Home | History | Annotate | Download | only in Scalar
      1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements sparse conditional constant propagation and merging:
     11 //
     12 // Specifically, this:
     13 //   * Assumes values are constant unless proven otherwise
     14 //   * Assumes BasicBlocks are dead unless proven otherwise
     15 //   * Proves values to be constant, and replaces them with constants
     16 //   * Proves conditional branches to be unconditional
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #define DEBUG_TYPE "sccp"
     21 #include "llvm/Transforms/Scalar.h"
     22 #include "llvm/Transforms/IPO.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Pass.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/Transforms/Utils/Local.h"
     30 #include "llvm/Target/TargetData.h"
     31 #include "llvm/Support/CallSite.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/InstVisitor.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/ADT/DenseMap.h"
     37 #include "llvm/ADT/DenseSet.h"
     38 #include "llvm/ADT/PointerIntPair.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/SmallVector.h"
     41 #include "llvm/ADT/Statistic.h"
     42 #include "llvm/ADT/STLExtras.h"
     43 #include <algorithm>
     44 #include <map>
     45 using namespace llvm;
     46 
     47 STATISTIC(NumInstRemoved, "Number of instructions removed");
     48 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
     49 
     50 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
     51 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
     52 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
     53 
     54 namespace {
     55 /// LatticeVal class - This class represents the different lattice values that
     56 /// an LLVM value may occupy.  It is a simple class with value semantics.
     57 ///
     58 class LatticeVal {
     59   enum LatticeValueTy {
     60     /// undefined - This LLVM Value has no known value yet.
     61     undefined,
     62 
     63     /// constant - This LLVM Value has a specific constant value.
     64     constant,
     65 
     66     /// forcedconstant - This LLVM Value was thought to be undef until
     67     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
     68     /// with another (different) constant, it goes to overdefined, instead of
     69     /// asserting.
     70     forcedconstant,
     71 
     72     /// overdefined - This instruction is not known to be constant, and we know
     73     /// it has a value.
     74     overdefined
     75   };
     76 
     77   /// Val: This stores the current lattice value along with the Constant* for
     78   /// the constant if this is a 'constant' or 'forcedconstant' value.
     79   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
     80 
     81   LatticeValueTy getLatticeValue() const {
     82     return Val.getInt();
     83   }
     84 
     85 public:
     86   LatticeVal() : Val(0, undefined) {}
     87 
     88   bool isUndefined() const { return getLatticeValue() == undefined; }
     89   bool isConstant() const {
     90     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
     91   }
     92   bool isOverdefined() const { return getLatticeValue() == overdefined; }
     93 
     94   Constant *getConstant() const {
     95     assert(isConstant() && "Cannot get the constant of a non-constant!");
     96     return Val.getPointer();
     97   }
     98 
     99   /// markOverdefined - Return true if this is a change in status.
    100   bool markOverdefined() {
    101     if (isOverdefined())
    102       return false;
    103 
    104     Val.setInt(overdefined);
    105     return true;
    106   }
    107 
    108   /// markConstant - Return true if this is a change in status.
    109   bool markConstant(Constant *V) {
    110     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
    111       assert(getConstant() == V && "Marking constant with different value");
    112       return false;
    113     }
    114 
    115     if (isUndefined()) {
    116       Val.setInt(constant);
    117       assert(V && "Marking constant with NULL");
    118       Val.setPointer(V);
    119     } else {
    120       assert(getLatticeValue() == forcedconstant &&
    121              "Cannot move from overdefined to constant!");
    122       // Stay at forcedconstant if the constant is the same.
    123       if (V == getConstant()) return false;
    124 
    125       // Otherwise, we go to overdefined.  Assumptions made based on the
    126       // forced value are possibly wrong.  Assuming this is another constant
    127       // could expose a contradiction.
    128       Val.setInt(overdefined);
    129     }
    130     return true;
    131   }
    132 
    133   /// getConstantInt - If this is a constant with a ConstantInt value, return it
    134   /// otherwise return null.
    135   ConstantInt *getConstantInt() const {
    136     if (isConstant())
    137       return dyn_cast<ConstantInt>(getConstant());
    138     return 0;
    139   }
    140 
    141   void markForcedConstant(Constant *V) {
    142     assert(isUndefined() && "Can't force a defined value!");
    143     Val.setInt(forcedconstant);
    144     Val.setPointer(V);
    145   }
    146 };
    147 } // end anonymous namespace.
    148 
    149 
    150 namespace {
    151 
    152 //===----------------------------------------------------------------------===//
    153 //
    154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
    155 /// Constant Propagation.
    156 ///
    157 class SCCPSolver : public InstVisitor<SCCPSolver> {
    158   const TargetData *TD;
    159   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
    160   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in.
    161 
    162   /// StructValueState - This maintains ValueState for values that have
    163   /// StructType, for example for formal arguments, calls, insertelement, etc.
    164   ///
    165   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
    166 
    167   /// GlobalValue - If we are tracking any values for the contents of a global
    168   /// variable, we keep a mapping from the constant accessor to the element of
    169   /// the global, to the currently known value.  If the value becomes
    170   /// overdefined, it's entry is simply removed from this map.
    171   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
    172 
    173   /// TrackedRetVals - If we are tracking arguments into and the return
    174   /// value out of a function, it will have an entry in this map, indicating
    175   /// what the known return value for the function is.
    176   DenseMap<Function*, LatticeVal> TrackedRetVals;
    177 
    178   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
    179   /// that return multiple values.
    180   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
    181 
    182   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
    183   /// represented here for efficient lookup.
    184   SmallPtrSet<Function*, 16> MRVFunctionsTracked;
    185 
    186   /// TrackingIncomingArguments - This is the set of functions for whose
    187   /// arguments we make optimistic assumptions about and try to prove as
    188   /// constants.
    189   SmallPtrSet<Function*, 16> TrackingIncomingArguments;
    190 
    191   /// The reason for two worklists is that overdefined is the lowest state
    192   /// on the lattice, and moving things to overdefined as fast as possible
    193   /// makes SCCP converge much faster.
    194   ///
    195   /// By having a separate worklist, we accomplish this because everything
    196   /// possibly overdefined will become overdefined at the soonest possible
    197   /// point.
    198   SmallVector<Value*, 64> OverdefinedInstWorkList;
    199   SmallVector<Value*, 64> InstWorkList;
    200 
    201 
    202   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list
    203 
    204   /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
    205   /// overdefined, despite the fact that the PHI node is overdefined.
    206   std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
    207 
    208   /// KnownFeasibleEdges - Entries in this set are edges which have already had
    209   /// PHI nodes retriggered.
    210   typedef std::pair<BasicBlock*, BasicBlock*> Edge;
    211   DenseSet<Edge> KnownFeasibleEdges;
    212 public:
    213   SCCPSolver(const TargetData *td) : TD(td) {}
    214 
    215   /// MarkBlockExecutable - This method can be used by clients to mark all of
    216   /// the blocks that are known to be intrinsically live in the processed unit.
    217   ///
    218   /// This returns true if the block was not considered live before.
    219   bool MarkBlockExecutable(BasicBlock *BB) {
    220     if (!BBExecutable.insert(BB)) return false;
    221     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
    222     BBWorkList.push_back(BB);  // Add the block to the work list!
    223     return true;
    224   }
    225 
    226   /// TrackValueOfGlobalVariable - Clients can use this method to
    227   /// inform the SCCPSolver that it should track loads and stores to the
    228   /// specified global variable if it can.  This is only legal to call if
    229   /// performing Interprocedural SCCP.
    230   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
    231     // We only track the contents of scalar globals.
    232     if (GV->getType()->getElementType()->isSingleValueType()) {
    233       LatticeVal &IV = TrackedGlobals[GV];
    234       if (!isa<UndefValue>(GV->getInitializer()))
    235         IV.markConstant(GV->getInitializer());
    236     }
    237   }
    238 
    239   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
    240   /// and out of the specified function (which cannot have its address taken),
    241   /// this method must be called.
    242   void AddTrackedFunction(Function *F) {
    243     // Add an entry, F -> undef.
    244     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
    245       MRVFunctionsTracked.insert(F);
    246       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    247         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
    248                                                      LatticeVal()));
    249     } else
    250       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
    251   }
    252 
    253   void AddArgumentTrackedFunction(Function *F) {
    254     TrackingIncomingArguments.insert(F);
    255   }
    256 
    257   /// Solve - Solve for constants and executable blocks.
    258   ///
    259   void Solve();
    260 
    261   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
    262   /// that branches on undef values cannot reach any of their successors.
    263   /// However, this is not a safe assumption.  After we solve dataflow, this
    264   /// method should be use to handle this.  If this returns true, the solver
    265   /// should be rerun.
    266   bool ResolvedUndefsIn(Function &F);
    267 
    268   bool isBlockExecutable(BasicBlock *BB) const {
    269     return BBExecutable.count(BB);
    270   }
    271 
    272   LatticeVal getLatticeValueFor(Value *V) const {
    273     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
    274     assert(I != ValueState.end() && "V is not in valuemap!");
    275     return I->second;
    276   }
    277 
    278   /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
    279     DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
    280       StructValueState.find(std::make_pair(V, i));
    281     assert(I != StructValueState.end() && "V is not in valuemap!");
    282     return I->second;
    283   }*/
    284 
    285   /// getTrackedRetVals - Get the inferred return value map.
    286   ///
    287   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
    288     return TrackedRetVals;
    289   }
    290 
    291   /// getTrackedGlobals - Get and return the set of inferred initializers for
    292   /// global variables.
