Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/Sema.h"
     14 #include "clang/Sema/DeclSpec.h"
     15 #include "clang/Sema/Template.h"
     16 #include "clang/Sema/TemplateDeduction.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "llvm/ADT/BitVector.h"
     24 #include "TreeTransform.h"
     25 #include <algorithm>
     26 
     27 namespace clang {
     28   using namespace sema;
     29 
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10
     56   };
     57 }
     58 
     59 using namespace clang;
     60 
     61 /// \brief Compare two APSInts, extending and switching the sign as
     62 /// necessary to compare their values regardless of underlying type.
     63 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     64   if (Y.getBitWidth() > X.getBitWidth())
     65     X = X.extend(Y.getBitWidth());
     66   else if (Y.getBitWidth() < X.getBitWidth())
     67     Y = Y.extend(X.getBitWidth());
     68 
     69   // If there is a signedness mismatch, correct it.
     70   if (X.isSigned() != Y.isSigned()) {
     71     // If the signed value is negative, then the values cannot be the same.
     72     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     73       return false;
     74 
     75     Y.setIsSigned(true);
     76     X.setIsSigned(true);
     77   }
     78 
     79   return X == Y;
     80 }
     81 
     82 static Sema::TemplateDeductionResult
     83 DeduceTemplateArguments(Sema &S,
     84                         TemplateParameterList *TemplateParams,
     85                         const TemplateArgument &Param,
     86                         TemplateArgument Arg,
     87                         TemplateDeductionInfo &Info,
     88                       SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     89 
     90 /// \brief Whether template argument deduction for two reference parameters
     91 /// resulted in the argument type, parameter type, or neither type being more
     92 /// qualified than the other.
     93 enum DeductionQualifierComparison {
     94   NeitherMoreQualified = 0,
     95   ParamMoreQualified,
     96   ArgMoreQualified
     97 };
     98 
     99 /// \brief Stores the result of comparing two reference parameters while
    100 /// performing template argument deduction for partial ordering of function
    101 /// templates.
    102 struct RefParamPartialOrderingComparison {
    103   /// \brief Whether the parameter type is an rvalue reference type.
    104   bool ParamIsRvalueRef;
    105   /// \brief Whether the argument type is an rvalue reference type.
    106   bool ArgIsRvalueRef;
    107 
    108   /// \brief Whether the parameter or argument (or neither) is more qualified.
    109   DeductionQualifierComparison Qualifiers;
    110 };
    111 
    112 
    113 
    114 static Sema::TemplateDeductionResult
    115 DeduceTemplateArguments(Sema &S,
    116                         TemplateParameterList *TemplateParams,
    117                         QualType Param,
    118                         QualType Arg,
    119                         TemplateDeductionInfo &Info,
    120                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    121                         unsigned TDF,
    122                         bool PartialOrdering = false,
    123                       SmallVectorImpl<RefParamPartialOrderingComparison> *
    124                                                       RefParamComparisons = 0);
    125 
    126 static Sema::TemplateDeductionResult
    127 DeduceTemplateArguments(Sema &S,
    128                         TemplateParameterList *TemplateParams,
    129                         const TemplateArgument *Params, unsigned NumParams,
    130                         const TemplateArgument *Args, unsigned NumArgs,
    131                         TemplateDeductionInfo &Info,
    132                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    133                         bool NumberOfArgumentsMustMatch = true);
    134 
    135 /// \brief If the given expression is of a form that permits the deduction
    136 /// of a non-type template parameter, return the declaration of that
    137 /// non-type template parameter.
    138 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    139   if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    140     E = IC->getSubExpr();
    141 
    142   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    143     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    144 
    145   return 0;
    146 }
    147 
    148 /// \brief Determine whether two declaration pointers refer to the same
    149 /// declaration.
    150 static bool isSameDeclaration(Decl *X, Decl *Y) {
    151   if (!X || !Y)
    152     return !X && !Y;
    153 
    154   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    155     X = NX->getUnderlyingDecl();
    156   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    157     Y = NY->getUnderlyingDecl();
    158 
    159   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    160 }
    161 
    162 /// \brief Verify that the given, deduced template arguments are compatible.
    163 ///
    164 /// \returns The deduced template argument, or a NULL template argument if
    165 /// the deduced template arguments were incompatible.
    166 static DeducedTemplateArgument
    167 checkDeducedTemplateArguments(ASTContext &Context,
    168                               const DeducedTemplateArgument &X,
    169                               const DeducedTemplateArgument &Y) {
    170   // We have no deduction for one or both of the arguments; they're compatible.
    171   if (X.isNull())
    172     return Y;
    173   if (Y.isNull())
    174     return X;
    175 
    176   switch (X.getKind()) {
    177   case TemplateArgument::Null:
    178     llvm_unreachable("Non-deduced template arguments handled above");
    179 
    180   case TemplateArgument::Type:
    181     // If two template type arguments have the same type, they're compatible.
    182     if (Y.getKind() == TemplateArgument::Type &&
    183         Context.hasSameType(X.getAsType(), Y.getAsType()))
    184       return X;
    185 
    186     return DeducedTemplateArgument();
    187 
    188   case TemplateArgument::Integral:
    189     // If we deduced a constant in one case and either a dependent expression or
    190     // declaration in another case, keep the integral constant.
    191     // If both are integral constants with the same value, keep that value.
    192     if (Y.getKind() == TemplateArgument::Expression ||
    193         Y.getKind() == TemplateArgument::Declaration ||
    194         (Y.getKind() == TemplateArgument::Integral &&
    195          hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
    196       return DeducedTemplateArgument(X,
    197                                      X.wasDeducedFromArrayBound() &&
    198                                      Y.wasDeducedFromArrayBound());
    199 
    200     // All other combinations are incompatible.
    201     return DeducedTemplateArgument();
    202 
    203   case TemplateArgument::Template:
    204     if (Y.getKind() == TemplateArgument::Template &&
    205         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    206       return X;
    207 
    208     // All other combinations are incompatible.
    209     return DeducedTemplateArgument();
    210 
    211   case TemplateArgument::TemplateExpansion:
    212     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    213         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    214                                     Y.getAsTemplateOrTemplatePattern()))
    215       return X;
    216 
    217     // All other combinations are incompatible.
    218     return DeducedTemplateArgument();
    219 
    220   case TemplateArgument::Expression:
    221     // If we deduced a dependent expression in one case and either an integral
    222     // constant or a declaration in another case, keep the integral constant
    223     // or declaration.
    224     if (Y.getKind() == TemplateArgument::Integral ||
    225         Y.getKind() == TemplateArgument::Declaration)
    226       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    227                                      Y.wasDeducedFromArrayBound());
    228 
    229     if (Y.getKind() == TemplateArgument::Expression) {
    230       // Compare the expressions for equality
    231       llvm::FoldingSetNodeID ID1, ID2;
    232       X.getAsExpr()->Profile(ID1, Context, true);
    233       Y.getAsExpr()->Profile(ID2, Context, true);
    234       if (ID1 == ID2)
    235         return X;
    236     }
    237 
    238     // All other combinations are incompatible.
    239     return DeducedTemplateArgument();
    240 
    241   case TemplateArgument::Declaration:
    242     // If we deduced a declaration and a dependent expression, keep the
    243     // declaration.
    244     if (Y.getKind() == TemplateArgument::Expression)
    245       return X;
    246 
    247     // If we deduced a declaration and an integral constant, keep the
    248     // integral constant.
    249     if (Y.getKind() == TemplateArgument::Integral)
    250       return Y;
    251 
    252     // If we deduced two declarations, make sure they they refer to the
    253     // same declaration.
    254     if (Y.getKind() == TemplateArgument::Declaration &&
    255         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
    256       return X;
    257 
    258     // All other combinations are incompatible.
    259     return DeducedTemplateArgument();
    260 
    261   case TemplateArgument::Pack:
    262     if (Y.getKind() != TemplateArgument::Pack ||
    263         X.pack_size() != Y.pack_size())
    264       return DeducedTemplateArgument();
    265 
    266     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    267                                       XAEnd = X.pack_end(),
    268                                          YA = Y.pack_begin();
    269          XA != XAEnd; ++XA, ++YA) {
    270       if (checkDeducedTemplateArguments(Context,
    271                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    272                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    273             .isNull())
    274         return DeducedTemplateArgument();
    275     }
    276 
    277     return X;
    278   }
    279 
    280   return DeducedTemplateArgument();
    281 }
    282 
    283 /// \brief Deduce the value of the given non-type template parameter
    284 /// from the given constant.
    285 static Sema::TemplateDeductionResult
    286 DeduceNonTypeTemplateArgument(Sema &S,
    287                               NonTypeTemplateParmDecl *NTTP,
    288                               llvm::APSInt Value, QualType ValueType,
    289                               bool DeducedFromArrayBound,
    290                               TemplateDeductionInfo &Info,
    291                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    292   assert(NTTP->getDepth() == 0 &&
    293          "Cannot deduce non-type template argument with depth > 0");
    294 
    295   DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
    296   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    297                                                      Deduced[NTTP->getIndex()],
    298                                                                  NewDeduced);
    299   if (Result.isNull()) {
    300     Info.Param = NTTP;
    301     Info.FirstArg = Deduced[NTTP->getIndex()];
    302     Info.SecondArg = NewDeduced;
    303     return Sema::TDK_Inconsistent;
    304   }
    305 
    306   Deduced[NTTP->getIndex()] = Result;
    307   return Sema::TDK_Success;
    308 }
    309 
    310 /// \brief Deduce the value of the given non-type template parameter
    311 /// from the given type- or value-dependent expression.
    312 ///
    313 /// \returns true if deduction succeeded, false otherwise.
