getTypeClassName() const {
   1457   switch (TypeBits.TC) {
   1458 #define ABSTRACT_TYPE(Derived, Base)
   1459 #define TYPE(Derived, Base) case Derived: return #Derived;
   1460 #include "clang/AST/TypeNodes.def"
   1461   }
   1462 
   1463   llvm_unreachable("Invalid type class.");
   1464   return 0;
   1465 }
   1466 
   1467 const char *BuiltinType::getName(const PrintingPolicy &Policy) const {
   1468   switch (getKind()) {
   1469   case Void:              return "void";
   1470   case Bool:              return Policy.Bool ? "bool" : "_Bool";
   1471   case Char_S:            return "char";
   1472   case Char_U:            return "char";
   1473   case SChar:             return "signed char";
   1474   case Short:             return "short";
   1475   case Int:               return "int";
   1476   case Long:              return "long";
   1477   case LongLong:          return "long long";
   1478   case Int128:            return "__int128_t";
   1479   case UChar:             return "unsigned char";
   1480   case UShort:            return "unsigned short";
   1481   case UInt:              return "unsigned int";
   1482   case ULong:             return "unsigned long";
   1483   case ULongLong:         return "unsigned long long";
   1484   case UInt128:           return "__uint128_t";
   1485   case Half:              return "half";
   1486   case Float:             return "float";
   1487   case Double:            return "double";
   1488   case LongDouble:        return "long double";
   1489   case WChar_S:
   1490   case WChar_U:           return "wchar_t";
   1491   case Char16:            return "char16_t";
   1492   case Char32:            return "char32_t";
   1493   case NullPtr:           return "nullptr_t";
   1494   case Overload:          return "<overloaded function type>";
   1495   case BoundMember:       return "<bound member function type>";
   1496   case Dependent:         return "<dependent type>";
   1497   case UnknownAny:        return "<unknown type>";
   1498   case ARCUnbridgedCast:  return "<ARC unbridged cast type>";
   1499   case ObjCId:            return "id";
   1500   case ObjCClass:         return "Class";
   1501   case ObjCSel:           return "SEL";
   1502   }
   1503 
   1504   llvm_unreachable("Invalid builtin type.");
   1505   return 0;
   1506 }
   1507 
   1508 QualType QualType::getNonLValueExprType(ASTContext &Context) const {
   1509   if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
   1510     return RefType->getPointeeType();
   1511 
   1512   // C++0x [basic.lval]:
   1513   //   Class prvalues can have cv-qualified types; non-class prvalues always
   1514   //   have cv-unqualified types.
   1515   //
   1516   // See also C99 6.3.2.1p2.
   1517   if (!Context.getLangOptions().CPlusPlus ||
   1518       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
   1519     return getUnqualifiedType();
   1520 
   1521   return *this;
   1522 }
   1523 
   1524 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
   1525   switch (CC) {
   1526   case CC_Default:
   1527     llvm_unreachable("no name for default cc");
   1528     return "";
   1529 
   1530   case CC_C: return "cdecl";
   1531   case CC_X86StdCall: return "stdcall";
   1532   case CC_X86FastCall: return "fastcall";
   1533   case CC_X86ThisCall: return "thiscall";
   1534   case CC_X86Pascal: return "pascal";
   1535   case CC_AAPCS: return "aapcs";
   1536   case CC_AAPCS_VFP: return "aapcs-vfp";
   1537   }
   1538 
   1539   llvm_unreachable("Invalid calling convention.");
   1540   return "";
   1541 }
   1542 
   1543 FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
   1544                                      unsigned numArgs, QualType canonical,
   1545                                      const ExtProtoInfo &epi)
   1546   : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
   1547                  epi.RefQualifier, canonical,
   1548                  result->isDependentType(),
   1549                  result->isInstantiationDependentType(),
   1550                  result->isVariablyModifiedType(),
   1551                  result->containsUnexpandedParameterPack(),
   1552                  epi.ExtInfo),
   1553     NumArgs(numArgs), NumExceptions(epi.NumExceptions),
   1554     ExceptionSpecType(epi.ExceptionSpecType),
   1555     HasAnyConsumedArgs(epi.ConsumedArguments != 0)
   1556 {
   1557   // Fill in the trailing argument array.