    293   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
    294     return TrackedGlobals;
    295   }
    296 
    297   void markOverdefined(Value *V) {
    298     assert(!V->getType()->isStructTy() && "Should use other method");
    299     markOverdefined(ValueState[V], V);
    300   }
    301 
    302   /// markAnythingOverdefined - Mark the specified value overdefined.  This
    303   /// works with both scalars and structs.
    304   void markAnythingOverdefined(Value *V) {
    305     if (StructType *STy = dyn_cast<StructType>(V->getType()))
    306       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    307         markOverdefined(getStructValueState(V, i), V);
    308     else
    309       markOverdefined(V);
    310   }
    311 
    312 private:
    313   // markConstant - Make a value be marked as "constant".  If the value
    314   // is not already a constant, add it to the instruction work list so that
    315   // the users of the instruction are updated later.
    316   //
    317   void markConstant(LatticeVal &IV, Value *V, Constant *C) {
    318     if (!IV.markConstant(C)) return;
    319     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
    320     if (IV.isOverdefined())
    321       OverdefinedInstWorkList.push_back(V);
    322     else
    323       InstWorkList.push_back(V);
    324   }
    325 
    326   void markConstant(Value *V, Constant *C) {
    327     assert(!V->getType()->isStructTy() && "Should use other method");
    328     markConstant(ValueState[V], V, C);
    329   }
    330 
    331   void markForcedConstant(Value *V, Constant *C) {
    332     assert(!V->getType()->isStructTy() && "Should use other method");
    333     LatticeVal &IV = ValueState[V];
    334     IV.markForcedConstant(C);
    335     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
    336     if (IV.isOverdefined())
    337       OverdefinedInstWorkList.push_back(V);
    338     else
    339       InstWorkList.push_back(V);
    340   }
    341 
    342 
    343   // markOverdefined - Make a value be marked as "overdefined". If the
    344   // value is not already overdefined, add it to the overdefined instruction
    345   // work list so that the users of the instruction are updated later.
    346   void markOverdefined(LatticeVal &IV, Value *V) {
    347     if (!IV.markOverdefined()) return;
    348 
    349     DEBUG(dbgs() << "markOverdefined: ";
    350           if (Function *F = dyn_cast<Function>(V))
    351             dbgs() << "Function '" << F->getName() << "'\n";
    352           else
    353             dbgs() << *V << '\n');
    354     // Only instructions go on the work list
    355     OverdefinedInstWorkList.push_back(V);
    356   }
    357 
    358   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
    359     if (IV.isOverdefined() || MergeWithV.isUndefined())
    360       return;  // Noop.
    361     if (MergeWithV.isOverdefined())
    362       markOverdefined(IV, V);
    363     else if (IV.isUndefined())
    364       markConstant(IV, V, MergeWithV.getConstant());
    365     else if (IV.getConstant() != MergeWithV.getConstant())
    366       markOverdefined(IV, V);
    367   }
    368 
    369   void mergeInValue(Value *V, LatticeVal MergeWithV) {
    370     assert(!V->getType()->isStructTy() && "Should use other method");
    371     mergeInValue(ValueState[V], V, MergeWithV);
    372   }
    373 
    374 
    375   /// getValueState - Return the LatticeVal object that corresponds to the
    376   /// value.  This function handles the case when the value hasn't been seen yet
    377   /// by properly seeding constants etc.
    378   LatticeVal &getValueState(Value *V) {
    379     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
    380 
    381     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
    382       ValueState.insert(std::make_pair(V, LatticeVal()));
    383     LatticeVal &LV = I.first->second;
    384 
    385     if (!I.second)
    386       return LV;  // Common case, already in the map.
    387 
    388     if (Constant *C = dyn_cast<Constant>(V)) {
    389       // Undef values remain undefined.
    390       if (!isa<UndefValue>(V))
    391         LV.markConstant(C);          // Constants are constant
    392     }
    393 
    394     // All others are underdefined by default.
    395     return LV;
    396   }
    397 
    398   /// getStructValueState - Return the LatticeVal object that corresponds to the
    399   /// value/field pair.  This function handles the case when the value hasn't
    400   /// been seen yet by properly seeding constants etc.
    401   LatticeVal &getStructValueState(Value *V, unsigned i) {
    402     assert(V->getType()->isStructTy() && "Should use getValueState");
    403     assert(i < cast<StructType>(V->getType())->getNumElements() &&
    404            "Invalid element #");
    405 
    406     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
    407               bool> I = StructValueState.insert(
    408                         std::make_pair(std::make_pair(V, i), LatticeVal()));
    409     LatticeVal &LV = I.first->second;
    410 
    411     if (!I.second)
    412       return LV;  // Common case, already in the map.
    413 
    414     if (Constant *C = dyn_cast<Constant>(V)) {
    415       if (isa<UndefValue>(C))
    416         ; // Undef values remain undefined.
    417       else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C))
    418         LV.markConstant(CS->getOperand(i));      // Constants are constant.
    419       else if (isa<ConstantAggregateZero>(C)) {
    420         Type *FieldTy = cast<StructType>(V->getType())->getElementType(i);
    421         LV.markConstant(Constant::getNullValue(FieldTy));
    422       } else
    423         LV.markOverdefined();      // Unknown sort of constant.
    424     }
    425 
    426     // All others are underdefined by default.
    427     return LV;
    428   }
    429 
    430 
    431   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
    432   /// work list if it is not already executable.
    433   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
    434     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    435       return;  // This edge is already known to be executable!
    436 
    437     if (!MarkBlockExecutable(Dest)) {
    438       // If the destination is already executable, we just made an *edge*
    439       // feasible that wasn't before.  Revisit the PHI nodes in the block
    440       // because they have potentially new operands.
    441       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
    442             << " -> " << Dest->getName() << "\n");
    443 
    444       PHINode *PN;
    445       for (BasicBlock::iterator I = Dest->begin();
    446            (PN = dyn_cast<PHINode>(I)); ++I)
    447         visitPHINode(*PN);
    448     }
    449   }
    450 
    451   // getFeasibleSuccessors - Return a vector of booleans to indicate which
    452   // successors are reachable from a given terminator instruction.
    453   //
    454   void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
    455 
    456   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    457   // block to the 'To' basic block is currently feasible.
    458   //
    459   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
    460 
    461   // OperandChangedState - This method is invoked on all of the users of an
    462   // instruction that was just changed state somehow.  Based on this
    463   // information, we need to update the specified user of this instruction.
    464   //
    465   void OperandChangedState(Instruction *I) {
    466     if (BBExecutable.count(I->getParent()))   // Inst is executable?
    467       visit(*I);
    468   }
    469 
    470   /// RemoveFromOverdefinedPHIs - If I has any entries in the
    471   /// UsersOfOverdefinedPHIs map for PN, remove them now.
    472   void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) {
    473     if (UsersOfOverdefinedPHIs.empty()) return;
    474     typedef std::multimap<PHINode*, Instruction*>::iterator ItTy;
    475     std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN);
    476     for (ItTy It = Range.first, E = Range.second; It != E;) {
    477       if (It->second == I)
    478         UsersOfOverdefinedPHIs.erase(It++);
    479       else
    480         ++It;
    481     }
    482   }
    483 
    484   /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS
    485   /// map for I and PN, but if one is there already, do not create another.
    486   /// (Duplicate entries do not break anything directly, but can lead to
    487   /// exponential growth of the table in rare cases.)
    488   void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) {
    489     typedef std::multimap<PHINode*, Instruction*>::iterator ItTy;
    490     std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN);
    491     for (ItTy J = Range.first, E = Range.second; J != E; ++J)
    492       if (J->second == I)
    493         return;
    494     UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I));
    495   }
    496 
    497 private:
    498   friend class InstVisitor<SCCPSolver>;
    499 
    500   // visit implementations - Something changed in this instruction.  Either an
    501   // operand made a transition, or the instruction is newly executable.  Change
    502   // the value type of I to reflect these changes if appropriate.
    503   void visitPHINode(PHINode &I);
    504 
    505   // Terminators
    506   void visitReturnInst(ReturnInst &I);
    507   void visitTerminatorInst(TerminatorInst &TI);
    508 
    509   void visitCastInst(CastInst &I);
    510   void visitSelectInst(SelectInst &I);
    511   void visitBinaryOperator(Instruction &I);
    512   void visitCmpInst(CmpInst &I);
    513   void visitExtractElementInst(ExtractElementInst &I);
    514   void visitInsertElementInst(InsertElementInst &I);
    515   void visitShuffleVectorInst(ShuffleVectorInst &I);
    516   void visitExtractValueInst(ExtractValueInst &EVI);
    517   void visitInsertValueInst(InsertValueInst &IVI);
    518   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
    519 
    520   // Instructions that cannot be folded away.
    521   void visitStoreInst     (StoreInst &I);
    522   void visitLoadInst      (LoadInst &I);
    523   void visitGetElementPtrInst(GetElementPtrInst &I);
    524   void visitCallInst      (CallInst &I) {
    525     visitCallSite(&I);
    526   }
    527   void visitInvokeInst    (InvokeInst &II) {
    528     visitCallSite(&II);
    529     visitTerminatorInst(II);
    530   }
    531   void visitCallSite      (CallSite CS);
    532   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ }
    533   void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
    534   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
    535   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
    536   void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); }
    537   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
    538   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); }
    539   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); }
    540 
    541   void visitInstruction(Instruction &I) {
    542     // If a new instruction is added to LLVM that we don't handle.
    543     dbgs() << "SCCP: Don't know how to handle: " << I;
    544     markAnythingOverdefined(&I);   // Just in case
    545   }
    546 };
    547 
    548 } // end anonymous namespace
    549 
    550 
    551 // getFeasibleSuccessors - Return a vector of booleans to indicate which
    552 // successors are reachable from a given terminator instruction.