    314 static Sema::TemplateDeductionResult
    315 DeduceNonTypeTemplateArgument(Sema &S,
    316                               NonTypeTemplateParmDecl *NTTP,
    317                               Expr *Value,
    318                               TemplateDeductionInfo &Info,
    319                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    320   assert(NTTP->getDepth() == 0 &&
    321          "Cannot deduce non-type template argument with depth > 0");
    322   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    323          "Expression template argument must be type- or value-dependent.");
    324 
    325   DeducedTemplateArgument NewDeduced(Value);
    326   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    327                                                      Deduced[NTTP->getIndex()],
    328                                                                  NewDeduced);
    329 
    330   if (Result.isNull()) {
    331     Info.Param = NTTP;
    332     Info.FirstArg = Deduced[NTTP->getIndex()];
    333     Info.SecondArg = NewDeduced;
    334     return Sema::TDK_Inconsistent;
    335   }
    336 
    337   Deduced[NTTP->getIndex()] = Result;
    338   return Sema::TDK_Success;
    339 }
    340 
    341 /// \brief Deduce the value of the given non-type template parameter
    342 /// from the given declaration.
    343 ///
    344 /// \returns true if deduction succeeded, false otherwise.
    345 static Sema::TemplateDeductionResult
    346 DeduceNonTypeTemplateArgument(Sema &S,
    347                               NonTypeTemplateParmDecl *NTTP,
    348                               Decl *D,
    349                               TemplateDeductionInfo &Info,
    350                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    351   assert(NTTP->getDepth() == 0 &&
    352          "Cannot deduce non-type template argument with depth > 0");
    353 
    354   DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
    355   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    356                                                      Deduced[NTTP->getIndex()],
    357                                                                  NewDeduced);
    358   if (Result.isNull()) {
    359     Info.Param = NTTP;
    360     Info.FirstArg = Deduced[NTTP->getIndex()];
    361     Info.SecondArg = NewDeduced;
    362     return Sema::TDK_Inconsistent;
    363   }
    364 
    365   Deduced[NTTP->getIndex()] = Result;
    366   return Sema::TDK_Success;
    367 }
    368 
    369 static Sema::TemplateDeductionResult
    370 DeduceTemplateArguments(Sema &S,
    371                         TemplateParameterList *TemplateParams,
    372                         TemplateName Param,
    373                         TemplateName Arg,
    374                         TemplateDeductionInfo &Info,
    375                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    376   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    377   if (!ParamDecl) {
    378     // The parameter type is dependent and is not a template template parameter,
    379     // so there is nothing that we can deduce.
    380     return Sema::TDK_Success;
    381   }
    382 
    383   if (TemplateTemplateParmDecl *TempParam
    384         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    385     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    386     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    387                                                  Deduced[TempParam->getIndex()],
    388                                                                    NewDeduced);
    389     if (Result.isNull()) {
    390       Info.Param = TempParam;
    391       Info.FirstArg = Deduced[TempParam->getIndex()];
    392       Info.SecondArg = NewDeduced;
    393       return Sema::TDK_Inconsistent;
    394     }
    395 
    396     Deduced[TempParam->getIndex()] = Result;
    397     return Sema::TDK_Success;
    398   }
    399 
    400   // Verify that the two template names are equivalent.
    401   if (S.Context.hasSameTemplateName(Param, Arg))
    402     return Sema::TDK_Success;
    403 
    404   // Mismatch of non-dependent template parameter to argument.
    405   Info.FirstArg = TemplateArgument(Param);
    406   Info.SecondArg = TemplateArgument(Arg);
    407   return Sema::TDK_NonDeducedMismatch;
    408 }
    409 
    410 /// \brief Deduce the template arguments by comparing the template parameter
    411 /// type (which is a template-id) with the template argument type.
    412 ///
    413 /// \param S the Sema
    414 ///
    415 /// \param TemplateParams the template parameters that we are deducing
    416 ///
    417 /// \param Param the parameter type
    418 ///
    419 /// \param Arg the argument type
    420 ///
    421 /// \param Info information about the template argument deduction itself
    422 ///
    423 /// \param Deduced the deduced template arguments
    424 ///
    425 /// \returns the result of template argument deduction so far. Note that a
    426 /// "success" result means that template argument deduction has not yet failed,
    427 /// but it may still fail, later, for other reasons.
    428 static Sema::TemplateDeductionResult
    429 DeduceTemplateArguments(Sema &S,
    430                         TemplateParameterList *TemplateParams,
    431                         const TemplateSpecializationType *Param,
    432                         QualType Arg,
    433                         TemplateDeductionInfo &Info,
    434                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    435   assert(Arg.isCanonical() && "Argument type must be canonical");
    436 
    437   // Check whether the template argument is a dependent template-id.
    438   if (const TemplateSpecializationType *SpecArg
    439         = dyn_cast<TemplateSpecializationType>(Arg)) {
    440     // Perform template argument deduction for the template name.
    441     if (Sema::TemplateDeductionResult Result
    442           = DeduceTemplateArguments(S, TemplateParams,
    443                                     Param->getTemplateName(),
    444                                     SpecArg->getTemplateName(),
    445                                     Info, Deduced))
    446       return Result;
    447 
    448 
    449     // Perform template argument deduction on each template
    450     // argument. Ignore any missing/extra arguments, since they could be
    451     // filled in by default arguments.
    452     return DeduceTemplateArguments(S, TemplateParams,
    453                                    Param->getArgs(), Param->getNumArgs(),
    454                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    455                                    Info, Deduced,
    456                                    /*NumberOfArgumentsMustMatch=*/false);
    457   }
    458 
    459   // If the argument type is a class template specialization, we
    460   // perform template argument deduction using its template
    461   // arguments.
    462   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    463   if (!RecordArg)
    464     return Sema::TDK_NonDeducedMismatch;
    465 
    466   ClassTemplateSpecializationDecl *SpecArg
    467     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    468   if (!SpecArg)
    469     return Sema::TDK_NonDeducedMismatch;
    470 
    471   // Perform template argument deduction for the template name.
    472   if (Sema::TemplateDeductionResult Result
    473         = DeduceTemplateArguments(S,
    474                                   TemplateParams,
    475                                   Param->getTemplateName(),
    476                                TemplateName(SpecArg->getSpecializedTemplate()),
    477                                   Info, Deduced))
    478     return Result;
    479 
    480   // Perform template argument deduction for the template arguments.
    481   return DeduceTemplateArguments(S, TemplateParams,
    482                                  Param->getArgs(), Param->getNumArgs(),
    483                                  SpecArg->getTemplateArgs().data(),
    484                                  SpecArg->getTemplateArgs().size(),
    485                                  Info, Deduced);
    486 }
    487 
    488 /// \brief Determines whether the given type is an opaque type that
    489 /// might be more qualified when instantiated.
    490 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    491   switch (T->getTypeClass()) {
    492   case Type::TypeOfExpr:
    493   case Type::TypeOf:
    494   case Type::DependentName:
    495   case Type::Decltype:
    496   case Type::UnresolvedUsing:
    497   case Type::TemplateTypeParm:
    498     return true;
    499 
    500   case Type::ConstantArray:
    501   case Type::IncompleteArray:
    502   case Type::VariableArray:
    503   case Type::DependentSizedArray:
    504     return IsPossiblyOpaquelyQualifiedType(
    505                                       cast<ArrayType>(T)->getElementType());
    506 
    507   default:
    508     return false;
    509   }
    510 }
    511 
    512 /// \brief Retrieve the depth and index of a template parameter.
    513 static std::pair<unsigned, unsigned>
    514 getDepthAndIndex(NamedDecl *ND) {
    515   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    516     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    517 
    518   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    519     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    520 
    521   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    522   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    523 }
    524 
    525 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    526 static std::pair<unsigned, unsigned>
    527 getDepthAndIndex(UnexpandedParameterPack UPP) {
    528   if (const TemplateTypeParmType *TTP
    529                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    530     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    531 
    532   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    533 }
    534 
    535 /// \brief Helper function to build a TemplateParameter when we don't
    536 /// know its type statically.
    537 static TemplateParameter makeTemplateParameter(Decl *D) {
    538   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    539     return TemplateParameter(TTP);
    540   else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    541     return TemplateParameter(NTTP);
    542 
    543   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    544 }
    545 
    546 /// \brief Prepare to perform template argument deduction for all of the
    547 /// arguments in a set of argument packs.
    548 static void PrepareArgumentPackDeduction(Sema &S,
    549                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    550                              const SmallVectorImpl<unsigned> &PackIndices,
    551                      SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    552          SmallVectorImpl<
    553            SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
    554   // Save the deduced template arguments for each parameter pack expanded
    555   // by this pack expansion, then clear out the deduction.
    556   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    557     // Save the previously-deduced argument pack, then clear it out so that we
    558     // can deduce a new argument pack.
    559     SavedPacks[I] = Deduced[PackIndices[I]];
    560     Deduced[PackIndices[I]] = TemplateArgument();
    561 
    562     // If the template arugment pack was explicitly specified, add that to
    563     // the set of deduced arguments.
    564     const TemplateArgument *ExplicitArgs;
    565     unsigned NumExplicitArgs;
    566     if (NamedDecl *PartiallySubstitutedPack
    567         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    568                                                            &ExplicitArgs,
    569                                                            &NumExplicitArgs)) {
    570       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
    571         NewlyDeducedPacks[I].append(ExplicitArgs,
    572                                     ExplicitArgs + NumExplicitArgs);
    573     }
    574   }
    575 }
    576 
    577 /// \brief Finish template argument deduction for a set of argument packs,
    578 /// producing the argument packs and checking for consistency with prior
    579 /// deductions.
    580 static Sema::TemplateDeductionResult
    581 FinishArgumentPackDeduction(Sema &S,
    582                             TemplateParameterList *TemplateParams,
    583                             bool HasAnyArguments,
    584                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    585                             const SmallVectorImpl<unsigned> &PackIndices,
    586                     SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    587         SmallVectorImpl<
    588           SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
    589                             TemplateDeductionInfo &Info) {
    590   // Build argument packs for each of the parameter packs expanded by this
    591   // pack expansion.
    592   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    593     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
    594       // We were not able to deduce anything for this parameter pack,
    595       // so just restore the saved argument pack.