   1558   QualType *argSlot = reinterpret_cast<QualType*>(this+1);
   1559   for (unsigned i = 0; i != numArgs; ++i) {
   1560     if (args[i]->isDependentType())
   1561       setDependent();
   1562     else if (args[i]->isInstantiationDependentType())
   1563       setInstantiationDependent();
   1564 
   1565     if (args[i]->containsUnexpandedParameterPack())
   1566       setContainsUnexpandedParameterPack();
   1567 
   1568     argSlot[i] = args[i];
   1569   }
   1570 
   1571   if (getExceptionSpecType() == EST_Dynamic) {
   1572     // Fill in the exception array.
   1573     QualType *exnSlot = argSlot + numArgs;
   1574     for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
   1575       if (epi.Exceptions[i]->isDependentType())
   1576         setDependent();
   1577       else if (epi.Exceptions[i]->isInstantiationDependentType())
   1578         setInstantiationDependent();
   1579 
   1580       if (epi.Exceptions[i]->containsUnexpandedParameterPack())
   1581         setContainsUnexpandedParameterPack();
   1582 
   1583       exnSlot[i] = epi.Exceptions[i];
   1584     }
   1585   } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
   1586     // Store the noexcept expression and context.
   1587     Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
   1588     *noexSlot = epi.NoexceptExpr;
   1589 
   1590     if (epi.NoexceptExpr) {
   1591       if (epi.NoexceptExpr->isValueDependent()
   1592           || epi.NoexceptExpr->isTypeDependent())
   1593         setDependent();
   1594       else if (epi.NoexceptExpr->isInstantiationDependent())
   1595         setInstantiationDependent();
   1596     }
   1597   }
   1598 
   1599   if (epi.ConsumedArguments) {
   1600     bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
   1601     for (unsigned i = 0; i != numArgs; ++i)
   1602       consumedArgs[i] = epi.ConsumedArguments[i];
   1603   }
   1604 }
   1605 
   1606 FunctionProtoType::NoexceptResult
   1607 FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
   1608   ExceptionSpecificationType est = getExceptionSpecType();
   1609   if (est == EST_BasicNoexcept)
   1610     return NR_Nothrow;
   1611 
   1612   if (est != EST_ComputedNoexcept)
   1613     return NR_NoNoexcept;
   1614 
   1615   Expr *noexceptExpr = getNoexceptExpr();
   1616   if (!noexceptExpr)
   1617     return NR_BadNoexcept;
   1618   if (noexceptExpr->isValueDependent())
   1619     return NR_Dependent;
   1620 
   1621   llvm::APSInt value;
   1622   bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
   1623                                                    /*evaluated*/false);
   1624   (void)isICE;
   1625   assert(isICE && "AST should not contain bad noexcept expressions.");
   1626 
   1627   return value.getBoolValue() ? NR_Nothrow : NR_Throw;
   1628 }
   1629 
   1630 bool FunctionProtoType::isTemplateVariadic() const {
   1631   for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
   1632     if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
   1633       return true;
   1634 
   1635   return false;
   1636 }
   1637 
   1638 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   1639                                 const QualType *ArgTys, unsigned NumArgs,
   1640                                 const ExtProtoInfo &epi,
   1641                                 const ASTContext &Context) {
   1642 
   1643   // We have to be careful not to get ambiguous profile encodings.
   1644   // Note that valid type pointers are never ambiguous with anything else.
   1645   //
   1646   // The encoding grammar begins:
   1647   //      type type* bool int bool
   1648   // If that final bool is true, then there is a section for the EH spec:
   1649   //      bool type*
   1650   // This is followed by an optional "consumed argument" section of the
   1651   // same length as the first type sequence:
   1652   //      bool*
   1653   // Finally, we have the ext info:
   1654   //      int
   1655   //
   1656   // There is no ambiguity between the consumed arguments and an empty EH
   1657   // spec because of the leading 'bool' which unambiguously indicates
   1658   // whether the following bool is the EH spec or part of the arguments.