    553 //
    554 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
    555                                        SmallVector<bool, 16> &Succs) {
    556   Succs.resize(TI.getNumSuccessors());
    557   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    558     if (BI->isUnconditional()) {
    559       Succs[0] = true;
    560       return;
    561     }
    562 
    563     LatticeVal BCValue = getValueState(BI->getCondition());
    564     ConstantInt *CI = BCValue.getConstantInt();
    565     if (CI == 0) {
    566       // Overdefined condition variables, and branches on unfoldable constant
    567       // conditions, mean the branch could go either way.
    568       if (!BCValue.isUndefined())
    569         Succs[0] = Succs[1] = true;
    570       return;
    571     }
    572 
    573     // Constant condition variables mean the branch can only go a single way.
    574     Succs[CI->isZero()] = true;
    575     return;
    576   }
    577 
    578   if (isa<InvokeInst>(TI)) {
    579     // Invoke instructions successors are always executable.
    580     Succs[0] = Succs[1] = true;
    581     return;
    582   }
    583 
    584   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
    585     if (TI.getNumSuccessors() < 2) {
    586       Succs[0] = true;
    587       return;
    588     }
    589     LatticeVal SCValue = getValueState(SI->getCondition());
    590     ConstantInt *CI = SCValue.getConstantInt();
    591 
    592     if (CI == 0) {   // Overdefined or undefined condition?
    593       // All destinations are executable!
    594       if (!SCValue.isUndefined())
    595         Succs.assign(TI.getNumSuccessors(), true);
    596       return;
    597     }
    598 
    599     Succs[SI->findCaseValue(CI)] = true;
    600     return;
    601   }
    602 
    603   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    604   if (isa<IndirectBrInst>(&TI)) {
    605     // Just mark all destinations executable!
    606     Succs.assign(TI.getNumSuccessors(), true);
    607     return;
    608   }
    609 
    610 #ifndef NDEBUG
    611   dbgs() << "Unknown terminator instruction: " << TI << '\n';
    612 #endif
    613   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
    614 }
    615 
    616 
    617 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
    618 // block to the 'To' basic block is currently feasible.
    619 //
    620 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
    621   assert(BBExecutable.count(To) && "Dest should always be alive!");
    622 
    623   // Make sure the source basic block is executable!!
    624   if (!BBExecutable.count(From)) return false;
    625 
    626   // Check to make sure this edge itself is actually feasible now.
    627   TerminatorInst *TI = From->getTerminator();
    628   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    629     if (BI->isUnconditional())
    630       return true;
    631 
    632     LatticeVal BCValue = getValueState(BI->getCondition());
    633 
    634     // Overdefined condition variables mean the branch could go either way,
    635     // undef conditions mean that neither edge is feasible yet.
    636     ConstantInt *CI = BCValue.getConstantInt();
    637     if (CI == 0)
    638       return !BCValue.isUndefined();
    639 
    640     // Constant condition variables mean the branch can only go a single way.
    641     return BI->getSuccessor(CI->isZero()) == To;
    642   }
    643 
    644   // Invoke instructions successors are always executable.
    645   if (isa<InvokeInst>(TI))
    646     return true;
    647 
    648   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    649     if (SI->getNumSuccessors() < 2)
    650       return true;
    651 
    652     LatticeVal SCValue = getValueState(SI->getCondition());
    653     ConstantInt *CI = SCValue.getConstantInt();
    654 
    655     if (CI == 0)
    656       return !SCValue.isUndefined();
    657 
    658     // Make sure to skip the "default value" which isn't a value
    659     for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
    660       if (SI->getSuccessorValue(i) == CI) // Found the taken branch.
    661         return SI->getSuccessor(i) == To;
    662 
    663     // If the constant value is not equal to any of the branches, we must
    664     // execute default branch.
    665     return SI->getDefaultDest() == To;
    666   }
    667 
    668   // Just mark all destinations executable!
    669   // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
    670   if (isa<IndirectBrInst>(TI))
    671     return true;
    672 
    673 #ifndef NDEBUG
    674   dbgs() << "Unknown terminator instruction: " << *TI << '\n';
    675 #endif
    676   llvm_unreachable(0);
    677 }
    678 
    679 // visit Implementations - Something changed in this instruction, either an
    680 // operand made a transition, or the instruction is newly executable.  Change
    681 // the value type of I to reflect these changes if appropriate.  This method
    682 // makes sure to do the following actions:
    683 //
    684 // 1. If a phi node merges two constants in, and has conflicting value coming
    685 //    from different branches, or if the PHI node merges in an overdefined
    686 //    value, then the PHI node becomes overdefined.
    687 // 2. If a phi node merges only constants in, and they all agree on value, the
    688 //    PHI node becomes a constant value equal to that.
    689 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
    690 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
    691 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
    692 // 6. If a conditional branch has a value that is constant, make the selected
    693 //    destination executable
    694 // 7. If a conditional branch has a value that is overdefined, make all
    695 //    successors executable.
    696 //
    697 void SCCPSolver::visitPHINode(PHINode &PN) {
    698   // If this PN returns a struct, just mark the result overdefined.
    699   // TODO: We could do a lot better than this if code actually uses this.
    700   if (PN.getType()->isStructTy())
    701     return markAnythingOverdefined(&PN);
    702 
    703   if (getValueState(&PN).isOverdefined()) {
    704     // There may be instructions using this PHI node that are not overdefined
    705     // themselves.  If so, make sure that they know that the PHI node operand
    706     // changed.
    707     typedef std::multimap<PHINode*, Instruction*>::iterator ItTy;
    708     std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(&PN);
    709 
    710     if (Range.first == Range.second)
    711       return;
    712 
    713     SmallVector<Instruction*, 16> Users;
    714     for (ItTy I = Range.first, E = Range.second; I != E; ++I)
    715       Users.push_back(I->second);
    716     while (!Users.empty())
    717       visit(Users.pop_back_val());
    718     return;  // Quick exit
    719   }
    720 
    721   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
    722   // and slow us down a lot.  Just mark them overdefined.
    723   if (PN.getNumIncomingValues() > 64)
    724     return markOverdefined(&PN);
    725 
    726   // Look at all of the executable operands of the PHI node.  If any of them
    727   // are overdefined, the PHI becomes overdefined as well.  If they are all
    728   // constant, and they agree with each other, the PHI becomes the identical
    729   // constant.  If they are constant and don't agree, the PHI is overdefined.
    730   // If there are no executable operands, the PHI remains undefined.
    731   //
    732   Constant *OperandVal = 0;
    733   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    734     LatticeVal IV = getValueState(PN.getIncomingValue(i));
    735     if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
    736 
    737     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
    738       continue;
    739 
    740     if (IV.isOverdefined())    // PHI node becomes overdefined!
    741       return markOverdefined(&PN);
    742 
    743     if (OperandVal == 0) {   // Grab the first value.
    744       OperandVal = IV.getConstant();
    745       continue;
    746     }
    747 
    748     // There is already a reachable operand.  If we conflict with it,
    749     // then the PHI node becomes overdefined.  If we agree with it, we
    750     // can continue on.
    751 
    752     // Check to see if there are two different constants merging, if so, the PHI
    753     // node is overdefined.
    754     if (IV.getConstant() != OperandVal)
    755       return markOverdefined(&PN);
    756   }
    757 
    758   // If we exited the loop, this means that the PHI node only has constant
    759   // arguments that agree with each other(and OperandVal is the constant) or
    760   // OperandVal is null because there are no defined incoming arguments.  If
    761   // this is the case, the PHI remains undefined.
    762   //
    763   if (OperandVal)
    764     markConstant(&PN, OperandVal);      // Acquire operand value
    765 }
    766 
    767 
    768 
    769 
    770 void SCCPSolver::visitReturnInst(ReturnInst &I) {
    771   if (I.getNumOperands() == 0) return;  // ret void
    772 
    773   Function *F = I.getParent()->getParent();
    774   Value *ResultOp = I.getOperand(0);
    775 
    776   // If we are tracking the return value of this function, merge it in.
    777   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
    778     DenseMap<Function*, LatticeVal>::iterator TFRVI =
    779       TrackedRetVals.find(F);
    780     if (TFRVI != TrackedRetVals.end()) {
    781       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
    782       return;
    783     }
    784   }
    785 
    786   // Handle functions that return multiple values.
    787   if (!TrackedMultipleRetVals.empty()) {
    788     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
    789       if (MRVFunctionsTracked.count(F))
    790         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
    791           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
    792                        getStructValueState(ResultOp, i));
    793 
    794   }
    795 }
    796 
    797 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
    798   SmallVector<bool, 16> SuccFeasible;
    799   getFeasibleSuccessors(TI, SuccFeasible);
    800 
    801   BasicBlock *BB = TI.getParent();
    802 
    803   // Mark all feasible successors executable.
    804   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    805     if (SuccFeasible[i])
    806       markEdgeExecutable(BB, TI.getSuccessor(i));
    807 }
    808 
    809 void SCCPSolver::visitCastInst(CastInst &I) {
    810   LatticeVal OpSt = getValueState(I.getOperand(0));
    811   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
    812     markOverdefined(&I);
    813   else if (OpSt.isConstant())        // Propagate constant value
    814     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
    815                                            OpSt.getConstant(), I.getType()));
    816 }
    817 
    818 
    819 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
    820   // If this returns a struct, mark all elements over defined, we don't track
    821   // structs in structs.
    822   if (EVI.getType()->isStructTy())
    823     return markAnythingOverdefined(&EVI);
    824 
    825   // If this is extracting from more than one level of struct, we don't know.