    596       Deduced[PackIndices[I]] = SavedPacks[I];
    597       continue;
    598     }
    599 
    600     DeducedTemplateArgument NewPack;
    601 
    602     if (NewlyDeducedPacks[I].empty()) {
    603       // If we deduced an empty argument pack, create it now.
    604       NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
    605     } else {
    606       TemplateArgument *ArgumentPack
    607         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
    608       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
    609                 ArgumentPack);
    610       NewPack
    611         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
    612                                                    NewlyDeducedPacks[I].size()),
    613                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
    614     }
    615 
    616     DeducedTemplateArgument Result
    617       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
    618     if (Result.isNull()) {
    619       Info.Param
    620         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
    621       Info.FirstArg = SavedPacks[I];
    622       Info.SecondArg = NewPack;
    623       return Sema::TDK_Inconsistent;
    624     }
    625 
    626     Deduced[PackIndices[I]] = Result;
    627   }
    628 
    629   return Sema::TDK_Success;
    630 }
    631 
    632 /// \brief Deduce the template arguments by comparing the list of parameter
    633 /// types to the list of argument types, as in the parameter-type-lists of
    634 /// function types (C++ [temp.deduct.type]p10).
    635 ///
    636 /// \param S The semantic analysis object within which we are deducing
    637 ///
    638 /// \param TemplateParams The template parameters that we are deducing
    639 ///
    640 /// \param Params The list of parameter types
    641 ///
    642 /// \param NumParams The number of types in \c Params
    643 ///
    644 /// \param Args The list of argument types
    645 ///
    646 /// \param NumArgs The number of types in \c Args
    647 ///
    648 /// \param Info information about the template argument deduction itself
    649 ///
    650 /// \param Deduced the deduced template arguments
    651 ///
    652 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    653 /// how template argument deduction is performed.
    654 ///
    655 /// \param PartialOrdering If true, we are performing template argument
    656 /// deduction for during partial ordering for a call
    657 /// (C++0x [temp.deduct.partial]).
    658 ///
    659 /// \param RefParamComparisons If we're performing template argument deduction
    660 /// in the context of partial ordering, the set of qualifier comparisons.
    661 ///
    662 /// \returns the result of template argument deduction so far. Note that a
    663 /// "success" result means that template argument deduction has not yet failed,
    664 /// but it may still fail, later, for other reasons.
    665 static Sema::TemplateDeductionResult
    666 DeduceTemplateArguments(Sema &S,
    667                         TemplateParameterList *TemplateParams,
    668                         const QualType *Params, unsigned NumParams,
    669                         const QualType *Args, unsigned NumArgs,
    670                         TemplateDeductionInfo &Info,
    671                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    672                         unsigned TDF,
    673                         bool PartialOrdering = false,
    674                         SmallVectorImpl<RefParamPartialOrderingComparison> *
    675                                                      RefParamComparisons = 0) {
    676   // Fast-path check to see if we have too many/too few arguments.
    677   if (NumParams != NumArgs &&
    678       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    679       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    680     return Sema::TDK_NonDeducedMismatch;
    681 
    682   // C++0x [temp.deduct.type]p10:
    683   //   Similarly, if P has a form that contains (T), then each parameter type
    684   //   Pi of the respective parameter-type- list of P is compared with the
    685   //   corresponding parameter type Ai of the corresponding parameter-type-list
    686   //   of A. [...]
    687   unsigned ArgIdx = 0, ParamIdx = 0;
    688   for (; ParamIdx != NumParams; ++ParamIdx) {
    689     // Check argument types.
    690     const PackExpansionType *Expansion
    691                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    692     if (!Expansion) {
    693       // Simple case: compare the parameter and argument types at this point.
    694 
    695       // Make sure we have an argument.
    696       if (ArgIdx >= NumArgs)
    697         return Sema::TDK_NonDeducedMismatch;
    698 
    699       if (isa<PackExpansionType>(Args[ArgIdx])) {
    700         // C++0x [temp.deduct.type]p22:
    701         //   If the original function parameter associated with A is a function
    702         //   parameter pack and the function parameter associated with P is not
    703         //   a function parameter pack, then template argument deduction fails.
    704         return Sema::TDK_NonDeducedMismatch;
    705       }
    706 
    707       if (Sema::TemplateDeductionResult Result
    708             = DeduceTemplateArguments(S, TemplateParams,
    709                                       Params[ParamIdx],
    710                                       Args[ArgIdx],
    711                                       Info, Deduced, TDF,
    712                                       PartialOrdering,
    713                                       RefParamComparisons))
    714         return Result;
    715 
    716       ++ArgIdx;
    717       continue;
    718     }
    719 
    720     // C++0x [temp.deduct.type]p5:
    721     //   The non-deduced contexts are:
    722     //     - A function parameter pack that does not occur at the end of the
    723     //       parameter-declaration-clause.
    724     if (ParamIdx + 1 < NumParams)
    725       return Sema::TDK_Success;
    726 
    727     // C++0x [temp.deduct.type]p10:
    728     //   If the parameter-declaration corresponding to Pi is a function
    729     //   parameter pack, then the type of its declarator- id is compared with
    730     //   each remaining parameter type in the parameter-type-list of A. Each
    731     //   comparison deduces template arguments for subsequent positions in the
    732     //   template parameter packs expanded by the function parameter pack.
    733 
    734     // Compute the set of template parameter indices that correspond to
    735     // parameter packs expanded by the pack expansion.
    736     SmallVector<unsigned, 2> PackIndices;
    737     QualType Pattern = Expansion->getPattern();
    738     {
    739       llvm::BitVector SawIndices(TemplateParams->size());
    740       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    741       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    742       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    743         unsigned Depth, Index;
    744         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    745         if (Depth == 0 && !SawIndices[Index]) {
    746           SawIndices[Index] = true;
    747           PackIndices.push_back(Index);
    748         }
    749       }
    750     }
    751     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
    752 
    753     // Keep track of the deduced template arguments for each parameter pack
    754     // expanded by this pack expansion (the outer index) and for each
    755     // template argument (the inner SmallVectors).
    756     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
    757       NewlyDeducedPacks(PackIndices.size());
    758     SmallVector<DeducedTemplateArgument, 2>
    759       SavedPacks(PackIndices.size());
    760     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
    761                                  NewlyDeducedPacks);
    762 
    763     bool HasAnyArguments = false;
    764     for (; ArgIdx < NumArgs; ++ArgIdx) {
    765       HasAnyArguments = true;
    766 
    767       // Deduce template arguments from the pattern.
    768       if (Sema::TemplateDeductionResult Result
    769             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
    770                                       Info, Deduced, TDF, PartialOrdering,
    771                                       RefParamComparisons))
    772         return Result;
    773 
    774       // Capture the deduced template arguments for each parameter pack expanded
    775       // by this pack expansion, add them to the list of arguments we've deduced
    776       // for that pack, then clear out the deduced argument.
    777       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    778         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
    779         if (!DeducedArg.isNull()) {
    780           NewlyDeducedPacks[I].push_back(DeducedArg);
    781           DeducedArg = DeducedTemplateArgument();
    782         }
    783       }
    784     }
    785 
    786     // Build argument packs for each of the parameter packs expanded by this
    787     // pack expansion.
    788     if (Sema::TemplateDeductionResult Result
    789           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
    790                                         Deduced, PackIndices, SavedPacks,
    791                                         NewlyDeducedPacks, Info))
    792       return Result;
    793   }
    794 
    795   // Make sure we don't have any extra arguments.
    796   if (ArgIdx < NumArgs)
    797     return Sema::TDK_NonDeducedMismatch;
    798 
    799   return Sema::TDK_Success;
    800 }
    801 
    802 /// \brief Determine whether the parameter has qualifiers that are either
    803 /// inconsistent with or a superset of the argument's qualifiers.
    804 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    805                                                   QualType ArgType) {
    806   Qualifiers ParamQs = ParamType.getQualifiers();
    807   Qualifiers ArgQs = ArgType.getQualifiers();
    808 
    809   if (ParamQs == ArgQs)
    810     return false;
    811 
    812   // Mismatched (but not missing) Objective-C GC attributes.
    813   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    814       ParamQs.hasObjCGCAttr())
    815     return true;
    816 
    817   // Mismatched (but not missing) address spaces.
    818   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    819       ParamQs.hasAddressSpace())
    820     return true;
    821 
    822   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    823   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    824       ParamQs.hasObjCLifetime())
    825     return true;
    826 
    827   // CVR qualifier superset.
    828   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    829       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    830                                                 == ParamQs.getCVRQualifiers());
    831 }
    832 
    833 /// \brief Deduce the template arguments by comparing the parameter type and
    834 /// the argument type (C++ [temp.deduct.type]).
    835 ///
    836 /// \param S the semantic analysis object within which we are deducing
    837 ///
    838 /// \param TemplateParams the template parameters that we are deducing
    839 ///
    840 /// \param ParamIn the parameter type
    841 ///
    842 /// \param ArgIn the argument type
    843 ///
    844 /// \param Info information about the template argument deduction itself
    845 ///
    846 /// \param Deduced the deduced template arguments
    847 ///
    848 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    849 /// how template argument deduction is performed.
    850 ///
    851 /// \param PartialOrdering Whether we're performing template argument deduction
    852 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    853 ///
    854 /// \param RefParamComparisons If we're performing template argument deduction
    855 /// in the context of partial ordering, the set of qualifier comparisons.
    856 ///
    857 /// \returns the result of template argument deduction so far. Note that a
    858 /// "success" result means that template argument deduction has not yet failed,
    859 /// but it may still fail, later, for other reasons.
    860 static Sema::TemplateDeductionResult
    861 DeduceTemplateArguments(Sema &S,
    862                         TemplateParameterList *TemplateParams,
    863                         QualType ParamIn, QualType ArgIn,
    864                         TemplateDeductionInfo &Info,
    865                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    866                         unsigned TDF,
    867                         bool PartialOrdering,
    868     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
    869   // We only want to look at the canonical types, since typedefs and
    870   // sugar are not part of template argument deduction.