   1659 
   1660   ID.AddPointer(Result.getAsOpaquePtr());
   1661   for (unsigned i = 0; i != NumArgs; ++i)
   1662     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
   1663   // This method is relatively performance sensitive, so as a performance
   1664   // shortcut, use one AddInteger call instead of four for the next four
   1665   // fields.
   1666   assert(!(unsigned(epi.Variadic) & ~1) &&
   1667          !(unsigned(epi.TypeQuals) & ~255) &&
   1668          !(unsigned(epi.RefQualifier) & ~3) &&
   1669          !(unsigned(epi.ExceptionSpecType) & ~7) &&
   1670          "Values larger than expected.");
   1671   ID.AddInteger(unsigned(epi.Variadic) +
   1672                 (epi.TypeQuals << 1) +
   1673                 (epi.RefQualifier << 9) +
   1674                 (epi.ExceptionSpecType << 11));
   1675   if (epi.ExceptionSpecType == EST_Dynamic) {
   1676     for (unsigned i = 0; i != epi.NumExceptions; ++i)
   1677       ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
   1678   } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
   1679     epi.NoexceptExpr->Profile(ID, Context, false);
   1680   }
   1681   if (epi.ConsumedArguments) {
   1682     for (unsigned i = 0; i != NumArgs; ++i)
   1683       ID.AddBoolean(epi.ConsumedArguments[i]);
   1684   }
   1685   epi.ExtInfo.Profile(ID);
   1686 }
   1687 
   1688 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
   1689                                 const ASTContext &Ctx) {
   1690   Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
   1691           Ctx);
   1692 }
   1693 
   1694 QualType TypedefType::desugar() const {
   1695   return getDecl()->getUnderlyingType();
   1696 }
   1697 
   1698 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
   1699   : Type(TypeOfExpr, can, E->isTypeDependent(),
   1700          E->isInstantiationDependent(),
   1701          E->getType()->isVariablyModifiedType(),
   1702          E->containsUnexpandedParameterPack()),
   1703     TOExpr(E) {
   1704 }
   1705 
   1706 bool TypeOfExprType::isSugared() const {
   1707   return !TOExpr->isTypeDependent();
   1708 }
   1709 
   1710 QualType TypeOfExprType::desugar() const {
   1711   if (isSugared())
   1712     return getUnderlyingExpr()->getType();
   1713 
   1714   return QualType(this, 0);
   1715 }
   1716 
   1717 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
   1718                                       const ASTContext &Context, Expr *E) {
   1719   E->Profile(ID, Context, true);
   1720 }
   1721 
   1722 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
   1723   : Type(Decltype, can, E->isTypeDependent(),
   1724          E->isInstantiationDependent(),
   1725          E->getType()->isVariablyModifiedType(),
   1726          E->containsUnexpandedParameterPack()),
   1727     E(E),
   1728   UnderlyingType(underlyingType) {
   1729 }
   1730 
   1731 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
   1732 
   1733 QualType DecltypeType::desugar() const {
   1734   if (isSugared())
   1735     return getUnderlyingType();
   1736 
   1737   return QualType(this, 0);
   1738 }
   1739 
   1740 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
   1741   : DecltypeType(E, Context.DependentTy), Context(Context) { }
   1742 
   1743 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
   1744                                     const ASTContext &Context, Expr *E) {
   1745   E->Profile(ID, Context, true);
   1746 }
   1747 
   1748 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
   1749   : Type(TC, can, D->isDependentType(),
   1750          /*InstantiationDependent=*/D->isDependentType(),
   1751          /*VariablyModified=*/false,
   1752          /*ContainsUnexpandedParameterPack=*/false),
   1753     decl(const_cast<TagDecl*>(D)) {}
   1754 
   1755 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
   1756   for (TagDecl::redecl_iterator I = decl->redecls_begin(),
   1757                                 E = decl->redecls_end();
   1758        I != E; ++I) {
   1759     if (I->isCompleteDefinition() || I->isBeingDefined())
   1760       return *I;
   1761   }
   1762   // If there's no definition (not even in progress), return what we have.