    826   if (EVI.getNumIndices() != 1)
    827     return markOverdefined(&EVI);
    828 
    829   Value *AggVal = EVI.getAggregateOperand();
    830   if (AggVal->getType()->isStructTy()) {
    831     unsigned i = *EVI.idx_begin();
    832     LatticeVal EltVal = getStructValueState(AggVal, i);
    833     mergeInValue(getValueState(&EVI), &EVI, EltVal);
    834   } else {
    835     // Otherwise, must be extracting from an array.
    836     return markOverdefined(&EVI);
    837   }
    838 }
    839 
    840 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
    841   StructType *STy = dyn_cast<StructType>(IVI.getType());
    842   if (STy == 0)
    843     return markOverdefined(&IVI);
    844 
    845   // If this has more than one index, we can't handle it, drive all results to
    846   // undef.
    847   if (IVI.getNumIndices() != 1)
    848     return markAnythingOverdefined(&IVI);
    849 
    850   Value *Aggr = IVI.getAggregateOperand();
    851   unsigned Idx = *IVI.idx_begin();
    852 
    853   // Compute the result based on what we're inserting.
    854   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    855     // This passes through all values that aren't the inserted element.
    856     if (i != Idx) {
    857       LatticeVal EltVal = getStructValueState(Aggr, i);
    858       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
    859       continue;
    860     }
    861 
    862     Value *Val = IVI.getInsertedValueOperand();
    863     if (Val->getType()->isStructTy())
    864       // We don't track structs in structs.
    865       markOverdefined(getStructValueState(&IVI, i), &IVI);
    866     else {
    867       LatticeVal InVal = getValueState(Val);
    868       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
    869     }
    870   }
    871 }
    872 
    873 void SCCPSolver::visitSelectInst(SelectInst &I) {
    874   // If this select returns a struct, just mark the result overdefined.
    875   // TODO: We could do a lot better than this if code actually uses this.
    876   if (I.getType()->isStructTy())
    877     return markAnythingOverdefined(&I);
    878 
    879   LatticeVal CondValue = getValueState(I.getCondition());
    880   if (CondValue.isUndefined())
    881     return;
    882 
    883   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
    884     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
    885     mergeInValue(&I, getValueState(OpVal));
    886     return;
    887   }
    888 
    889   // Otherwise, the condition is overdefined or a constant we can't evaluate.
    890   // See if we can produce something better than overdefined based on the T/F
    891   // value.
    892   LatticeVal TVal = getValueState(I.getTrueValue());
    893   LatticeVal FVal = getValueState(I.getFalseValue());
    894 
    895   // select ?, C, C -> C.
    896   if (TVal.isConstant() && FVal.isConstant() &&
    897       TVal.getConstant() == FVal.getConstant())
    898     return markConstant(&I, FVal.getConstant());
    899 
    900   if (TVal.isUndefined())   // select ?, undef, X -> X.
    901     return mergeInValue(&I, FVal);
    902   if (FVal.isUndefined())   // select ?, X, undef -> X.
    903     return mergeInValue(&I, TVal);
    904   markOverdefined(&I);
    905 }
    906 
    907 // Handle Binary Operators.
    908 void SCCPSolver::visitBinaryOperator(Instruction &I) {
    909   LatticeVal V1State = getValueState(I.getOperand(0));
    910   LatticeVal V2State = getValueState(I.getOperand(1));
    911 
    912   LatticeVal &IV = ValueState[&I];
    913   if (IV.isOverdefined()) return;
    914 
    915   if (V1State.isConstant() && V2State.isConstant())
    916     return markConstant(IV, &I,
    917                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
    918                                           V2State.getConstant()));
    919 
    920   // If something is undef, wait for it to resolve.
    921   if (!V1State.isOverdefined() && !V2State.isOverdefined())
    922     return;
    923 
    924   // Otherwise, one of our operands is overdefined.  Try to produce something
    925   // better than overdefined with some tricks.
    926 
    927   // If this is an AND or OR with 0 or -1, it doesn't matter that the other
    928   // operand is overdefined.
    929   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
    930     LatticeVal *NonOverdefVal = 0;
    931     if (!V1State.isOverdefined())
    932       NonOverdefVal = &V1State;
    933     else if (!V2State.isOverdefined())
    934       NonOverdefVal = &V2State;
    935 
    936     if (NonOverdefVal) {
    937       if (NonOverdefVal->isUndefined()) {
    938         // Could annihilate value.
    939         if (I.getOpcode() == Instruction::And)
    940           markConstant(IV, &I, Constant::getNullValue(I.getType()));
    941         else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
    942           markConstant(IV, &I, Constant::getAllOnesValue(PT));
    943         else
    944           markConstant(IV, &I,
    945                        Constant::getAllOnesValue(I.getType()));
    946         return;
    947       }
    948 
    949       if (I.getOpcode() == Instruction::And) {
    950         // X and 0 = 0
    951         if (NonOverdefVal->getConstant()->isNullValue())
    952           return markConstant(IV, &I, NonOverdefVal->getConstant());
    953       } else {
    954         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
    955           if (CI->isAllOnesValue())     // X or -1 = -1
    956             return markConstant(IV, &I, NonOverdefVal->getConstant());
    957       }
    958     }
    959   }
    960 
    961 
    962   // If both operands are PHI nodes, it is possible that this instruction has
    963   // a constant value, despite the fact that the PHI node doesn't.  Check for
    964   // this condition now.
    965   if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
    966     if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
    967       if (PN1->getParent() == PN2->getParent()) {
    968         // Since the two PHI nodes are in the same basic block, they must have
    969         // entries for the same predecessors.  Walk the predecessor list, and
    970         // if all of the incoming values are constants, and the result of
    971         // evaluating this expression with all incoming value pairs is the
    972         // same, then this expression is a constant even though the PHI node
    973         // is not a constant!
    974         LatticeVal Result;
    975         for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
    976           LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
    977           BasicBlock *InBlock = PN1->getIncomingBlock(i);
    978           LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
    979 
    980           if (In1.isOverdefined() || In2.isOverdefined()) {
    981             Result.markOverdefined();
    982             break;  // Cannot fold this operation over the PHI nodes!
    983           }
    984 
    985           if (In1.isConstant() && In2.isConstant()) {
    986             Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
    987                                             In2.getConstant());
    988             if (Result.isUndefined())
    989               Result.markConstant(V);
    990             else if (Result.isConstant() && Result.getConstant() != V) {
    991               Result.markOverdefined();
    992               break;
    993             }
    994           }
    995         }
    996 
    997         // If we found a constant value here, then we know the instruction is
    998         // constant despite the fact that the PHI nodes are overdefined.
    999         if (Result.isConstant()) {
   1000           markConstant(IV, &I, Result.getConstant());
   1001           // Remember that this instruction is virtually using the PHI node
   1002           // operands.
   1003           InsertInOverdefinedPHIs(&I, PN1);
   1004           InsertInOverdefinedPHIs(&I, PN2);
   1005           return;
   1006         }
   1007 
   1008         if (Result.isUndefined())
   1009           return;
   1010 
   1011         // Okay, this really is overdefined now.  Since we might have
   1012         // speculatively thought that this was not overdefined before, and
   1013         // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
   1014         // make sure to clean out any entries that we put there, for
   1015         // efficiency.
   1016         RemoveFromOverdefinedPHIs(&I, PN1);
   1017         RemoveFromOverdefinedPHIs(&I, PN2);
   1018       }
   1019 
   1020   markOverdefined(&I);
   1021 }
   1022 
   1023 // Handle ICmpInst instruction.
   1024 void SCCPSolver::visitCmpInst(CmpInst &I) {
   1025   LatticeVal V1State = getValueState(I.getOperand(0));
   1026   LatticeVal V2State = getValueState(I.getOperand(1));
   1027 
   1028   LatticeVal &IV = ValueState[&I];
   1029   if (IV.isOverdefined()) return;
   1030 
   1031   if (V1State.isConstant() && V2State.isConstant())
   1032     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
   1033                                                          V1State.getConstant(),
   1034                                                         V2State.getConstant()));
   1035 
   1036   // If operands are still undefined, wait for it to resolve.
   1037   if (!V1State.isOverdefined() && !V2State.isOverdefined())
   1038     return;
   1039 
   1040   // If something is overdefined, use some tricks to avoid ending up and over
   1041   // defined if we can.
   1042 
   1043   // If both operands are PHI nodes, it is possible that this instruction has
   1044   // a constant value, despite the fact that the PHI node doesn't.  Check for
   1045   // this condition now.
   1046   if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
   1047     if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
   1048       if (PN1->getParent() == PN2->getParent()) {
   1049         // Since the two PHI nodes are in the same basic block, they must have
   1050         // entries for the same predecessors.  Walk the predecessor list, and
   1051         // if all of the incoming values are constants, and the result of
   1052         // evaluating this expression with all incoming value pairs is the
   1053         // same, then this expression is a constant even though the PHI node
   1054         // is not a constant!
   1055         LatticeVal Result;
   1056         for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
   1057           LatticeVal In1 = getValueState(PN1->getIncomingValue(i));
   1058           BasicBlock *InBlock = PN1->getIncomingBlock(i);
   1059           LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock));
   1060 
   1061           if (In1.isOverdefined() || In2.isOverdefined()) {
   1062             Result.markOverdefined();
   1063             break;  // Cannot fold this operation over the PHI nodes!
