Home | History | Annotate | Download | only in MC
      1 //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the structures used for instruction
     11 // itineraries, stages, and operand reads/writes.  This is used by
     12 // schedulers to determine instruction stages and latencies.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_MC_MCINSTRITINERARIES_H
     17 #define LLVM_MC_MCINSTRITINERARIES_H
     18 
     19 #include <algorithm>
     20 
     21 namespace llvm {
     22 
     23 //===----------------------------------------------------------------------===//
     24 /// Instruction stage - These values represent a non-pipelined step in
     25 /// the execution of an instruction.  Cycles represents the number of
     26 /// discrete time slots needed to complete the stage.  Units represent
     27 /// the choice of functional units that can be used to complete the
     28 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
     29 /// cycles should elapse from the start of this stage to the start of
     30 /// the next stage in the itinerary. A value of -1 indicates that the
     31 /// next stage should start immediately after the current one.
     32 /// For example:
     33 ///
     34 ///   { 1, x, -1 }
     35 ///      indicates that the stage occupies FU x for 1 cycle and that
     36 ///      the next stage starts immediately after this one.
     37 ///
     38 ///   { 2, x|y, 1 }
     39 ///      indicates that the stage occupies either FU x or FU y for 2
     40 ///      consecuative cycles and that the next stage starts one cycle
     41 ///      after this stage starts. That is, the stage requirements
     42 ///      overlap in time.
     43 ///
     44 ///   { 1, x, 0 }
     45 ///      indicates that the stage occupies FU x for 1 cycle and that
     46 ///      the next stage starts in this same cycle. This can be used to
     47 ///      indicate that the instruction requires multiple stages at the
     48 ///      same time.
     49 ///
     50 /// FU reservation can be of two different kinds:
     51 ///  - FUs which instruction actually requires
     52 ///  - FUs which instruction just reserves. Reserved unit is not available for
     53 ///    execution of other instruction. However, several instructions can reserve
     54 ///    the same unit several times.
     55 /// Such two types of units reservation is used to model instruction domain
     56 /// change stalls, FUs using the same resource (e.g. same register file), etc.
     57 
     58 struct InstrStage {
     59   enum ReservationKinds {
     60     Required = 0,
     61     Reserved = 1
     62   };
     63 
     64   unsigned Cycles_;  ///< Length of stage in machine cycles
     65   unsigned Units_;   ///< Choice of functional units
     66   int NextCycles_;   ///< Number of machine cycles to next stage
     67   ReservationKinds Kind_; ///< Kind of the FU reservation
     68 
     69   /// getCycles - returns the number of cycles the stage is occupied
     70   unsigned getCycles() const {
     71     return Cycles_;
     72   }
     73 
     74   /// getUnits - returns the choice of FUs
     75   unsigned getUnits() const {
     76     return Units_;
     77   }
     78 
     79   ReservationKinds getReservationKind() const {
     80     return Kind_;
     81   }
     82 
     83   /// getNextCycles - returns the number of cycles from the start of
     84   /// this stage to the start of the next stage in the itinerary
     85   unsigned getNextCycles() const {
     86     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
     87   }
     88 };
     89 
     90 
     91 //===----------------------------------------------------------------------===//
     92 /// Instruction itinerary - An itinerary represents the scheduling
     93 /// information for an instruction. This includes a set of stages
     94 /// occupies by the instruction, and the pipeline cycle in which
     95 /// operands are read and written.
     96 ///
     97 struct InstrItinerary {
     98   unsigned NumMicroOps;        ///< # of micro-ops, 0 means it's variable
     99   unsigned FirstStage;         ///< Index of first stage in itinerary
    100   unsigned LastStage;          ///< Index of last + 1 stage in itinerary
    101   unsigned FirstOperandCycle;  ///< Index of first operand rd/wr
    102   unsigned LastOperandCycle;   ///< Index of last + 1 operand rd/wr
    103 };
    104 
    105 
    106 //===----------------------------------------------------------------------===//
    107 /// Instruction itinerary Data - Itinerary data supplied by a subtarget to be
    108 /// used by a target.
    109 ///
    110 class InstrItineraryData {
    111 public:
    112   const InstrStage     *Stages;         ///< Array of stages selected
    113   const unsigned       *OperandCycles;  ///< Array of operand cycles selected
    114   const unsigned       *Forwardings;    ///< Array of pipeline forwarding pathes
    115   const InstrItinerary *Itineraries;    ///< Array of itineraries selected
    116   unsigned              IssueWidth;     ///< Max issue per cycle. 0=Unknown.
    117 
    118   /// Ctors.
    119   ///
    120   InstrItineraryData() : Stages(0), OperandCycles(0), Forwardings(0),
    121                          Itineraries(0), IssueWidth(0) {}
    122 
    123   InstrItineraryData(const InstrStage *S, const unsigned *OS,
    124                      const unsigned *F, const InstrItinerary *I)
    125     : Stages(S), OperandCycles(OS), Forwardings(F), Itineraries(I),
    126       IssueWidth(0) {}
    127 
    128   /// isEmpty - Returns true if there are no itineraries.