    871   QualType Param = S.Context.getCanonicalType(ParamIn);
    872   QualType Arg = S.Context.getCanonicalType(ArgIn);
    873 
    874   // If the argument type is a pack expansion, look at its pattern.
    875   // This isn't explicitly called out
    876   if (const PackExpansionType *ArgExpansion
    877                                             = dyn_cast<PackExpansionType>(Arg))
    878     Arg = ArgExpansion->getPattern();
    879 
    880   if (PartialOrdering) {
    881     // C++0x [temp.deduct.partial]p5:
    882     //   Before the partial ordering is done, certain transformations are
    883     //   performed on the types used for partial ordering:
    884     //     - If P is a reference type, P is replaced by the type referred to.
    885     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    886     if (ParamRef)
    887       Param = ParamRef->getPointeeType();
    888 
    889     //     - If A is a reference type, A is replaced by the type referred to.
    890     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    891     if (ArgRef)
    892       Arg = ArgRef->getPointeeType();
    893 
    894     if (RefParamComparisons && ParamRef && ArgRef) {
    895       // C++0x [temp.deduct.partial]p6:
    896       //   If both P and A were reference types (before being replaced with the
    897       //   type referred to above), determine which of the two types (if any) is
    898       //   more cv-qualified than the other; otherwise the types are considered
    899       //   to be equally cv-qualified for partial ordering purposes. The result
    900       //   of this determination will be used below.
    901       //
    902       // We save this information for later, using it only when deduction
    903       // succeeds in both directions.
    904       RefParamPartialOrderingComparison Comparison;
    905       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
    906       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
    907       Comparison.Qualifiers = NeitherMoreQualified;
    908 
    909       Qualifiers ParamQuals = Param.getQualifiers();
    910       Qualifiers ArgQuals = Arg.getQualifiers();
    911       if (ParamQuals.isStrictSupersetOf(ArgQuals))
    912         Comparison.Qualifiers = ParamMoreQualified;
    913       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
    914         Comparison.Qualifiers = ArgMoreQualified;
    915       RefParamComparisons->push_back(Comparison);
    916     }
    917 
    918     // C++0x [temp.deduct.partial]p7:
    919     //   Remove any top-level cv-qualifiers:
    920     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
    921     //       version of P.
    922     Param = Param.getUnqualifiedType();
    923     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
    924     //       version of A.
    925     Arg = Arg.getUnqualifiedType();
    926   } else {
    927     // C++0x [temp.deduct.call]p4 bullet 1:
    928     //   - If the original P is a reference type, the deduced A (i.e., the type
    929     //     referred to by the reference) can be more cv-qualified than the
    930     //     transformed A.
    931     if (TDF & TDF_ParamWithReferenceType) {
    932       Qualifiers Quals;
    933       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
    934       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
    935                              Arg.getCVRQualifiers());
    936       Param = S.Context.getQualifiedType(UnqualParam, Quals);
    937     }
    938 
    939     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
    940       // C++0x [temp.deduct.type]p10:
    941       //   If P and A are function types that originated from deduction when
    942       //   taking the address of a function template (14.8.2.2) or when deducing
    943       //   template arguments from a function declaration (14.8.2.6) and Pi and
    944       //   Ai are parameters of the top-level parameter-type-list of P and A,
    945       //   respectively, Pi is adjusted if it is an rvalue reference to a
    946       //   cv-unqualified template parameter and Ai is an lvalue reference, in
    947       //   which case the type of Pi is changed to be the template parameter
    948       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
    949       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
    950       //   deduced as X&. - end note ]
    951       TDF &= ~TDF_TopLevelParameterTypeList;
    952 
    953       if (const RValueReferenceType *ParamRef
    954                                         = Param->getAs<RValueReferenceType>()) {
    955         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
    956             !ParamRef->getPointeeType().getQualifiers())
    957           if (Arg->isLValueReferenceType())
    958             Param = ParamRef->getPointeeType();
    959       }
    960     }
    961   }
    962 
    963   // If the parameter type is not dependent, there is nothing to deduce.
    964   if (!Param->isDependentType()) {
    965     if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
    966       return Sema::TDK_NonDeducedMismatch;
    967 
    968     return Sema::TDK_Success;
    969   }
    970 
    971   // C++ [temp.deduct.type]p9:
    972   //   A template type argument T, a template template argument TT or a
    973   //   template non-type argument i can be deduced if P and A have one of
    974   //   the following forms:
    975   //
    976   //     T
    977   //     cv-list T
    978   if (const TemplateTypeParmType *TemplateTypeParm
    979         = Param->getAs<TemplateTypeParmType>()) {
    980     // Just skip any attempts to deduce from a placeholder type.
    981     if (Arg->isPlaceholderType())
    982       return Sema::TDK_Success;
    983 
    984     unsigned Index = TemplateTypeParm->getIndex();
    985     bool RecanonicalizeArg = false;
    986 
    987     // If the argument type is an array type, move the qualifiers up to the
    988     // top level, so they can be matched with the qualifiers on the parameter.
    989     if (isa<ArrayType>(Arg)) {
    990       Qualifiers Quals;
    991       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
    992       if (Quals) {
    993         Arg = S.Context.getQualifiedType(Arg, Quals);
    994         RecanonicalizeArg = true;
    995       }
    996     }
    997 
    998     // The argument type can not be less qualified than the parameter
    999     // type.
   1000     if (!(TDF & TDF_IgnoreQualifiers) &&
   1001         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
   1002       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1003       Info.FirstArg = TemplateArgument(Param);
   1004       Info.SecondArg = TemplateArgument(Arg);
   1005       return Sema::TDK_Underqualified;
   1006     }
   1007 
   1008     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1009     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1010     QualType DeducedType = Arg;
   1011 
   1012     // Remove any qualifiers on the parameter from the deduced type.
   1013     // We checked the qualifiers for consistency above.
   1014     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1015     Qualifiers ParamQs = Param.getQualifiers();
   1016     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1017     if (ParamQs.hasObjCGCAttr())
   1018       DeducedQs.removeObjCGCAttr();
   1019     if (ParamQs.hasAddressSpace())
   1020       DeducedQs.removeAddressSpace();
   1021     if (ParamQs.hasObjCLifetime())
   1022       DeducedQs.removeObjCLifetime();
   1023 
   1024     // Objective-C ARC:
   1025     //   If template deduction would produce a lifetime qualifier on a type
   1026     //   that is not a lifetime type, template argument deduction fails.
   1027     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
   1028         !DeducedType->isDependentType()) {
   1029       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1030       Info.FirstArg = TemplateArgument(Param);
   1031       Info.SecondArg = TemplateArgument(Arg);
   1032       return Sema::TDK_Underqualified;
   1033     }
   1034 
   1035     // Objective-C ARC:
   1036     //   If template deduction would produce an argument type with lifetime type
   1037     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1038     if (S.getLangOptions().ObjCAutoRefCount &&
   1039         DeducedType->isObjCLifetimeType() &&
   1040         !DeducedQs.hasObjCLifetime())
   1041       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1042 
   1043     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1044                                              DeducedQs);
   1045 
   1046     if (RecanonicalizeArg)
   1047       DeducedType = S.Context.getCanonicalType(DeducedType);
   1048 
   1049     DeducedTemplateArgument NewDeduced(DeducedType);
   1050     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1051                                                                  Deduced[Index],
   1052                                                                    NewDeduced);
   1053     if (Result.isNull()) {
   1054       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1055       Info.FirstArg = Deduced[Index];
   1056       Info.SecondArg = NewDeduced;
   1057       return Sema::TDK_Inconsistent;
   1058     }
   1059 
   1060     Deduced[Index] = Result;
   1061     return Sema::TDK_Success;
   1062   }
   1063 
   1064   // Set up the template argument deduction information for a failure.
   1065   Info.FirstArg = TemplateArgument(ParamIn);
   1066   Info.SecondArg = TemplateArgument(ArgIn);
   1067 
   1068   // If the parameter is an already-substituted template parameter
   1069   // pack, do nothing: we don't know which of its arguments to look
   1070   // at, so we have to wait until all of the parameter packs in this
   1071   // expansion have arguments.
   1072   if (isa<SubstTemplateTypeParmPackType>(Param))
   1073     return Sema::TDK_Success;
   1074 
   1075   // Check the cv-qualifiers on the parameter and argument types.
   1076   if (!(TDF & TDF_IgnoreQualifiers)) {
   1077     if (TDF & TDF_ParamWithReferenceType) {
   1078       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1079         return Sema::TDK_NonDeducedMismatch;
   1080     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1081       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1082         return Sema::TDK_NonDeducedMismatch;
   1083     }
   1084   }
   1085 
   1086   switch (Param->getTypeClass()) {
   1087     // Non-canonical types cannot appear here.
   1088 #define NON_CANONICAL_TYPE(Class, Base) \
   1089   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1090 #define TYPE(Class, Base)
   1091 #include "clang/AST/TypeNodes.def"
   1092 
   1093     case Type::TemplateTypeParm:
   1094     case Type::SubstTemplateTypeParmPack:
   1095       llvm_unreachable("Type nodes handled above");
   1096 
   1097     // These types cannot be used in templates or cannot be dependent, so
   1098     // deduction always fails.