   1064           }
   1065 
   1066           if (In1.isConstant() && In2.isConstant()) {
   1067             Constant *V = ConstantExpr::getCompare(I.getPredicate(),
   1068                                                    In1.getConstant(),
   1069                                                    In2.getConstant());
   1070             if (Result.isUndefined())
   1071               Result.markConstant(V);
   1072             else if (Result.isConstant() && Result.getConstant() != V) {
   1073               Result.markOverdefined();
   1074               break;
   1075             }
   1076           }
   1077         }
   1078 
   1079         // If we found a constant value here, then we know the instruction is
   1080         // constant despite the fact that the PHI nodes are overdefined.
   1081         if (Result.isConstant()) {
   1082           markConstant(&I, Result.getConstant());
   1083           // Remember that this instruction is virtually using the PHI node
   1084           // operands.
   1085           InsertInOverdefinedPHIs(&I, PN1);
   1086           InsertInOverdefinedPHIs(&I, PN2);
   1087           return;
   1088         }
   1089 
   1090         if (Result.isUndefined())
   1091           return;
   1092 
   1093         // Okay, this really is overdefined now.  Since we might have
   1094         // speculatively thought that this was not overdefined before, and
   1095         // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
   1096         // make sure to clean out any entries that we put there, for
   1097         // efficiency.
   1098         RemoveFromOverdefinedPHIs(&I, PN1);
   1099         RemoveFromOverdefinedPHIs(&I, PN2);
   1100       }
   1101 
   1102   markOverdefined(&I);
   1103 }
   1104 
   1105 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
   1106   // TODO : SCCP does not handle vectors properly.
   1107   return markOverdefined(&I);
   1108 
   1109 #if 0
   1110   LatticeVal &ValState = getValueState(I.getOperand(0));
   1111   LatticeVal &IdxState = getValueState(I.getOperand(1));
   1112 
   1113   if (ValState.isOverdefined() || IdxState.isOverdefined())
   1114     markOverdefined(&I);
   1115   else if(ValState.isConstant() && IdxState.isConstant())
   1116     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
   1117                                                      IdxState.getConstant()));
   1118 #endif
   1119 }
   1120 
   1121 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
   1122   // TODO : SCCP does not handle vectors properly.
   1123   return markOverdefined(&I);
   1124 #if 0
   1125   LatticeVal &ValState = getValueState(I.getOperand(0));
   1126   LatticeVal &EltState = getValueState(I.getOperand(1));
   1127   LatticeVal &IdxState = getValueState(I.getOperand(2));
   1128 
   1129   if (ValState.isOverdefined() || EltState.isOverdefined() ||
   1130       IdxState.isOverdefined())
   1131     markOverdefined(&I);
   1132   else if(ValState.isConstant() && EltState.isConstant() &&
   1133           IdxState.isConstant())
   1134     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
   1135                                                     EltState.getConstant(),
   1136                                                     IdxState.getConstant()));
   1137   else if (ValState.isUndefined() && EltState.isConstant() &&
   1138            IdxState.isConstant())
   1139     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
   1140                                                    EltState.getConstant(),
   1141                                                    IdxState.getConstant()));
   1142 #endif
   1143 }
   1144 
   1145 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
   1146   // TODO : SCCP does not handle vectors properly.
   1147   return markOverdefined(&I);
   1148 #if 0
   1149   LatticeVal &V1State   = getValueState(I.getOperand(0));
   1150   LatticeVal &V2State   = getValueState(I.getOperand(1));
   1151   LatticeVal &MaskState = getValueState(I.getOperand(2));
   1152 
   1153   if (MaskState.isUndefined() ||
   1154       (V1State.isUndefined() && V2State.isUndefined()))
   1155     return;  // Undefined output if mask or both inputs undefined.
   1156 
   1157   if (V1State.isOverdefined() || V2State.isOverdefined() ||
   1158       MaskState.isOverdefined()) {
   1159     markOverdefined(&I);
   1160   } else {
   1161     // A mix of constant/undef inputs.
   1162     Constant *V1 = V1State.isConstant() ?
   1163         V1State.getConstant() : UndefValue::get(I.getType());
   1164     Constant *V2 = V2State.isConstant() ?
   1165         V2State.getConstant() : UndefValue::get(I.getType());
   1166     Constant *Mask = MaskState.isConstant() ?
   1167       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
   1168     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
   1169   }
   1170 #endif
   1171 }
   1172 
   1173 // Handle getelementptr instructions.  If all operands are constants then we
   1174 // can turn this into a getelementptr ConstantExpr.
   1175 //
   1176 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
   1177   if (ValueState[&I].isOverdefined()) return;
   1178 
   1179   SmallVector<Constant*, 8> Operands;
   1180   Operands.reserve(I.getNumOperands());
   1181 
   1182   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1183     LatticeVal State = getValueState(I.getOperand(i));
   1184     if (State.isUndefined())
   1185       return;  // Operands are not resolved yet.
   1186 
   1187     if (State.isOverdefined())
   1188       return markOverdefined(&I);
   1189 
   1190     assert(State.isConstant() && "Unknown state!");
   1191     Operands.push_back(State.getConstant());
   1192   }
   1193 
   1194   Constant *Ptr = Operands[0];
   1195   ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end());
   1196   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices));
   1197 }
   1198 
   1199 void SCCPSolver::visitStoreInst(StoreInst &SI) {
   1200   // If this store is of a struct, ignore it.
   1201   if (SI.getOperand(0)->getType()->isStructTy())
   1202     return;
   1203 
   1204   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
   1205     return;
   1206 
   1207   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
   1208   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
   1209   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
   1210 
   1211   // Get the value we are storing into the global, then merge it.
   1212   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
   1213   if (I->second.isOverdefined())
   1214     TrackedGlobals.erase(I);      // No need to keep tracking this!
   1215 }
   1216 
   1217 
   1218 // Handle load instructions.  If the operand is a constant pointer to a constant
   1219 // global, we can replace the load with the loaded constant value!
   1220 void SCCPSolver::visitLoadInst(LoadInst &I) {
   1221   // If this load is of a struct, just mark the result overdefined.
   1222   if (I.getType()->isStructTy())
   1223     return markAnythingOverdefined(&I);
   1224 
   1225   LatticeVal PtrVal = getValueState(I.getOperand(0));
   1226   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
   1227 
   1228   LatticeVal &IV = ValueState[&I];
   1229   if (IV.isOverdefined()) return;
   1230 
   1231   if (!PtrVal.isConstant() || I.isVolatile())
   1232     return markOverdefined(IV, &I);
   1233 
   1234   Constant *Ptr = PtrVal.getConstant();
   1235 
   1236   // load null -> null
   1237   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
   1238     return markConstant(IV, &I, Constant::getNullValue(I.getType()));
   1239 
   1240   // Transform load (constant global) into the value loaded.
   1241   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   1242     if (!TrackedGlobals.empty()) {
   1243       // If we are tracking this global, merge in the known value for it.
   1244       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
   1245         TrackedGlobals.find(GV);
   1246       if (It != TrackedGlobals.end()) {
   1247         mergeInValue(IV, &I, It->second);
   1248         return;
   1249       }
   1250     }
   1251   }
   1252 
   1253   // Transform load from a constant into a constant if possible.
   1254   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD))
   1255     return markConstant(IV, &I, C);
   1256 
   1257   // Otherwise we cannot say for certain what value this load will produce.
   1258   // Bail out.
   1259   markOverdefined(IV, &I);
   1260 }
   1261 
   1262 void SCCPSolver::visitCallSite(CallSite CS) {
   1263   Function *F = CS.getCalledFunction();
   1264   Instruction *I = CS.getInstruction();
   1265 
   1266   // The common case is that we aren't tracking the callee, either because we
   1267   // are not doing interprocedural analysis or the callee is indirect, or is
   1268   // external.  Handle these cases first.
   1269   if (F == 0 || F->isDeclaration()) {
   1270 CallOverdefined:
   1271     // Void return and not tracking callee, just bail.
   1272     if (I->getType()->isVoidTy()) return;
   1273 
   1274     // Otherwise, if we have a single return value case, and if the function is
   1275     // a declaration, maybe we can constant fold it.
   1276     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
   1277         canConstantFoldCallTo(F)) {
   1278 
   1279       SmallVector<Constant*, 8> Operands;
   1280       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
   1281            AI != E; ++AI) {
   1282         LatticeVal State = getValueState(*AI);
   1283 
   1284         if (State.isUndefined())
   1285           return;  // Operands are not resolved yet.
   1286         if (State.isOverdefined())
   1287           return markOverdefined(I);
   1288         assert(State.isConstant() && "Unknown state!");
   1289         Operands.push_back(State.getConstant());
   1290       }
   1291 
   1292       // If we can constant fold this, mark the result of the call as a
   1293       // constant.
   1294       if (Constant *C = ConstantFoldCall(F, Operands))
   1295         return markConstant(I, C);
   1296     }
   1297 
   1298     // Otherwise, we don't know anything about this call, mark it overdefined.
   1299     return markAnythingOverdefined(I);
   1300   }
   1301 
   1302   // If this is a local function that doesn't have its address taken, mark its
   1303   // entry block executable and merge in the actual arguments to the call into
   1304   // the formal arguments of the function.
   1305   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
   1306     MarkBlockExecutable(F->begin());
   1307 
   1308     // Propagate information from this call site into the callee.
   1309     CallSite::arg_iterator CAI = CS.arg_begin();
   1310     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1311          AI != E; ++AI, ++CAI) {
   1312       // If this argument is byval, and if the function is not readonly, there
   1313       // will be an implicit copy formed of the input aggregate.
   1314       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
   1315         markOverdefined(AI);
   1316         continue;
   1317       }
   1318 
   1319       if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
   1320         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1321           LatticeVal CallArg = getStructValueState(*CAI, i);
   1322           mergeInValue(getStructValueState(AI, i), AI, CallArg);
   1323         }
   1324       } else {
   1325         mergeInValue(AI, getValueState(*CAI));
   1326       }
   1327     }
   1328   }
   1329 
   1330   // If this is a single/zero retval case, see if we're tracking the function.