    129   ///
    130   bool isEmpty() const { return Itineraries == 0; }
    131 
    132   /// isEndMarker - Returns true if the index is for the end marker
    133   /// itinerary.
    134   ///
    135   bool isEndMarker(unsigned ItinClassIndx) const {
    136     return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
    137             (Itineraries[ItinClassIndx].LastStage == ~0U));
    138   }
    139 
    140   /// beginStage - Return the first stage of the itinerary.
    141   ///
    142   const InstrStage *beginStage(unsigned ItinClassIndx) const {
    143     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
    144     return Stages + StageIdx;
    145   }
    146 
    147   /// endStage - Return the last+1 stage of the itinerary.
    148   ///
    149   const InstrStage *endStage(unsigned ItinClassIndx) const {
    150     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
    151     return Stages + StageIdx;
    152   }
    153 
    154   /// getStageLatency - Return the total stage latency of the given
    155   /// class.  The latency is the maximum completion time for any stage
    156   /// in the itinerary.
    157   ///
    158   unsigned getStageLatency(unsigned ItinClassIndx) const {
    159     // If the target doesn't provide itinerary information, use a simple
    160     // non-zero default value for all instructions.  Some target's provide a
    161     // dummy (Generic) itinerary which should be handled as if it's itinerary is
    162     // empty. We identify this by looking for a reference to stage zero (invalid
    163     // stage). This is different from beginStage == endState != 0, which could
    164     // be used for zero-latency pseudo ops.
    165     if (isEmpty() || Itineraries[ItinClassIndx].FirstStage == 0)
    166       return 1;
    167 
    168     // Calculate the maximum completion time for any stage.
    169     unsigned Latency = 0, StartCycle = 0;
    170     for (const InstrStage *IS = beginStage(ItinClassIndx),
    171            *E = endStage(ItinClassIndx); IS != E; ++IS) {
    172       Latency = std::max(Latency, StartCycle + IS->getCycles());
    173       StartCycle += IS->getNextCycles();
    174     }
    175 
    176     return Latency;
    177   }
    178 
    179   /// getOperandCycle - Return the cycle for the given class and
    180   /// operand. Return -1 if no cycle is specified for the operand.
    181   ///
    182   int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
    183     if (isEmpty())
    184       return -1;
    185 
    186     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
    187     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
    188     if ((FirstIdx + OperandIdx) >= LastIdx)
    189       return -1;
    190 
    191     return (int)OperandCycles[FirstIdx + OperandIdx];
    192   }
    193 
    194   /// hasPipelineForwarding - Return true if there is a pipeline forwarding
    195   /// between instructions of itinerary classes DefClass and UseClasses so that
    196   /// value produced by an instruction of itinerary class DefClass, operand
    197   /// index DefIdx can be bypassed when it's read by an instruction of
    198   /// itinerary class UseClass, operand index UseIdx.
    199   bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
    200                              unsigned UseClass, unsigned UseIdx) const {
    201     unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
    202     unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
    203     if ((FirstDefIdx + DefIdx) >= LastDefIdx)
    204       return false;
    205     if (Forwardings[FirstDefIdx + DefIdx] == 0)
    206       return false;
    207 
    208     unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
    209     unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
    210     if ((FirstUseIdx + UseIdx) >= LastUseIdx)
    211       return false;
    212 
    213     return Forwardings[FirstDefIdx + DefIdx] ==
    214       Forwardings[FirstUseIdx + UseIdx];
    215   }
    216 
    217   /// getOperandLatency - Compute and return the use operand latency of a given
    218   /// itinerary class and operand index if the value is produced by an
    219   /// instruction of the specified itinerary class and def operand index.
    220   int getOperandLatency(unsigned DefClass, unsigned DefIdx,
    221                         unsigned UseClass, unsigned UseIdx) const {
    222     if (isEmpty())
    223       return -1;
    224 
    225     int DefCycle = getOperandCycle(DefClass, DefIdx);
    226     if (DefCycle == -1)
    227       return -1;
    228 
    229     int UseCycle = getOperandCycle(UseClass, UseIdx);
    230     if (UseCycle == -1)
    231       return -1;
    232 
    233     UseCycle = DefCycle - UseCycle + 1;
    234     if (UseCycle > 0 &&
    235         hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
    236       // FIXME: This assumes one cycle benefit for every pipeline forwarding.
    237       --UseCycle;
    238     return UseCycle;
    239   }
    240 
    241   /// isMicroCoded - Return true if the instructions in the given class decode
    242   /// to more than one micro-ops.
    243   bool isMicroCoded(unsigned ItinClassIndx) const {
    244     if (isEmpty())
    245       return false;
    246     return Itineraries[ItinClassIndx].NumMicroOps != 1;
    247   }
    248 };
    249 
    250 
    251 } // End llvm namespace
    252 
    253 #endif
    254