   1763   return decl;
   1764 }
   1765 
   1766 UnaryTransformType::UnaryTransformType(QualType BaseType,
   1767                                        QualType UnderlyingType,
   1768                                        UTTKind UKind,
   1769                                        QualType CanonicalType)
   1770   : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
   1771          UnderlyingType->isInstantiationDependentType(),
   1772          UnderlyingType->isVariablyModifiedType(),
   1773          BaseType->containsUnexpandedParameterPack())
   1774   , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
   1775 {}
   1776 
   1777 TagDecl *TagType::getDecl() const {
   1778   return getInterestingTagDecl(decl);
   1779 }
   1780 
   1781 bool TagType::isBeingDefined() const {
   1782   return getDecl()->isBeingDefined();
   1783 }
   1784 
   1785 CXXRecordDecl *InjectedClassNameType::getDecl() const {
   1786   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
   1787 }
   1788 
   1789 bool RecordType::classof(const TagType *TT) {
   1790   return isa<RecordDecl>(TT->getDecl());
   1791 }
   1792 
   1793 bool EnumType::classof(const TagType *TT) {
   1794   return isa<EnumDecl>(TT->getDecl());
   1795 }
   1796 
   1797 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
   1798   return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
   1799 }
   1800 
   1801 SubstTemplateTypeParmPackType::
   1802 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   1803                               QualType Canon,
   1804                               const TemplateArgument &ArgPack)
   1805   : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
   1806     Replaced(Param),
   1807     Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
   1808 {
   1809 }
   1810 
   1811 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
   1812   return TemplateArgument(Arguments, NumArguments);
   1813 }
   1814 
   1815 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
   1816   Profile(ID, getReplacedParameter(), getArgumentPack());
   1817 }
   1818 
   1819 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
   1820                                            const TemplateTypeParmType *Replaced,
   1821                                             const TemplateArgument &ArgPack) {
   1822   ID.AddPointer(Replaced);
   1823   ID.AddInteger(ArgPack.pack_size());
   1824   for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
   1825                                     PEnd = ArgPack.pack_end();
   1826        P != PEnd; ++P)
   1827     ID.AddPointer(P->getAsType().getAsOpaquePtr());
   1828 }
   1829 
   1830 bool TemplateSpecializationType::
   1831 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
   1832                               bool &InstantiationDependent) {
   1833   return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
   1834                                        InstantiationDependent);
   1835 }
   1836 
   1837 bool TemplateSpecializationType::
   1838 anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
   1839                               bool &InstantiationDependent) {
   1840   for (unsigned i = 0; i != N; ++i) {
   1841     if (Args[i].getArgument().isDependent()) {
   1842       InstantiationDependent = true;
   1843       return true;
   1844     }
   1845 
   1846     if (Args[i].getArgument().isInstantiationDependent())
   1847       InstantiationDependent = true;
   1848   }
   1849   return false;
   1850 }
   1851 
   1852 bool TemplateSpecializationType::
   1853 anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
   1854                               bool &InstantiationDependent) {
   1855   for (unsigned i = 0; i != N; ++i) {
   1856     if (Args[i].isDependent()) {
   1857       InstantiationDependent = true;
   1858       return true;
   1859     }
   1860 
   1861     if (Args[i].isInstantiationDependent())
   1862       InstantiationDependent = true;
   1863   }
   1864   return false;
   1865 }
   1866 
   1867 TemplateSpecializationType::
   1868 TemplateSpecializationType(TemplateName T,
   1869                            const TemplateArgument *Args, unsigned NumArgs,
   1870                            QualType Canon, QualType AliasedType)
   1871   : Type(TemplateSpecialization,
   1872          Canon.isNull()? QualType(this, 0) : Canon,
   1873          Canon.isNull()? T.isDependent() : Canon->isDependentType(),
   1874          Canon.isNull()? T.isDependent()
   1875                        : Canon->isInstantiationDependentType(),
   1876          false, T.containsUnexpandedParameterPack()),
   1877     Template(T), NumArgs(NumArgs) {
   1878   assert(!T.getAsDependentTemplateName() &&
   1879          "Use DependentTemplateSpecializationType for dependent template-name");
   1880   assert((T.getKind() == TemplateName::Template ||
   1881           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
   1882           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
   1883          "Unexpected template name for TemplateSpecializationType");
   1884   bool InstantiationDependent;
   1885   (void)InstantiationDependent;
   1886   assert((!Canon.isNull() ||
   1887           T.isDependent() ||
   1888           anyDependentTemplateArguments(Args, NumArgs,
   1889                                         InstantiationDependent)) &&
   1890          "No canonical type for non-dependent class template specialization");
   1891 
   1892   TemplateArgument *TemplateArgs
   1893     = reinterpret_cast<TemplateArgument *>(this + 1);
   1894   for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
   1895     // Update dependent and variably-modified bits.