   1331   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
   1332     if (!MRVFunctionsTracked.count(F))
   1333       goto CallOverdefined;  // Not tracking this callee.
   1334 
   1335     // If we are tracking this callee, propagate the result of the function
   1336     // into this call site.
   1337     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   1338       mergeInValue(getStructValueState(I, i), I,
   1339                    TrackedMultipleRetVals[std::make_pair(F, i)]);
   1340   } else {
   1341     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
   1342     if (TFRVI == TrackedRetVals.end())
   1343       goto CallOverdefined;  // Not tracking this callee.
   1344 
   1345     // If so, propagate the return value of the callee into this call result.
   1346     mergeInValue(I, TFRVI->second);
   1347   }
   1348 }
   1349 
   1350 void SCCPSolver::Solve() {
   1351   // Process the work lists until they are empty!
   1352   while (!BBWorkList.empty() || !InstWorkList.empty() ||
   1353          !OverdefinedInstWorkList.empty()) {
   1354     // Process the overdefined instruction's work list first, which drives other
   1355     // things to overdefined more quickly.
   1356     while (!OverdefinedInstWorkList.empty()) {
   1357       Value *I = OverdefinedInstWorkList.pop_back_val();
   1358 
   1359       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
   1360 
   1361       // "I" got into the work list because it either made the transition from
   1362       // bottom to constant
   1363       //
   1364       // Anything on this worklist that is overdefined need not be visited
   1365       // since all of its users will have already been marked as overdefined
   1366       // Update all of the users of this instruction's value.
   1367       //
   1368       for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1369            UI != E; ++UI)
   1370         if (Instruction *I = dyn_cast<Instruction>(*UI))
   1371           OperandChangedState(I);
   1372     }
   1373 
   1374     // Process the instruction work list.
   1375     while (!InstWorkList.empty()) {
   1376       Value *I = InstWorkList.pop_back_val();
   1377 
   1378       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
   1379 
   1380       // "I" got into the work list because it made the transition from undef to
   1381       // constant.
   1382       //
   1383       // Anything on this worklist that is overdefined need not be visited
   1384       // since all of its users will have already been marked as overdefined.
   1385       // Update all of the users of this instruction's value.
   1386       //
   1387       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
   1388         for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
   1389              UI != E; ++UI)
   1390           if (Instruction *I = dyn_cast<Instruction>(*UI))
   1391             OperandChangedState(I);
   1392     }
   1393 
   1394     // Process the basic block work list.
   1395     while (!BBWorkList.empty()) {
   1396       BasicBlock *BB = BBWorkList.back();
   1397       BBWorkList.pop_back();
   1398 
   1399       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
   1400 
   1401       // Notify all instructions in this basic block that they are newly
   1402       // executable.
   1403       visit(BB);
   1404     }
   1405   }
   1406 }
   1407 
   1408 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
   1409 /// that branches on undef values cannot reach any of their successors.
   1410 /// However, this is not a safe assumption.  After we solve dataflow, this
   1411 /// method should be use to handle this.  If this returns true, the solver
   1412 /// should be rerun.
   1413 ///
   1414 /// This method handles this by finding an unresolved branch and marking it one
   1415 /// of the edges from the block as being feasible, even though the condition
   1416 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
   1417 /// CFG and only slightly pessimizes the analysis results (by marking one,
   1418 /// potentially infeasible, edge feasible).  This cannot usefully modify the
   1419 /// constraints on the condition of the branch, as that would impact other users
   1420 /// of the value.
   1421 ///
   1422 /// This scan also checks for values that use undefs, whose results are actually
   1423 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
   1424 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
   1425 /// even if X isn't defined.
   1426 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
   1427   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1428     if (!BBExecutable.count(BB))
   1429       continue;
   1430 
   1431     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
   1432       // Look for instructions which produce undef values.
   1433       if (I->getType()->isVoidTy()) continue;
   1434 
   1435       if (StructType *STy = dyn_cast<StructType>(I->getType())) {
   1436         // Only a few things that can be structs matter for undef.
   1437 
   1438         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
   1439         if (CallSite CS = CallSite(I))
   1440           if (Function *F = CS.getCalledFunction())
   1441             if (MRVFunctionsTracked.count(F))
   1442               continue;
   1443 
   1444         // extractvalue and insertvalue don't need to be marked; they are
   1445         // tracked as precisely as their operands.
   1446         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
   1447           continue;
   1448 
   1449         // Send the results of everything else to overdefined.  We could be
   1450         // more precise than this but it isn't worth bothering.
   1451         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1452           LatticeVal &LV = getStructValueState(I, i);
   1453           if (LV.isUndefined())
   1454             markOverdefined(LV, I);
   1455         }
   1456         continue;
   1457       }
   1458 
   1459       LatticeVal &LV = getValueState(I);
   1460       if (!LV.isUndefined()) continue;
   1461 
   1462       // extractvalue is safe; check here because the argument is a struct.
   1463       if (isa<ExtractValueInst>(I))
   1464         continue;
   1465 
   1466       // Compute the operand LatticeVals, for convenience below.
   1467       // Anything taking a struct is conservatively assumed to require
   1468       // overdefined markings.
   1469       if (I->getOperand(0)->getType()->isStructTy()) {
   1470         markOverdefined(I);
   1471         return true;
   1472       }
   1473       LatticeVal Op0LV = getValueState(I->getOperand(0));
   1474       LatticeVal Op1LV;
   1475       if (I->getNumOperands() == 2) {
   1476         if (I->getOperand(1)->getType()->isStructTy()) {
   1477           markOverdefined(I);
   1478           return true;
   1479         }
   1480 
   1481         Op1LV = getValueState(I->getOperand(1));
   1482       }
   1483       // If this is an instructions whose result is defined even if the input is
   1484       // not fully defined, propagate the information.
   1485       Type *ITy = I->getType();
   1486       switch (I->getOpcode()) {
   1487       case Instruction::Add:
   1488       case Instruction::Sub:
   1489       case Instruction::Trunc:
   1490       case Instruction::FPTrunc:
   1491       case Instruction::BitCast:
   1492         break; // Any undef -> undef
   1493       case Instruction::FSub:
   1494       case Instruction::FAdd:
   1495       case Instruction::FMul:
   1496       case Instruction::FDiv:
   1497       case Instruction::FRem:
   1498         // Floating-point binary operation: be conservative.
   1499         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1500           markForcedConstant(I, Constant::getNullValue(ITy));
   1501         else
   1502           markOverdefined(I);
   1503         return true;
   1504       case Instruction::ZExt:
   1505       case Instruction::SExt:
   1506       case Instruction::FPToUI:
   1507       case Instruction::FPToSI:
   1508       case Instruction::FPExt:
   1509       case Instruction::PtrToInt:
   1510       case Instruction::IntToPtr:
   1511       case Instruction::SIToFP:
   1512       case Instruction::UIToFP:
   1513         // undef -> 0; some outputs are impossible
   1514         markForcedConstant(I, Constant::getNullValue(ITy));
   1515         return true;
   1516       case Instruction::Mul:
   1517       case Instruction::And:
   1518         // Both operands undef -> undef
   1519         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1520           break;
   1521         // undef * X -> 0.   X could be zero.
   1522         // undef & X -> 0.   X could be zero.
   1523         markForcedConstant(I, Constant::getNullValue(ITy));
   1524         return true;
   1525 
   1526       case Instruction::Or:
   1527         // Both operands undef -> undef
   1528         if (Op0LV.isUndefined() && Op1LV.isUndefined())
   1529           break;
   1530         // undef | X -> -1.   X could be -1.
   1531         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1532         return true;
   1533 
   1534       case Instruction::Xor:
   1535         // undef ^ undef -> 0; strictly speaking, this is not strictly
   1536         // necessary, but we try to be nice to people who expect this
   1537         // behavior in simple cases
   1538         if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
   1539           markForcedConstant(I, Constant::getNullValue(ITy));
   1540           return true;
   1541         }
   1542         // undef ^ X -> undef
   1543         break;
   1544 
   1545       case Instruction::SDiv:
   1546       case Instruction::UDiv:
   1547       case Instruction::SRem:
   1548       case Instruction::URem:
   1549         // X / undef -> undef.  No change.
   1550         // X % undef -> undef.  No change.
   1551         if (Op1LV.isUndefined()) break;
   1552 
   1553         // undef / X -> 0.   X could be maxint.
   1554         // undef % X -> 0.   X could be 1.
   1555         markForcedConstant(I, Constant::getNullValue(ITy));
   1556         return true;
   1557 
   1558       case Instruction::AShr:
   1559         // X >>a undef -> undef.
   1560         if (Op1LV.isUndefined()) break;
   1561 
   1562         // undef >>a X -> all ones
   1563         markForcedConstant(I, Constant::getAllOnesValue(ITy));
   1564         return true;
   1565       case Instruction::LShr:
   1566       case Instruction::Shl:
   1567         // X << undef -> undef.
   1568         // X >> undef -> undef.
   1569         if (Op1LV.isUndefined()) break;
   1570 
   1571         // undef << X -> 0
   1572         // undef >> X -> 0
   1573         markForcedConstant(I, Constant::getNullValue(ITy));
   1574         return true;
   1575       case Instruction::Select:
   1576         Op1LV = getValueState(I->getOperand(1));
   1577         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
   1578         if (Op0LV.isUndefined()) {
   1579           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
   1580             Op1LV = getValueState(I->getOperand(2));
   1581         } else if (Op1LV.isUndefined()) {
   1582           // c ? undef : undef -> undef.  No change.