   1099     case Type::Builtin:
   1100     case Type::VariableArray:
   1101     case Type::Vector:
   1102     case Type::FunctionNoProto:
   1103     case Type::Record:
   1104     case Type::Enum:
   1105     case Type::ObjCObject:
   1106     case Type::ObjCInterface:
   1107     case Type::ObjCObjectPointer:
   1108       return Sema::TDK_NonDeducedMismatch;
   1109 
   1110     //     _Complex T   [placeholder extension]
   1111     case Type::Complex:
   1112       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1113         return DeduceTemplateArguments(S, TemplateParams,
   1114                                     cast<ComplexType>(Param)->getElementType(),
   1115                                        ComplexArg->getElementType(),
   1116                                        Info, Deduced, TDF);
   1117 
   1118       return Sema::TDK_NonDeducedMismatch;
   1119 
   1120     //     _Atomic T   [extension]
   1121     case Type::Atomic:
   1122       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
   1123         return DeduceTemplateArguments(S, TemplateParams,
   1124                                        cast<AtomicType>(Param)->getValueType(),
   1125                                        AtomicArg->getValueType(),
   1126                                        Info, Deduced, TDF);
   1127 
   1128       return Sema::TDK_NonDeducedMismatch;
   1129 
   1130     //     T *
   1131     case Type::Pointer: {
   1132       QualType PointeeType;
   1133       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1134         PointeeType = PointerArg->getPointeeType();
   1135       } else if (const ObjCObjectPointerType *PointerArg
   1136                    = Arg->getAs<ObjCObjectPointerType>()) {
   1137         PointeeType = PointerArg->getPointeeType();
   1138       } else {
   1139         return Sema::TDK_NonDeducedMismatch;
   1140       }
   1141 
   1142       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1143       return DeduceTemplateArguments(S, TemplateParams,
   1144                                    cast<PointerType>(Param)->getPointeeType(),
   1145                                      PointeeType,
   1146                                      Info, Deduced, SubTDF);
   1147     }
   1148 
   1149     //     T &
   1150     case Type::LValueReference: {
   1151       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
   1152       if (!ReferenceArg)
   1153         return Sema::TDK_NonDeducedMismatch;
   1154 
   1155       return DeduceTemplateArguments(S, TemplateParams,
   1156                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1157                                      ReferenceArg->getPointeeType(),
   1158                                      Info, Deduced, 0);
   1159     }
   1160 
   1161     //     T && [C++0x]
   1162     case Type::RValueReference: {
   1163       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
   1164       if (!ReferenceArg)
   1165         return Sema::TDK_NonDeducedMismatch;
   1166 
   1167       return DeduceTemplateArguments(S, TemplateParams,
   1168                            cast<RValueReferenceType>(Param)->getPointeeType(),
   1169                                      ReferenceArg->getPointeeType(),
   1170                                      Info, Deduced, 0);
   1171     }
   1172 
   1173     //     T [] (implied, but not stated explicitly)
   1174     case Type::IncompleteArray: {
   1175       const IncompleteArrayType *IncompleteArrayArg =
   1176         S.Context.getAsIncompleteArrayType(Arg);
   1177       if (!IncompleteArrayArg)
   1178         return Sema::TDK_NonDeducedMismatch;
   1179 
   1180       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1181       return DeduceTemplateArguments(S, TemplateParams,
   1182                      S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1183                                      IncompleteArrayArg->getElementType(),
   1184                                      Info, Deduced, SubTDF);
   1185     }
   1186 
   1187     //     T [integer-constant]
   1188     case Type::ConstantArray: {
   1189       const ConstantArrayType *ConstantArrayArg =
   1190         S.Context.getAsConstantArrayType(Arg);
   1191       if (!ConstantArrayArg)
   1192         return Sema::TDK_NonDeducedMismatch;
   1193 
   1194       const ConstantArrayType *ConstantArrayParm =
   1195         S.Context.getAsConstantArrayType(Param);
   1196       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1197         return Sema::TDK_NonDeducedMismatch;
   1198 
   1199       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1200       return DeduceTemplateArguments(S, TemplateParams,
   1201                                      ConstantArrayParm->getElementType(),
   1202                                      ConstantArrayArg->getElementType(),
   1203                                      Info, Deduced, SubTDF);
   1204     }
   1205 
   1206     //     type [i]
   1207     case Type::DependentSizedArray: {
   1208       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1209       if (!ArrayArg)
   1210         return Sema::TDK_NonDeducedMismatch;
   1211 
   1212       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1213 
   1214       // Check the element type of the arrays
   1215       const DependentSizedArrayType *DependentArrayParm
   1216         = S.Context.getAsDependentSizedArrayType(Param);
   1217       if (Sema::TemplateDeductionResult Result
   1218             = DeduceTemplateArguments(S, TemplateParams,
   1219                                       DependentArrayParm->getElementType(),
   1220                                       ArrayArg->getElementType(),
   1221                                       Info, Deduced, SubTDF))
   1222         return Result;
   1223 
   1224       // Determine the array bound is something we can deduce.
   1225       NonTypeTemplateParmDecl *NTTP
   1226         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1227       if (!NTTP)
   1228         return Sema::TDK_Success;
   1229 
   1230       // We can perform template argument deduction for the given non-type
   1231       // template parameter.
   1232       assert(NTTP->getDepth() == 0 &&
   1233              "Cannot deduce non-type template argument at depth > 0");
   1234       if (const ConstantArrayType *ConstantArrayArg
   1235             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1236         llvm::APSInt Size(ConstantArrayArg->getSize());
   1237         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1238                                              S.Context.getSizeType(),
   1239                                              /*ArrayBound=*/true,
   1240                                              Info, Deduced);
   1241       }
   1242       if (const DependentSizedArrayType *DependentArrayArg
   1243             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1244         if (DependentArrayArg->getSizeExpr())
   1245           return DeduceNonTypeTemplateArgument(S, NTTP,
   1246                                                DependentArrayArg->getSizeExpr(),
   1247                                                Info, Deduced);
   1248 
   1249       // Incomplete type does not match a dependently-sized array type
   1250       return Sema::TDK_NonDeducedMismatch;
   1251     }
   1252 
   1253     //     type(*)(T)
   1254     //     T(*)()
   1255     //     T(*)(T)
   1256     case Type::FunctionProto: {
   1257       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1258       const FunctionProtoType *FunctionProtoArg =
   1259         dyn_cast<FunctionProtoType>(Arg);
   1260       if (!FunctionProtoArg)
   1261         return Sema::TDK_NonDeducedMismatch;
   1262 
   1263       const FunctionProtoType *FunctionProtoParam =
   1264         cast<FunctionProtoType>(Param);
   1265 
   1266       if (FunctionProtoParam->getTypeQuals()
   1267             != FunctionProtoArg->getTypeQuals() ||
   1268           FunctionProtoParam->getRefQualifier()
   1269             != FunctionProtoArg->getRefQualifier() ||
   1270           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1271         return Sema::TDK_NonDeducedMismatch;
   1272 
   1273       // Check return types.
   1274       if (Sema::TemplateDeductionResult Result
   1275             = DeduceTemplateArguments(S, TemplateParams,
   1276                                       FunctionProtoParam->getResultType(),
   1277                                       FunctionProtoArg->getResultType(),
   1278                                       Info, Deduced, 0))
   1279         return Result;
   1280 
   1281       return DeduceTemplateArguments(S, TemplateParams,
   1282                                      FunctionProtoParam->arg_type_begin(),
   1283                                      FunctionProtoParam->getNumArgs(),
   1284                                      FunctionProtoArg->arg_type_begin(),
   1285                                      FunctionProtoArg->getNumArgs(),
   1286                                      Info, Deduced, SubTDF);
   1287     }
   1288 
   1289     case Type::InjectedClassName: {
   1290       // Treat a template's injected-class-name as if the template
   1291       // specialization type had been used.
   1292       Param = cast<InjectedClassNameType>(Param)
   1293         ->getInjectedSpecializationType();
   1294       assert(isa<TemplateSpecializationType>(Param) &&
   1295              "injected class name is not a template specialization type");
   1296       // fall through
   1297     }
   1298 
   1299     //     template-name<T> (where template-name refers to a class template)
   1300     //     template-name<i>
   1301     //     TT<T>
   1302     //     TT<i>
   1303     //     TT<>
   1304     case Type::TemplateSpecialization: {
   1305       const TemplateSpecializationType *SpecParam
   1306         = cast<TemplateSpecializationType>(Param);
   1307 
   1308       // Try to deduce template arguments from the template-id.
   1309       Sema::TemplateDeductionResult Result
   1310         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1311                                   Info, Deduced);
   1312 
   1313       if (Result && (TDF & TDF_DerivedClass)) {
   1314         // C++ [temp.deduct.call]p3b3:
   1315         //   If P is a class, and P has the form template-id, then A can be a
   1316         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1317         //   class of the form template-id, A can be a pointer to a derived
   1318         //   class pointed to by the deduced A.
   1319         //
   1320         // More importantly:
   1321         //   These alternatives are considered only if type deduction would
   1322         //   otherwise fail.
   1323         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1324           // We cannot inspect base classes as part of deduction when the type
   1325           // is incomplete, so either instantiate any templates necessary to
   1326           // complete the type, or skip over it if it cannot be completed.
   1327           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
   1328             return Result;
   1329 
   1330           // Use data recursion to crawl through the list of base classes.
   1331           // Visited contains the set of nodes we have already visited, while
   1332           // ToVisit is our stack of records that we still need to visit.
   1333           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1334           SmallVector<const RecordType *, 8> ToVisit;
   1335           ToVisit.push_back(RecordT);
   1336           bool Successful = false;
   1337           SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
   1338           DeducedOrig = Deduced;
   1339           while (!ToVisit.empty()) {
   1340             // Retrieve the next class in the inheritance hierarchy.
   1341             const RecordType *NextT = ToVisit.back();
   1342             ToVisit.pop_back();
   1343 
   1344             // If we have already seen this type, skip it.
   1345             if (!Visited.insert(NextT))
   1346               continue;
   1347 
   1348             // If this is a base class, try to perform template argument
   1349             // deduction from it.
   1350             if (NextT != RecordT) {
   1351               Sema::TemplateDeductionResult BaseResult
   1352                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1353                                           QualType(NextT, 0), Info, Deduced);
   1354 
   1355               // If template argument deduction for this base was successful,
   1356               // note that we had some success. Otherwise, ignore any deductions
   1357               // from this base class.