   1896     // If the canonical type exists and is non-dependent, the template
   1897     // specialization type can be non-dependent even if one of the type
   1898     // arguments is. Given:
   1899     //   template<typename T> using U = int;
   1900     // U<T> is always non-dependent, irrespective of the type T.
   1901     if (Canon.isNull() && Args[Arg].isDependent())
   1902       setDependent();
   1903     else if (Args[Arg].isInstantiationDependent())
   1904       setInstantiationDependent();
   1905 
   1906     if (Args[Arg].getKind() == TemplateArgument::Type &&
   1907         Args[Arg].getAsType()->isVariablyModifiedType())
   1908       setVariablyModified();
   1909     if (Args[Arg].containsUnexpandedParameterPack())
   1910       setContainsUnexpandedParameterPack();
   1911 
   1912     new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
   1913   }
   1914 
   1915   // Store the aliased type if this is a type alias template specialization.
   1916   bool IsTypeAlias = !AliasedType.isNull();
   1917   assert(IsTypeAlias == isTypeAlias() &&
   1918          "allocated wrong size for type alias");
   1919   if (IsTypeAlias) {
   1920     TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
   1921     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
   1922   }
   1923 }
   1924 
   1925 void
   1926 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
   1927                                     TemplateName T,
   1928                                     const TemplateArgument *Args,
   1929                                     unsigned NumArgs,
   1930                                     const ASTContext &Context) {
   1931   T.Profile(ID);
   1932   for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
   1933     Args[Idx].Profile(ID, Context);
   1934 }
   1935 
   1936 bool TemplateSpecializationType::isTypeAlias() const {
   1937   TemplateDecl *D = Template.getAsTemplateDecl();
   1938   return D && isa<TypeAliasTemplateDecl>(D);
   1939 }
   1940 
   1941 QualType
   1942 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
   1943   if (!hasNonFastQualifiers())
   1944     return QT.withFastQualifiers(getFastQualifiers());
   1945 
   1946   return Context.getQualifiedType(QT, *this);
   1947 }
   1948 
   1949 QualType
   1950 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
   1951   if (!hasNonFastQualifiers())
   1952     return QualType(T, getFastQualifiers());
   1953 
   1954   return Context.getQualifiedType(T, *this);
   1955 }
   1956 
   1957 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
   1958                                  QualType BaseType,
   1959                                  ObjCProtocolDecl * const *Protocols,
   1960                                  unsigned NumProtocols) {
   1961   ID.AddPointer(BaseType.getAsOpaquePtr());
   1962   for (unsigned i = 0; i != NumProtocols; i++)
   1963     ID.AddPointer(Protocols[i]);
   1964 }
   1965 
   1966 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
   1967   Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
   1968 }
   1969 
   1970 namespace {
   1971 
   1972 /// \brief The cached properties of a type.
   1973 class CachedProperties {
   1974   char linkage;
   1975   char visibility;
   1976   bool local;
   1977 
   1978 public:
   1979   CachedProperties(Linkage linkage, Visibility visibility, bool local)
   1980     : linkage(linkage), visibility(visibility), local(local) {}
   1981 
   1982   Linkage getLinkage() const { return (Linkage) linkage; }
   1983   Visibility getVisibility() const { return (Visibility) visibility; }
   1984   bool hasLocalOrUnnamedType() const { return local; }
   1985 
   1986   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
   1987     return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
   1988                             minVisibility(L.getVisibility(), R.getVisibility()),
   1989                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
   1990   }
   1991 };
   1992 }
   1993 
   1994 static CachedProperties computeCachedProperties(const Type *T);
   1995 
   1996 namespace clang {
   1997 /// The type-property cache.  This is templated so as to be
   1998 /// instantiated at an internal type to prevent unnecessary symbol
   1999 /// leakage.