   1583           Op1LV = getValueState(I->getOperand(2));
   1584           if (Op1LV.isUndefined())
   1585             break;
   1586           // Otherwise, c ? undef : x -> x.
   1587         } else {
   1588           // Leave Op1LV as Operand(1)'s LatticeValue.
   1589         }
   1590 
   1591         if (Op1LV.isConstant())
   1592           markForcedConstant(I, Op1LV.getConstant());
   1593         else
   1594           markOverdefined(I);
   1595         return true;
   1596       case Instruction::Load:
   1597         // A load here means one of two things: a load of undef from a global,
   1598         // a load from an unknown pointer.  Either way, having it return undef
   1599         // is okay.
   1600         break;
   1601       case Instruction::ICmp:
   1602         // X == undef -> undef.  Other comparisons get more complicated.
   1603         if (cast<ICmpInst>(I)->isEquality())
   1604           break;
   1605         markOverdefined(I);
   1606         return true;
   1607       case Instruction::Call:
   1608       case Instruction::Invoke: {
   1609         // There are two reasons a call can have an undef result
   1610         // 1. It could be tracked.
   1611         // 2. It could be constant-foldable.
   1612         // Because of the way we solve return values, tracked calls must
   1613         // never be marked overdefined in ResolvedUndefsIn.
   1614         if (Function *F = CallSite(I).getCalledFunction())
   1615           if (TrackedRetVals.count(F))
   1616             break;
   1617 
   1618         // If the call is constant-foldable, we mark it overdefined because
   1619         // we do not know what return values are valid.
   1620         markOverdefined(I);
   1621         return true;
   1622       }
   1623       default:
   1624         // If we don't know what should happen here, conservatively mark it
   1625         // overdefined.
   1626         markOverdefined(I);
   1627         return true;
   1628       }
   1629     }
   1630 
   1631     // Check to see if we have a branch or switch on an undefined value.  If so
   1632     // we force the branch to go one way or the other to make the successor
   1633     // values live.  It doesn't really matter which way we force it.
   1634     TerminatorInst *TI = BB->getTerminator();
   1635     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1636       if (!BI->isConditional()) continue;
   1637       if (!getValueState(BI->getCondition()).isUndefined())
   1638         continue;
   1639 
   1640       // If the input to SCCP is actually branch on undef, fix the undef to
   1641       // false.
   1642       if (isa<UndefValue>(BI->getCondition())) {
   1643         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
   1644         markEdgeExecutable(BB, TI->getSuccessor(1));
   1645         return true;
   1646       }
   1647 
   1648       // Otherwise, it is a branch on a symbolic value which is currently
   1649       // considered to be undef.  Handle this by forcing the input value to the
   1650       // branch to false.
   1651       markForcedConstant(BI->getCondition(),
   1652                          ConstantInt::getFalse(TI->getContext()));
   1653       return true;
   1654     }
   1655 
   1656     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1657       if (SI->getNumSuccessors() < 2)   // no cases
   1658         continue;
   1659       if (!getValueState(SI->getCondition()).isUndefined())
   1660         continue;
   1661 
   1662       // If the input to SCCP is actually switch on undef, fix the undef to
   1663       // the first constant.
   1664       if (isa<UndefValue>(SI->getCondition())) {
   1665         SI->setCondition(SI->getCaseValue(1));
   1666         markEdgeExecutable(BB, TI->getSuccessor(1));
   1667         return true;
   1668       }
   1669 
   1670       markForcedConstant(SI->getCondition(), SI->getCaseValue(1));
   1671       return true;
   1672     }
   1673   }
   1674 
   1675   return false;
   1676 }
   1677 
   1678 
   1679 namespace {
   1680   //===--------------------------------------------------------------------===//
   1681   //
   1682   /// SCCP Class - This class uses the SCCPSolver to implement a per-function
   1683   /// Sparse Conditional Constant Propagator.
   1684   ///
   1685   struct SCCP : public FunctionPass {
   1686     static char ID; // Pass identification, replacement for typeid
   1687     SCCP() : FunctionPass(ID) {
   1688       initializeSCCPPass(*PassRegistry::getPassRegistry());
   1689     }
   1690 
   1691     // runOnFunction - Run the Sparse Conditional Constant Propagation
   1692     // algorithm, and return true if the function was modified.
   1693     //
   1694     bool runOnFunction(Function &F);
   1695   };
   1696 } // end anonymous namespace
   1697 
   1698 char SCCP::ID = 0;
   1699 INITIALIZE_PASS(SCCP, "sccp",
   1700                 "Sparse Conditional Constant Propagation", false, false)
   1701 
   1702 // createSCCPPass - This is the public interface to this file.
   1703 FunctionPass *llvm::createSCCPPass() {
   1704   return new SCCP();
   1705 }
   1706 
   1707 static void DeleteInstructionInBlock(BasicBlock *BB) {
   1708   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
   1709   ++NumDeadBlocks;
   1710 
   1711   // Check to see if there are non-terminating instructions to delete.
   1712   if (isa<TerminatorInst>(BB->begin()))
   1713     return;
   1714 
   1715   // Delete the instructions backwards, as it has a reduced likelihood of having
   1716   // to update as many def-use and use-def chains.
   1717   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   1718   while (EndInst != BB->begin()) {
   1719     // Delete the next to last instruction.
   1720     BasicBlock::iterator I = EndInst;
   1721     Instruction *Inst = --I;
   1722     if (!Inst->use_empty())
   1723       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   1724     if (isa<LandingPadInst>(Inst)) {
   1725       EndInst = Inst;
   1726       continue;
   1727     }
   1728     BB->getInstList().erase(Inst);
   1729     ++NumInstRemoved;
   1730   }
   1731 }
   1732 
   1733 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
   1734 // and return true if the function was modified.
   1735 //
   1736 bool SCCP::runOnFunction(Function &F) {
   1737   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
   1738   SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
   1739 
   1740   // Mark the first block of the function as being executable.
   1741   Solver.MarkBlockExecutable(F.begin());
   1742 
   1743   // Mark all arguments to the function as being overdefined.
   1744   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
   1745     Solver.markAnythingOverdefined(AI);
   1746 
   1747   // Solve for constants.
   1748   bool ResolvedUndefs = true;
   1749   while (ResolvedUndefs) {
   1750     Solver.Solve();
   1751     DEBUG(dbgs() << "RESOLVING UNDEFs\n");
   1752     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
   1753   }
   1754 
   1755   bool MadeChanges = false;
   1756 
   1757   // If we decided that there are basic blocks that are dead in this function,
   1758   // delete their contents now.  Note that we cannot actually delete the blocks,
   1759   // as we cannot modify the CFG of the function.
   1760 
   1761   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   1762     if (!Solver.isBlockExecutable(BB)) {
   1763       DeleteInstructionInBlock(BB);
   1764       MadeChanges = true;
   1765       continue;
   1766     }
   1767 
   1768     // Iterate over all of the instructions in a function, replacing them with
   1769     // constants if we have found them to be of constant values.
   1770     //
   1771     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1772       Instruction *Inst = BI++;
   1773       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
   1774         continue;
   1775 
   1776       // TODO: Reconstruct structs from their elements.
   1777       if (Inst->getType()->isStructTy())
   1778         continue;
   1779 
   1780       LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1781       if (IV.isOverdefined())
   1782         continue;
   1783 
   1784       Constant *Const = IV.isConstant()
   1785         ? IV.getConstant() : UndefValue::get(Inst->getType());
   1786       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1787 
   1788       // Replaces all of the uses of a variable with uses of the constant.
   1789       Inst->replaceAllUsesWith(Const);
   1790 
   1791       // Delete the instruction.
   1792       Inst->eraseFromParent();
   1793 
   1794       // Hey, we just changed something!
   1795       MadeChanges = true;
   1796       ++NumInstRemoved;
   1797     }
   1798   }
   1799 
   1800   return MadeChanges;
   1801 }
   1802 
   1803 namespace {
   1804   //===--------------------------------------------------------------------===//
   1805   //
   1806   /// IPSCCP Class - This class implements interprocedural Sparse Conditional
   1807   /// Constant Propagation.
   1808   ///
   1809   struct IPSCCP : public ModulePass {
   1810     static char ID;
   1811     IPSCCP() : ModulePass(ID) {
   1812       initializeIPSCCPPass(*PassRegistry::getPassRegistry());
   1813     }
   1814     bool runOnModule(Module &M);
   1815   };
   1816 } // end anonymous namespace
   1817 
   1818 char IPSCCP::ID = 0;
   1819 INITIALIZE_PASS(IPSCCP, "ipsccp",
   1820                 "Interprocedural Sparse Conditional Constant Propagation",
   1821                 false, false)
   1822 
   1823 // createIPSCCPPass - This is the public interface to this file.
   1824 ModulePass *llvm::createIPSCCPPass() {
   1825   return new IPSCCP();
   1826 }
   1827 
   1828 
   1829 static bool AddressIsTaken(const GlobalValue *GV) {
   1830   // Delete any dead constantexpr klingons.
   1831   GV->removeDeadConstantUsers();
   1832 
   1833   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
   1834        UI != E; ++UI) {
   1835     const User *U = *UI;
   1836     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1837       if (SI->getOperand(0) == GV || SI->isVolatile())
   1838         return true;  // Storing addr of GV.
   1839     } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) {
   1840       // Make sure we are calling the function, not passing the address.
   1841       ImmutableCallSite CS(cast<Instruction>(U));
   1842       if (!CS.isCallee(UI))
   1843         return true;
   1844     } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1845       if (LI->isVolatile())
   1846         return true;
   1847     } else if (isa<BlockAddress>(U)) {
   1848       // blockaddress doesn't take the address of the function, it takes addr
   1849       // of label.