   1358               if (BaseResult == Sema::TDK_Success) {
   1359                 Successful = true;
   1360                 DeducedOrig = Deduced;
   1361               }
   1362               else
   1363                 Deduced = DeducedOrig;
   1364             }
   1365 
   1366             // Visit base classes
   1367             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1368             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
   1369                                                  BaseEnd = Next->bases_end();
   1370                  Base != BaseEnd; ++Base) {
   1371               assert(Base->getType()->isRecordType() &&
   1372                      "Base class that isn't a record?");
   1373               ToVisit.push_back(Base->getType()->getAs<RecordType>());
   1374             }
   1375           }
   1376 
   1377           if (Successful)
   1378             return Sema::TDK_Success;
   1379         }
   1380 
   1381       }
   1382 
   1383       return Result;
   1384     }
   1385 
   1386     //     T type::*
   1387     //     T T::*
   1388     //     T (type::*)()
   1389     //     type (T::*)()
   1390     //     type (type::*)(T)
   1391     //     type (T::*)(T)
   1392     //     T (type::*)(T)
   1393     //     T (T::*)()
   1394     //     T (T::*)(T)
   1395     case Type::MemberPointer: {
   1396       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1397       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1398       if (!MemPtrArg)
   1399         return Sema::TDK_NonDeducedMismatch;
   1400 
   1401       if (Sema::TemplateDeductionResult Result
   1402             = DeduceTemplateArguments(S, TemplateParams,
   1403                                       MemPtrParam->getPointeeType(),
   1404                                       MemPtrArg->getPointeeType(),
   1405                                       Info, Deduced,
   1406                                       TDF & TDF_IgnoreQualifiers))
   1407         return Result;
   1408 
   1409       return DeduceTemplateArguments(S, TemplateParams,
   1410                                      QualType(MemPtrParam->getClass(), 0),
   1411                                      QualType(MemPtrArg->getClass(), 0),
   1412                                      Info, Deduced, 0);
   1413     }
   1414 
   1415     //     (clang extension)
   1416     //
   1417     //     type(^)(T)
   1418     //     T(^)()
   1419     //     T(^)(T)
   1420     case Type::BlockPointer: {
   1421       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1422       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1423 
   1424       if (!BlockPtrArg)
   1425         return Sema::TDK_NonDeducedMismatch;
   1426 
   1427       return DeduceTemplateArguments(S, TemplateParams,
   1428                                      BlockPtrParam->getPointeeType(),
   1429                                      BlockPtrArg->getPointeeType(), Info,
   1430                                      Deduced, 0);
   1431     }
   1432 
   1433     //     (clang extension)
   1434     //
   1435     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1436     case Type::ExtVector: {
   1437       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1438       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1439         // Make sure that the vectors have the same number of elements.
   1440         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1441           return Sema::TDK_NonDeducedMismatch;
   1442 
   1443         // Perform deduction on the element types.
   1444         return DeduceTemplateArguments(S, TemplateParams,
   1445                                        VectorParam->getElementType(),
   1446                                        VectorArg->getElementType(),
   1447                                        Info, Deduced,
   1448                                        TDF);
   1449       }
   1450 
   1451       if (const DependentSizedExtVectorType *VectorArg
   1452                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1453         // We can't check the number of elements, since the argument has a
   1454         // dependent number of elements. This can only occur during partial
   1455         // ordering.
   1456 
   1457         // Perform deduction on the element types.
   1458         return DeduceTemplateArguments(S, TemplateParams,
   1459                                        VectorParam->getElementType(),
   1460                                        VectorArg->getElementType(),
   1461                                        Info, Deduced,
   1462                                        TDF);
   1463       }
   1464 
   1465       return Sema::TDK_NonDeducedMismatch;
   1466     }
   1467 
   1468     //     (clang extension)
   1469     //
   1470     //     T __attribute__(((ext_vector_type(N))))
   1471     case Type::DependentSizedExtVector: {
   1472       const DependentSizedExtVectorType *VectorParam
   1473         = cast<DependentSizedExtVectorType>(Param);
   1474 
   1475       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1476         // Perform deduction on the element types.
   1477         if (Sema::TemplateDeductionResult Result
   1478               = DeduceTemplateArguments(S, TemplateParams,
   1479                                         VectorParam->getElementType(),
   1480                                         VectorArg->getElementType(),
   1481                                         Info, Deduced,
   1482                                         TDF))
   1483           return Result;
   1484 
   1485         // Perform deduction on the vector size, if we can.
   1486         NonTypeTemplateParmDecl *NTTP
   1487           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1488         if (!NTTP)
   1489           return Sema::TDK_Success;
   1490 
   1491         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1492         ArgSize = VectorArg->getNumElements();
   1493         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1494                                              false, Info, Deduced);
   1495       }
   1496 
   1497       if (const DependentSizedExtVectorType *VectorArg
   1498                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1499         // Perform deduction on the element types.
   1500         if (Sema::TemplateDeductionResult Result
   1501             = DeduceTemplateArguments(S, TemplateParams,
   1502                                       VectorParam->getElementType(),
   1503                                       VectorArg->getElementType(),
   1504                                       Info, Deduced,
   1505                                       TDF))
   1506           return Result;
   1507 
   1508         // Perform deduction on the vector size, if we can.
   1509         NonTypeTemplateParmDecl *NTTP
   1510           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1511         if (!NTTP)
   1512           return Sema::TDK_Success;
   1513 
   1514         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1515                                              Info, Deduced);
   1516       }
   1517 
   1518       return Sema::TDK_NonDeducedMismatch;
   1519     }
   1520 
   1521     case Type::TypeOfExpr:
   1522     case Type::TypeOf:
   1523     case Type::DependentName:
   1524     case Type::UnresolvedUsing:
   1525     case Type::Decltype:
   1526     case Type::UnaryTransform:
   1527     case Type::Auto:
   1528     case Type::DependentTemplateSpecialization:
   1529     case Type::PackExpansion:
   1530       // No template argument deduction for these types
   1531       return Sema::TDK_Success;
   1532   }
   1533 
   1534   return Sema::TDK_Success;
   1535 }
   1536 
   1537 static Sema::TemplateDeductionResult
   1538 DeduceTemplateArguments(Sema &S,
   1539                         TemplateParameterList *TemplateParams,
   1540                         const TemplateArgument &Param,
   1541                         TemplateArgument Arg,
   1542                         TemplateDeductionInfo &Info,
   1543                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1544   // If the template argument is a pack expansion, perform template argument
   1545   // deduction against the pattern of that expansion. This only occurs during
   1546   // partial ordering.
   1547   if (Arg.isPackExpansion())
   1548     Arg = Arg.getPackExpansionPattern();
   1549 
   1550   switch (Param.getKind()) {
   1551   case TemplateArgument::Null:
   1552     llvm_unreachable("Null template argument in parameter list");
   1553 
   1554   case TemplateArgument::Type:
   1555     if (Arg.getKind() == TemplateArgument::Type)
   1556       return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
   1557                                      Arg.getAsType(), Info, Deduced, 0);
   1558     Info.FirstArg = Param;
   1559     Info.SecondArg = Arg;
   1560     return Sema::TDK_NonDeducedMismatch;
   1561 
   1562   case TemplateArgument::Template:
   1563     if (Arg.getKind() == TemplateArgument::Template)
   1564       return DeduceTemplateArguments(S, TemplateParams,
   1565                                      Param.getAsTemplate(),
   1566                                      Arg.getAsTemplate(), Info, Deduced);
   1567     Info.FirstArg = Param;
   1568     Info.SecondArg = Arg;
   1569     return Sema::TDK_NonDeducedMismatch;
   1570 
   1571   case TemplateArgument::TemplateExpansion:
   1572     llvm_unreachable("caller should handle pack expansions");
   1573     break;
   1574 
   1575   case TemplateArgument::Declaration:
   1576     if (Arg.getKind() == TemplateArgument::Declaration &&
   1577         Param.getAsDecl()->getCanonicalDecl() ==
   1578           Arg.getAsDecl()->getCanonicalDecl())
   1579       return Sema::TDK_Success;
   1580 
   1581     Info.FirstArg = Param;
   1582     Info.SecondArg = Arg;
   1583     return Sema::TDK_NonDeducedMismatch;
   1584 
   1585   case TemplateArgument::Integral:
   1586     if (Arg.getKind() == TemplateArgument::Integral) {
   1587       if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
   1588         return Sema::TDK_Success;
   1589 
   1590       Info.FirstArg = Param;
   1591       Info.SecondArg = Arg;
   1592       return Sema::TDK_NonDeducedMismatch;
   1593     }
   1594 
   1595     if (Arg.getKind() == TemplateArgument::Expression) {
   1596       Info.FirstArg = Param;
   1597       Info.SecondArg = Arg;
   1598       return Sema::TDK_NonDeducedMismatch;
   1599     }
   1600 
   1601     Info.FirstArg = Param;
   1602     Info.SecondArg = Arg;
   1603     return Sema::TDK_NonDeducedMismatch;
   1604 
   1605   case TemplateArgument::Expression: {
   1606     if (NonTypeTemplateParmDecl *NTTP
   1607           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1608       if (Arg.getKind() == TemplateArgument::Integral)
   1609         return DeduceNonTypeTemplateArgument(S, NTTP,
   1610                                              *Arg.getAsIntegral(),
   1611                                              Arg.getIntegralType(),
   1612                                              /*ArrayBound=*/false,
   1613                                              Info, Deduced);
   1614       if (Arg.getKind() == TemplateArgument::Expression)
   1615         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1616                                              Info, Deduced);
   1617       if (Arg.getKind() == TemplateArgument::Declaration)
   1618         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1619                                              Info, Deduced);
   1620 
   1621       Info.FirstArg = Param;
   1622       Info.SecondArg = Arg;
   1623       return Sema::TDK_NonDeducedMismatch;
   1624     }
   1625 
   1626     // Can't deduce anything, but that's okay.