   2000 template <class Private> class TypePropertyCache {
   2001 public:
   2002   static CachedProperties get(QualType T) {
   2003     return get(T.getTypePtr());
   2004   }
   2005 
   2006   static CachedProperties get(const Type *T) {
   2007     ensure(T);
   2008     return CachedProperties(T->TypeBits.getLinkage(),
   2009                             T->TypeBits.getVisibility(),
   2010                             T->TypeBits.hasLocalOrUnnamedType());
   2011   }
   2012 
   2013   static void ensure(const Type *T) {
   2014     // If the cache is valid, we're okay.
   2015     if (T->TypeBits.isCacheValid()) return;
   2016 
   2017     // If this type is non-canonical, ask its canonical type for the
   2018     // relevant information.
   2019     if (!T->isCanonicalUnqualified()) {
   2020       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
   2021       ensure(CT);
   2022       T->TypeBits.CacheValidAndVisibility =
   2023         CT->TypeBits.CacheValidAndVisibility;
   2024       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
   2025       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
   2026       return;
   2027     }
   2028 
   2029     // Compute the cached properties and then set the cache.
   2030     CachedProperties Result = computeCachedProperties(T);
   2031     T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
   2032     assert(T->TypeBits.isCacheValid() &&
   2033            T->TypeBits.getVisibility() == Result.getVisibility());
   2034     T->TypeBits.CachedLinkage = Result.getLinkage();
   2035     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
   2036   }
   2037 };
   2038 }
   2039 
   2040 // Instantiate the friend template at a private class.  In a
   2041 // reasonable implementation, these symbols will be internal.
   2042 // It is terrible that this is the best way to accomplish this.
   2043 namespace { class Private {}; }
   2044 typedef TypePropertyCache<Private> Cache;
   2045 
   2046 static CachedProperties computeCachedProperties(const Type *T) {
   2047   switch (T->getTypeClass()) {
   2048 #define TYPE(Class,Base)
   2049 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
   2050 #include "clang/AST/TypeNodes.def"
   2051     llvm_unreachable("didn't expect a non-canonical type here");
   2052 
   2053 #define TYPE(Class,Base)
   2054 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
   2055 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
   2056 #include "clang/AST/TypeNodes.def"
   2057     // Treat instantiation-dependent types as external.
   2058     assert(T->isInstantiationDependentType());
   2059     return CachedProperties(ExternalLinkage, DefaultVisibility, false);
   2060 
   2061   case Type::Builtin:
   2062     // C++ [basic.link]p8:
   2063     //   A type is said to have linkage if and only if:
   2064     //     - it is a fundamental type (3.9.1); or
   2065     return CachedProperties(ExternalLinkage, DefaultVisibility, false);
   2066 
   2067   case Type::Record:
   2068   case Type::Enum: {
   2069     const TagDecl *Tag = cast<TagType>(T)->getDecl();
   2070 
   2071     // C++ [basic.link]p8:
   2072     //     - it is a class or enumeration type that is named (or has a name
   2073     //       for linkage purposes (7.1.3)) and the name has linkage; or
   2074     //     -  it is a specialization of a class template (14); or
   2075     NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
   2076     bool IsLocalOrUnnamed =
   2077       Tag->getDeclContext()->isFunctionOrMethod() ||
   2078       (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
   2079     return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
   2080   }
   2081 
   2082     // C++ [basic.link]p8:
   2083     //   - it is a compound type (3.9.2) other than a class or enumeration,
   2084     //     compounded exclusively from types that have linkage; or
   2085   case Type::Complex:
   2086     return Cache::get(cast<ComplexType>(T)->getElementType());