   1850     } else {
   1851       return true;
   1852     }
   1853   }
   1854   return false;
   1855 }
   1856 
   1857 bool IPSCCP::runOnModule(Module &M) {
   1858   SCCPSolver Solver(getAnalysisIfAvailable<TargetData>());
   1859 
   1860   // AddressTakenFunctions - This set keeps track of the address-taken functions
   1861   // that are in the input.  As IPSCCP runs through and simplifies code,
   1862   // functions that were address taken can end up losing their
   1863   // address-taken-ness.  Because of this, we keep track of their addresses from
   1864   // the first pass so we can use them for the later simplification pass.
   1865   SmallPtrSet<Function*, 32> AddressTakenFunctions;
   1866 
   1867   // Loop over all functions, marking arguments to those with their addresses
   1868   // taken or that are external as overdefined.
   1869   //
   1870   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1871     if (F->isDeclaration())
   1872       continue;
   1873 
   1874     // If this is a strong or ODR definition of this function, then we can
   1875     // propagate information about its result into callsites of it.
   1876     if (!F->mayBeOverridden())
   1877       Solver.AddTrackedFunction(F);
   1878 
   1879     // If this function only has direct calls that we can see, we can track its
   1880     // arguments and return value aggressively, and can assume it is not called
   1881     // unless we see evidence to the contrary.
   1882     if (F->hasLocalLinkage()) {
   1883       if (AddressIsTaken(F))
   1884         AddressTakenFunctions.insert(F);
   1885       else {
   1886         Solver.AddArgumentTrackedFunction(F);
   1887         continue;
   1888       }
   1889     }
   1890 
   1891     // Assume the function is called.
   1892     Solver.MarkBlockExecutable(F->begin());
   1893 
   1894     // Assume nothing about the incoming arguments.
   1895     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1896          AI != E; ++AI)
   1897       Solver.markAnythingOverdefined(AI);
   1898   }
   1899 
   1900   // Loop over global variables.  We inform the solver about any internal global
   1901   // variables that do not have their 'addresses taken'.  If they don't have
   1902   // their addresses taken, we can propagate constants through them.
   1903   for (Module::global_iterator G = M.global_begin(), E = M.global_end();
   1904        G != E; ++G)
   1905     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
   1906       Solver.TrackValueOfGlobalVariable(G);
   1907 
   1908   // Solve for constants.
   1909   bool ResolvedUndefs = true;
   1910   while (ResolvedUndefs) {
   1911     Solver.Solve();
   1912 
   1913     DEBUG(dbgs() << "RESOLVING UNDEFS\n");
   1914     ResolvedUndefs = false;
   1915     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
   1916       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
   1917   }
   1918 
   1919   bool MadeChanges = false;
   1920 
   1921   // Iterate over all of the instructions in the module, replacing them with
   1922   // constants if we have found them to be of constant values.
   1923   //
   1924   SmallVector<BasicBlock*, 512> BlocksToErase;
   1925 
   1926   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
   1927     if (Solver.isBlockExecutable(F->begin())) {
   1928       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
   1929            AI != E; ++AI) {
   1930         if (AI->use_empty() || AI->getType()->isStructTy()) continue;
   1931 
   1932         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1933         // result is a constant and replace it entirely if so.
   1934 
   1935         LatticeVal IV = Solver.getLatticeValueFor(AI);
   1936         if (IV.isOverdefined()) continue;
   1937 
   1938         Constant *CST = IV.isConstant() ?
   1939         IV.getConstant() : UndefValue::get(AI->getType());
   1940         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n");
   1941 
   1942         // Replaces all of the uses of a variable with uses of the
   1943         // constant.
   1944         AI->replaceAllUsesWith(CST);
   1945         ++IPNumArgsElimed;
   1946       }
   1947     }
   1948 
   1949     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
   1950       if (!Solver.isBlockExecutable(BB)) {
   1951         DeleteInstructionInBlock(BB);
   1952         MadeChanges = true;
   1953 
   1954         TerminatorInst *TI = BB->getTerminator();
   1955         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   1956           BasicBlock *Succ = TI->getSuccessor(i);
   1957           if (!Succ->empty() && isa<PHINode>(Succ->begin()))
   1958             TI->getSuccessor(i)->removePredecessor(BB);
   1959         }
   1960         if (!TI->use_empty())
   1961           TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
   1962         TI->eraseFromParent();
   1963 
   1964         if (&*BB != &F->front())
   1965           BlocksToErase.push_back(BB);
   1966         else
   1967           new UnreachableInst(M.getContext(), BB);
   1968         continue;
   1969       }
   1970 
   1971       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
   1972         Instruction *Inst = BI++;
   1973         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
   1974           continue;
   1975 
   1976         // TODO: Could use getStructLatticeValueFor to find out if the entire
   1977         // result is a constant and replace it entirely if so.
   1978 
   1979         LatticeVal IV = Solver.getLatticeValueFor(Inst);
   1980         if (IV.isOverdefined())
   1981           continue;
   1982 
   1983         Constant *Const = IV.isConstant()
   1984           ? IV.getConstant() : UndefValue::get(Inst->getType());
   1985         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst);
   1986 
   1987         // Replaces all of the uses of a variable with uses of the
   1988         // constant.
   1989         Inst->replaceAllUsesWith(Const);
   1990 
   1991         // Delete the instruction.
   1992         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
   1993           Inst->eraseFromParent();
   1994 
   1995         // Hey, we just changed something!
   1996         MadeChanges = true;
   1997         ++IPNumInstRemoved;
   1998       }
   1999     }
   2000 
   2001     // Now that all instructions in the function are constant folded, erase dead
   2002     // blocks, because we can now use ConstantFoldTerminator to get rid of
   2003     // in-edges.
   2004     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
   2005       // If there are any PHI nodes in this successor, drop entries for BB now.
   2006       BasicBlock *DeadBB = BlocksToErase[i];
   2007       for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end();
   2008            UI != UE; ) {
   2009         // Grab the user and then increment the iterator early, as the user
   2010         // will be deleted. Step past all adjacent uses from the same user.
   2011         Instruction *I = dyn_cast<Instruction>(*UI);
   2012         do { ++UI; } while (UI != UE && *UI == I);
   2013 
   2014         // Ignore blockaddress users; BasicBlock's dtor will handle them.
   2015         if (!I) continue;
   2016 
   2017         bool Folded = ConstantFoldTerminator(I->getParent());
   2018         if (!Folded) {
   2019           // The constant folder may not have been able to fold the terminator
   2020           // if this is a branch or switch on undef.  Fold it manually as a
   2021           // branch to the first successor.
   2022 #ifndef NDEBUG
   2023           if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2024             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
   2025                    "Branch should be foldable!");
   2026           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2027             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
   2028           } else {
   2029             llvm_unreachable("Didn't fold away reference to block!");
   2030           }
   2031 #endif
   2032 
   2033           // Make this an uncond branch to the first successor.
   2034           TerminatorInst *TI = I->getParent()->getTerminator();
   2035           BranchInst::Create(TI->getSuccessor(0), TI);
   2036 
   2037           // Remove entries in successor phi nodes to remove edges.
   2038           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
   2039             TI->getSuccessor(i)->removePredecessor(TI->getParent());
   2040 
   2041           // Remove the old terminator.
   2042           TI->eraseFromParent();
   2043         }
   2044       }
   2045 
   2046       // Finally, delete the basic block.
   2047       F->getBasicBlockList().erase(DeadBB);
   2048     }
   2049     BlocksToErase.clear();
   2050   }
   2051 
   2052   // If we inferred constant or undef return values for a function, we replaced
   2053   // all call uses with the inferred value.  This means we don't need to bother
   2054   // actually returning anything from the function.  Replace all return
   2055   // instructions with return undef.
   2056   //
   2057   // Do this in two stages: first identify the functions we should process, then
   2058   // actually zap their returns.  This is important because we can only do this
   2059   // if the address of the function isn't taken.  In cases where a return is the
   2060   // last use of a function, the order of processing functions would affect
   2061   // whether other functions are optimizable.
   2062   SmallVector<ReturnInst*, 8> ReturnsToZap;
   2063 
   2064   // TODO: Process multiple value ret instructions also.
   2065   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
   2066   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
   2067        E = RV.end(); I != E; ++I) {
   2068     Function *F = I->first;
   2069     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
   2070       continue;
   2071 
   2072     // We can only do this if we know that nothing else can call the function.
   2073     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
   2074       continue;
   2075 
   2076     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
   2077       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
   2078         if (!isa<UndefValue>(RI->getOperand(0)))
   2079           ReturnsToZap.push_back(RI);
   2080   }
   2081 
   2082   // Zap all returns which we've identified as zap to change.
   2083   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
   2084     Function *F = ReturnsToZap[i]->getParent()->getParent();
   2085     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
   2086   }
   2087 
   2088   // If we inferred constant or undef values for globals variables, we can delete
   2089   // the global and any stores that remain to it.
   2090   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
   2091   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
   2092          E = TG.end(); I != E; ++I) {
   2093     GlobalVariable *GV = I->first;
   2094     assert(!I->second.isOverdefined() &&
   2095            "Overdefined values should have been taken out of the map!");
   2096     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
   2097     while (!GV->use_empty()) {
   2098       StoreInst *SI = cast<StoreInst>(GV->use_back());
   2099       SI->eraseFromParent();
   2100     }
   2101     M.getGlobalList().erase(GV);
   2102     ++IPNumGlobalConst;
   2103   }
   2104 
   2105   return MadeChanges;
   2106 }
   2107