   1627     return Sema::TDK_Success;
   1628   }
   1629   case TemplateArgument::Pack:
   1630     llvm_unreachable("Argument packs should be expanded by the caller!");
   1631   }
   1632 
   1633   return Sema::TDK_Success;
   1634 }
   1635 
   1636 /// \brief Determine whether there is a template argument to be used for
   1637 /// deduction.
   1638 ///
   1639 /// This routine "expands" argument packs in-place, overriding its input
   1640 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1641 ///
   1642 /// \returns true if there is another template argument (which will be at
   1643 /// \c Args[ArgIdx]), false otherwise.
   1644 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1645                                             unsigned &ArgIdx,
   1646                                             unsigned &NumArgs) {
   1647   if (ArgIdx == NumArgs)
   1648     return false;
   1649 
   1650   const TemplateArgument &Arg = Args[ArgIdx];
   1651   if (Arg.getKind() != TemplateArgument::Pack)
   1652     return true;
   1653 
   1654   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1655   Args = Arg.pack_begin();
   1656   NumArgs = Arg.pack_size();
   1657   ArgIdx = 0;
   1658   return ArgIdx < NumArgs;
   1659 }
   1660 
   1661 /// \brief Determine whether the given set of template arguments has a pack
   1662 /// expansion that is not the last template argument.
   1663 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1664                                       unsigned NumArgs) {
   1665   unsigned ArgIdx = 0;
   1666   while (ArgIdx < NumArgs) {
   1667     const TemplateArgument &Arg = Args[ArgIdx];
   1668 
   1669     // Unwrap argument packs.
   1670     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1671       Args = Arg.pack_begin();
   1672       NumArgs = Arg.pack_size();
   1673       ArgIdx = 0;
   1674       continue;
   1675     }
   1676 
   1677     ++ArgIdx;
   1678     if (ArgIdx == NumArgs)
   1679       return false;
   1680 
   1681     if (Arg.isPackExpansion())
   1682       return true;
   1683   }
   1684 
   1685   return false;
   1686 }
   1687 
   1688 static Sema::TemplateDeductionResult
   1689 DeduceTemplateArguments(Sema &S,
   1690                         TemplateParameterList *TemplateParams,
   1691                         const TemplateArgument *Params, unsigned NumParams,
   1692                         const TemplateArgument *Args, unsigned NumArgs,
   1693                         TemplateDeductionInfo &Info,
   1694                     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   1695                         bool NumberOfArgumentsMustMatch) {
   1696   // C++0x [temp.deduct.type]p9:
   1697   //   If the template argument list of P contains a pack expansion that is not
   1698   //   the last template argument, the entire template argument list is a
   1699   //   non-deduced context.
   1700   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1701     return Sema::TDK_Success;
   1702 
   1703   // C++0x [temp.deduct.type]p9:
   1704   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1705   //   respective template argument list P is compared with the corresponding
   1706   //   argument Ai of the corresponding template argument list of A.
   1707   unsigned ArgIdx = 0, ParamIdx = 0;
   1708   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1709        ++ParamIdx) {
   1710     if (!Params[ParamIdx].isPackExpansion()) {
   1711       // The simple case: deduce template arguments by matching Pi and Ai.
   1712 
   1713       // Check whether we have enough arguments.
   1714       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1715         return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
   1716                                          : Sema::TDK_Success;
   1717 
   1718       if (Args[ArgIdx].isPackExpansion()) {
   1719         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1720         // but applied to pack expansions that are template arguments.
   1721         return Sema::TDK_NonDeducedMismatch;
   1722       }
   1723 
   1724       // Perform deduction for this Pi/Ai pair.
   1725       if (Sema::TemplateDeductionResult Result
   1726             = DeduceTemplateArguments(S, TemplateParams,
   1727                                       Params[ParamIdx], Args[ArgIdx],
   1728                                       Info, Deduced))
   1729         return Result;
   1730 
   1731       // Move to the next argument.
   1732       ++ArgIdx;
   1733       continue;
   1734     }
   1735 
   1736     // The parameter is a pack expansion.
   1737 
   1738     // C++0x [temp.deduct.type]p9:
   1739     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1740     //   each remaining argument in the template argument list of A. Each
   1741     //   comparison deduces template arguments for subsequent positions in the
   1742     //   template parameter packs expanded by Pi.
   1743     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1744 
   1745     // Compute the set of template parameter indices that correspond to
   1746     // parameter packs expanded by the pack expansion.
   1747     SmallVector<unsigned, 2> PackIndices;
   1748     {
   1749       llvm::BitVector SawIndices(TemplateParams->size());
   1750       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   1751       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
   1752       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   1753         unsigned Depth, Index;
   1754         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   1755         if (Depth == 0 && !SawIndices[Index]) {
   1756           SawIndices[Index] = true;
   1757           PackIndices.push_back(Index);
   1758         }
   1759       }
   1760     }
   1761     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   1762 
   1763     // FIXME: If there are no remaining arguments, we can bail out early
   1764     // and set any deduced parameter packs to an empty argument pack.
   1765     // The latter part of this is a (minor) correctness issue.
   1766 
   1767     // Save the deduced template arguments for each parameter pack expanded
   1768     // by this pack expansion, then clear out the deduction.
   1769     SmallVector<DeducedTemplateArgument, 2>
   1770       SavedPacks(PackIndices.size());
   1771     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
   1772       NewlyDeducedPacks(PackIndices.size());
   1773     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
   1774                                  NewlyDeducedPacks);
   1775 
   1776     // Keep track of the deduced template arguments for each parameter pack
   1777     // expanded by this pack expansion (the outer index) and for each
   1778     // template argument (the inner SmallVectors).
   1779     bool HasAnyArguments = false;
   1780     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
   1781       HasAnyArguments = true;
   1782 
   1783       // Deduce template arguments from the pattern.
   1784       if (Sema::TemplateDeductionResult Result
   1785             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1786                                       Info, Deduced))
   1787         return Result;
   1788 
   1789       // Capture the deduced template arguments for each parameter pack expanded
   1790       // by this pack expansion, add them to the list of arguments we've deduced
   1791       // for that pack, then clear out the deduced argument.
   1792       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   1793         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   1794         if (!DeducedArg.isNull()) {
   1795           NewlyDeducedPacks[I].push_back(DeducedArg);
   1796           DeducedArg = DeducedTemplateArgument();
   1797         }
   1798       }
   1799 
   1800       ++ArgIdx;
   1801     }
   1802 
   1803     // Build argument packs for each of the parameter packs expanded by this
   1804     // pack expansion.
   1805     if (Sema::TemplateDeductionResult Result
   1806           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
   1807                                         Deduced, PackIndices, SavedPacks,
   1808                                         NewlyDeducedPacks, Info))
   1809       return Result;
   1810   }
   1811 
   1812   // If there is an argument remaining, then we had too many arguments.
   1813   if (NumberOfArgumentsMustMatch &&
   1814       hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1815     return Sema::TDK_NonDeducedMismatch;
   1816 
   1817   return Sema::TDK_Success;
   1818 }
   1819 
   1820 static Sema::TemplateDeductionResult
   1821 DeduceTemplateArguments(Sema &S,
   1822                         TemplateParameterList *TemplateParams,
   1823                         const TemplateArgumentList &ParamList,
   1824                         const TemplateArgumentList &ArgList,
   1825                         TemplateDeductionInfo &Info,
   1826                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1827   return DeduceTemplateArguments(S, TemplateParams,
   1828                                  ParamList.data(), ParamList.size(),
   1829                                  ArgList.data(), ArgList.size(),
   1830                                  Info, Deduced);
   1831 }
   1832 
   1833 /// \brief Determine whether two template arguments are the same.
   1834 static bool isSameTemplateArg(ASTContext &Context,
   1835                               const TemplateArgument &X,
   1836                               const TemplateArgument &Y) {
   1837   if (X.getKind() != Y.getKind())
   1838     return false;
   1839 
   1840   switch (X.getKind()) {
   1841     case TemplateArgument::Null:
   1842       llvm_unreachable("Comparing NULL template argument");
   1843 
   1844     case TemplateArgument::Type:
   1845       return Context.getCanonicalType(X.getAsType()) ==
   1846              Context.getCanonicalType(Y.getAsType());
   1847 
   1848     case TemplateArgument::Declaration:
   1849       return X.getAsDecl()->getCanonicalDecl() ==
   1850              Y.getAsDecl()->getCanonicalDecl();
   1851 
   1852     case TemplateArgument::Template:
   1853     case TemplateArgument::TemplateExpansion:
   1854       return Context.getCanonicalTemplateName(
   1855                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1856              Context.getCanonicalTemplateName(
   1857                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1858 
   1859     case TemplateArgument::Integral:
   1860       return *X.getAsIntegral() == *Y.getAsIntegral();
   1861 
   1862     case TemplateArgument::Expression: {
   1863       llvm::FoldingSetNodeID XID, YID;
   1864       X.getAsExpr()->Profile(XID, Context, true);
   1865       Y.getAsExpr()->Profile(YID, Context, true);
   1866       return XID == YID;
   1867     }
   1868 
   1869     case TemplateArgument::Pack:
   1870       if (X.pack_size() != Y.pack_size())
   1871         return false;
   1872 
   1873       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1874                                         XPEnd = X.pack_end(),
   1875                                            YP = Y.pack_begin();
   1876            XP != XPEnd; ++XP, ++YP)
   1877         if (!isSameTemplateArg(Context, *XP, *YP))
   1878           return false;
   1879 
   1880       return true;
   1881   }
   1882 
   1883   return false;
   1884 }
   1885 
   1886 /// \brief Allocate a TemplateArgumentLoc where all locations have
   1887 /// been initialized to the given location.
   1888 ///
   1889 /// \param S The semantic analysis object.
   1890 ///
   1891 /// \param The template argument we are producing template argument
   1892 /// location information for.
   1893 ///
   1894 /// \param NTTPType For a declaration template argument, the type of
   1895 /// the non-type template parameter that corresponds to this template
   1896 /// argument.