   2087   case Type::Pointer:
   2088     return Cache::get(cast<PointerType>(T)->getPointeeType());
   2089   case Type::BlockPointer:
   2090     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
   2091   case Type::LValueReference:
   2092   case Type::RValueReference:
   2093     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
   2094   case Type::MemberPointer: {
   2095     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   2096     return merge(Cache::get(MPT->getClass()),
   2097                  Cache::get(MPT->getPointeeType()));
   2098   }
   2099   case Type::ConstantArray:
   2100   case Type::IncompleteArray:
   2101   case Type::VariableArray:
   2102     return Cache::get(cast<ArrayType>(T)->getElementType());
   2103   case Type::Vector:
   2104   case Type::ExtVector:
   2105     return Cache::get(cast<VectorType>(T)->getElementType());
   2106   case Type::FunctionNoProto:
   2107     return Cache::get(cast<FunctionType>(T)->getResultType());
   2108   case Type::FunctionProto: {
   2109     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   2110     CachedProperties result = Cache::get(FPT->getResultType());
   2111     for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
   2112            ae = FPT->arg_type_end(); ai != ae; ++ai)
   2113       result = merge(result, Cache::get(*ai));
   2114     return result;
   2115   }
   2116   case Type::ObjCInterface: {
   2117     NamedDecl::LinkageInfo LV =
   2118       cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
   2119     return CachedProperties(LV.linkage(), LV.visibility(), false);
   2120   }
   2121   case Type::ObjCObject:
   2122     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
   2123   case Type::ObjCObjectPointer:
   2124     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
   2125   case Type::Atomic:
   2126     return Cache::get(cast<AtomicType>(T)->getValueType());
   2127   }
   2128 
   2129   llvm_unreachable("unhandled type class");
   2130 
   2131   // C++ [basic.link]p8:
   2132   //   Names not covered by these rules have no linkage.
   2133   return CachedProperties(NoLinkage, DefaultVisibility, false);
   2134 }
   2135 
   2136 /// \brief Determine the linkage of this type.
   2137 Linkage Type::getLinkage() const {
   2138   Cache::ensure(this);
   2139   return TypeBits.getLinkage();
   2140 }
   2141 
   2142 /// \brief Determine the linkage of this type.
   2143 Visibility Type::getVisibility() const {
   2144   Cache::ensure(this);
   2145   return TypeBits.getVisibility();
   2146 }
   2147 
   2148 bool Type::hasUnnamedOrLocalType() const {
   2149   Cache::ensure(this);
   2150   return TypeBits.hasLocalOrUnnamedType();
   2151 }
   2152 
   2153 std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
   2154   Cache::ensure(this);
   2155   return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
   2156 }
   2157 
   2158 void Type::ClearLinkageCache() {
   2159   TypeBits.CacheValidAndVisibility = 0;
   2160   if (QualType(this, 0) != CanonicalType)
   2161     CanonicalType->TypeBits.CacheValidAndVisibility = 0;
   2162 }
   2163 
   2164 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
   2165   if (isObjCARCImplicitlyUnretainedType())
   2166     return Qualifiers::OCL_ExplicitNone;
   2167   return Qualifiers::OCL_Strong;
   2168 }
   2169 
   2170 bool Type::isObjCARCImplicitlyUnretainedType() const {
   2171   assert(isObjCLifetimeType() &&
   2172          "cannot query implicit lifetime for non-inferrable type");
   2173 
   2174   const Type *canon = getCanonicalTypeInternal().getTypePtr();
   2175 
   2176   // Walk down to the base type.  We don't care about qualifiers for this.
   2177   while (const ArrayType *array = dyn_cast<ArrayType>(canon))
   2178     canon = array->getElementType().getTypePtr();
   2179 
   2180   if (const ObjCObjectPointerType *opt
   2181         = dyn_cast<ObjCObjectPointerType>(canon)) {
   2182     // Class and Class<Protocol> don't require retension.
   2183     if (opt->getObjectType()->isObjCClass())
   2184       return true;
   2185   }
   2186 
   2187   return false;
   2188 }
   2189 
   2190 bool Type::isObjCNSObjectType() const {
   2191   if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
   2192     return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
   2193   return false;
   2194 }
   2195 bool Type::isObjCRetainableType() const {
   2196   return isObjCObjectPointerType() ||
   2197          isBlockPointerType() ||
   2198          isObjCNSObjectType();
   2199 }
   2200 bool Type::isObjCIndirectLifetimeType() const {
   2201   if (isObjCLifetimeType())
   2202     return true;
   2203   if (const PointerType *OPT = getAs<PointerType>())
   2204     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
   2205   if (const ReferenceType *Ref = getAs<ReferenceType>())
   2206     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
   2207   if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
   2208     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
   2209   return false;
   2210 }
   2211 
   2212 /// Returns true if objects of this type have lifetime semantics under
   2213 /// ARC.
   2214 bool Type::isObjCLifetimeType() const {
   2215   const Type *type = this;
   2216   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
   2217     type = array->getElementType().getTypePtr();
   2218   return type->isObjCRetainableType();
   2219 }
   2220 
   2221 /// \brief Determine whether the given type T is a "bridgable" Objective-C type,
   2222 /// which is either an Objective-C object pointer type or an
   2223 bool Type::isObjCARCBridgableType() const {
   2224   return isObjCObjectPointerType() || isBlockPointerType();
   2225 }
   2226 
   2227 /// \brief Determine whether the given type T is a "bridgeable" C type.
   2228 bool Type::isCARCBridgableType() const {
   2229   const PointerType *Pointer = getAs<PointerType>();
   2230   if (!Pointer)
   2231     return false;
   2232 
   2233   QualType Pointee = Pointer->getPointeeType();
   2234   return Pointee->isVoidType() || Pointee->isRecordType();
   2235 }
   2236 
   2237 bool Type::hasSizedVLAType() const {
   2238   if (!isVariablyModifiedType()) return false;
   2239 
   2240   if (const PointerType *ptr = getAs<PointerType>())
   2241     return ptr->getPointeeType()->hasSizedVLAType();
   2242   if (const ReferenceType *ref = getAs<ReferenceType>())
   2243     return ref->getPointeeType()->hasSizedVLAType();
   2244   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
   2245     if (isa<VariableArrayType>(arr) &&
   2246         cast<VariableArrayType>(arr)->getSizeExpr())
   2247       return true;
   2248 
   2249     return arr->getElementType()->hasSizedVLAType();
   2250   }
   2251 
   2252   return false;
   2253 }
   2254 
   2255 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
   2256   switch (type.getObjCLifetime()) {
   2257   case Qualifiers::OCL_None:
   2258   case Qualifiers::OCL_ExplicitNone:
   2259   case Qualifiers::OCL_Autoreleasing:
   2260     break;
   2261 
   2262   case Qualifiers::OCL_Strong:
   2263     return DK_objc_strong_lifetime;
   2264   case Qualifiers::OCL_Weak:
   2265     return DK_objc_weak_lifetime;
   2266   }
   2267 
   2268   /// Currently, the only destruction kind we recognize is C++ objects
   2269   /// with non-trivial destructors.
   2270   const CXXRecordDecl *record =
   2271     type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   2272   if (record && record->hasDefinition() && !record->hasTrivialDestructor())
   2273     return DK_cxx_destructor;
   2274 
   2275   return DK_none;
   2276 }
   2277 
   2278 bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
   2279   switch (getObjCLifetime()) {
   2280   case Qualifiers::OCL_None:
   2281     break;
   2282 
   2283   case Qualifiers::OCL_ExplicitNone:
   2284     return true;
   2285 
   2286   case Qualifiers::OCL_Autoreleasing:
   2287   case Qualifiers::OCL_Strong:
   2288   case Qualifiers::OCL_Weak:
   2289     return !Context.getLangOptions().ObjCAutoRefCount;
   2290   }
   2291 
   2292   if (const CXXRecordDecl *Record
   2293             = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
   2294     return Copying ? Record->hasTrivialCopyAssignment() :
   2295                      Record->hasTrivialMoveAssignment();
   2296 
   2297   return true;
   2298 }
   2299