   1897 ///
   1898 /// \param Loc The source location to use for the resulting template
   1899 /// argument.
   1900 static TemplateArgumentLoc
   1901 getTrivialTemplateArgumentLoc(Sema &S,
   1902                               const TemplateArgument &Arg,
   1903                               QualType NTTPType,
   1904                               SourceLocation Loc) {
   1905   switch (Arg.getKind()) {
   1906   case TemplateArgument::Null:
   1907     llvm_unreachable("Can't get a NULL template argument here");
   1908     break;
   1909 
   1910   case TemplateArgument::Type:
   1911     return TemplateArgumentLoc(Arg,
   1912                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   1913 
   1914   case TemplateArgument::Declaration: {
   1915     Expr *E
   1916       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   1917     .takeAs<Expr>();
   1918     return TemplateArgumentLoc(TemplateArgument(E), E);
   1919   }
   1920 
   1921   case TemplateArgument::Integral: {
   1922     Expr *E
   1923       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
   1924     return TemplateArgumentLoc(TemplateArgument(E), E);
   1925   }
   1926 
   1927     case TemplateArgument::Template:
   1928     case TemplateArgument::TemplateExpansion: {
   1929       NestedNameSpecifierLocBuilder Builder;
   1930       TemplateName Template = Arg.getAsTemplate();
   1931       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   1932         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   1933       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   1934         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   1935 
   1936       if (Arg.getKind() == TemplateArgument::Template)
   1937         return TemplateArgumentLoc(Arg,
   1938                                    Builder.getWithLocInContext(S.Context),
   1939                                    Loc);
   1940 
   1941 
   1942       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   1943                                  Loc, Loc);
   1944     }
   1945 
   1946   case TemplateArgument::Expression:
   1947     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   1948 
   1949   case TemplateArgument::Pack:
   1950     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   1951   }
   1952 
   1953   return TemplateArgumentLoc();
   1954 }
   1955 
   1956 
   1957 /// \brief Convert the given deduced template argument and add it to the set of
   1958 /// fully-converted template arguments.
   1959 static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   1960                                            DeducedTemplateArgument Arg,
   1961                                            NamedDecl *Template,
   1962                                            QualType NTTPType,
   1963                                            unsigned ArgumentPackIndex,
   1964                                            TemplateDeductionInfo &Info,
   1965                                            bool InFunctionTemplate,
   1966                              SmallVectorImpl<TemplateArgument> &Output) {
   1967   if (Arg.getKind() == TemplateArgument::Pack) {
   1968     // This is a template argument pack, so check each of its arguments against
   1969     // the template parameter.
   1970     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   1971     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
   1972                                       PAEnd = Arg.pack_end();
   1973          PA != PAEnd; ++PA) {
   1974       // When converting the deduced template argument, append it to the
   1975       // general output list. We need to do this so that the template argument
   1976       // checking logic has all of the prior template arguments available.
   1977       DeducedTemplateArgument InnerArg(*PA);
   1978       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   1979       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   1980                                          NTTPType, PackedArgsBuilder.size(),
   1981                                          Info, InFunctionTemplate, Output))
   1982         return true;
   1983 
   1984       // Move the converted template argument into our argument pack.
   1985       PackedArgsBuilder.push_back(Output.back());
   1986       Output.pop_back();
   1987     }
   1988 
   1989     // Create the resulting argument pack.
   1990     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
   1991                                                       PackedArgsBuilder.data(),
   1992                                                      PackedArgsBuilder.size()));
   1993     return false;
   1994   }
   1995 
   1996   // Convert the deduced template argument into a template
   1997   // argument that we can check, almost as if the user had written
   1998   // the template argument explicitly.
   1999   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   2000                                                              Info.getLocation());
   2001 
   2002   // Check the template argument, converting it as necessary.
   2003   return S.CheckTemplateArgument(Param, ArgLoc,
   2004                                  Template,
   2005                                  Template->getLocation(),
   2006                                  Template->getSourceRange().getEnd(),
   2007                                  ArgumentPackIndex,
   2008                                  Output,
   2009                                  InFunctionTemplate
   2010                                   ? (Arg.wasDeducedFromArrayBound()
   2011                                        ? Sema::CTAK_DeducedFromArrayBound
   2012                                        : Sema::CTAK_Deduced)
   2013                                  : Sema::CTAK_Specified);
   2014 }
   2015 
   2016 /// Complete template argument deduction for a class template partial
   2017 /// specialization.
   2018 static Sema::TemplateDeductionResult
   2019 FinishTemplateArgumentDeduction(Sema &S,
   2020                                 ClassTemplatePartialSpecializationDecl *Partial,
   2021                                 const TemplateArgumentList &TemplateArgs,
   2022                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2023                                 TemplateDeductionInfo &Info) {
   2024   // Trap errors.
   2025   Sema::SFINAETrap Trap(S);
   2026 
   2027   Sema::ContextRAII SavedContext(S, Partial);
   2028 
   2029   // C++ [temp.deduct.type]p2:
   2030   //   [...] or if any template argument remains neither deduced nor
   2031   //   explicitly specified, template argument deduction fails.
   2032   SmallVector<TemplateArgument, 4> Builder;
   2033   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2034   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2035     NamedDecl *Param = PartialParams->getParam(I);
   2036     if (Deduced[I].isNull()) {
   2037       Info.Param = makeTemplateParameter(Param);
   2038       return Sema::TDK_Incomplete;
   2039     }
   2040 
   2041     // We have deduced this argument, so it still needs to be
   2042     // checked and converted.
   2043 
   2044     // First, for a non-type template parameter type that is
   2045     // initialized by a declaration, we need the type of the
   2046     // corresponding non-type template parameter.
   2047     QualType NTTPType;
   2048     if (NonTypeTemplateParmDecl *NTTP
   2049                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2050       NTTPType = NTTP->getType();
   2051       if (NTTPType->isDependentType()) {
   2052         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2053                                           Builder.data(), Builder.size());
   2054         NTTPType = S.SubstType(NTTPType,
   2055                                MultiLevelTemplateArgumentList(TemplateArgs),
   2056                                NTTP->getLocation(),
   2057                                NTTP->getDeclName());
   2058         if (NTTPType.isNull()) {
   2059           Info.Param = makeTemplateParameter(Param);
   2060           // FIXME: These template arguments are temporary. Free them!
   2061           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2062                                                       Builder.data(),
   2063                                                       Builder.size()));
   2064           return Sema::TDK_SubstitutionFailure;
   2065         }
   2066       }
   2067     }
   2068 
   2069     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2070                                        Partial, NTTPType, 0, Info, false,
   2071                                        Builder)) {
   2072       Info.Param = makeTemplateParameter(Param);
   2073       // FIXME: These template arguments are temporary. Free them!
   2074       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2075                                                   Builder.size()));
   2076       return Sema::TDK_SubstitutionFailure;
   2077     }
   2078   }
   2079 
   2080   // Form the template argument list from the deduced template arguments.
   2081   TemplateArgumentList *DeducedArgumentList
   2082     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2083                                        Builder.size());
   2084 
   2085   Info.reset(DeducedArgumentList);
   2086 
   2087   // Substitute the deduced template arguments into the template
   2088   // arguments of the class template partial specialization, and
   2089   // verify that the instantiated template arguments are both valid
   2090   // and are equivalent to the template arguments originally provided
   2091   // to the class template.
   2092   LocalInstantiationScope InstScope(S);
   2093   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2094   const TemplateArgumentLoc *PartialTemplateArgs
   2095     = Partial->getTemplateArgsAsWritten();
   2096 
   2097   // Note that we don't provide the langle and rangle locations.
   2098   TemplateArgumentListInfo InstArgs;
   2099 
   2100   if (S.Subst(PartialTemplateArgs,
   2101               Partial->getNumTemplateArgsAsWritten(),
   2102               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2103     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2104     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2105       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2106 
   2107     Decl *Param
   2108       = const_cast<NamedDecl *>(
   2109                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2110     Info.Param = makeTemplateParameter(Param);
   2111     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2112     return Sema::TDK_SubstitutionFailure;
   2113   }
   2114 
   2115   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2116   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2117                                   InstArgs, false, ConvertedInstArgs))
   2118     return Sema::TDK_SubstitutionFailure;
   2119 
   2120   TemplateParameterList *TemplateParams
   2121     = ClassTemplate->getTemplateParameters();
   2122   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2123     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2124     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2125       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2126       Info.FirstArg = TemplateArgs[I];
   2127       Info.SecondArg = InstArg;
   2128       return Sema::TDK_NonDeducedMismatch;
   2129     }
   2130   }
   2131 
   2132   if (Trap.hasErrorOccurred())
   2133     return Sema::TDK_SubstitutionFailure;
   2134 
   2135   return Sema::TDK_Success;
   2136 }
   2137 
   2138 /// \brief Perform template argument deduction to determine whether
   2139 /// the given template arguments match the given class template
   2140 /// partial specialization per C++ [temp.class.spec.match].
   2141 Sema::TemplateDeductionResult
   2142 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2143                               const TemplateArgumentList &TemplateArgs,
   2144                               TemplateDeductionInfo &Info) {
   2145   // C++ [temp.class.spec.match]p2:
   2146   //   A partial specialization matches a given actual template
   2147   //   argument list if the template arguments of the partial
   2148   //   specialization can be deduced from the actual template argument
   2149   //   list (14.8.2).
   2150   SFINAETrap Trap(*this);
   2151   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2152   Deduced.resize(Partial->getTemplateParameters()->size());
   2153   if (TemplateDeductionResult Result
   2154         = ::DeduceTemplateArguments(*this,
   2155                                     Partial->getTemplateParameters(),
   2156                                     Partial->getTemplateArgs(),
   2157                                     TemplateArgs, Info, Deduced))
   2158     return Result;
   2159 
   2160   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
   2161                              Deduced.data(), Deduced.size(), Info);
   2162   if (Inst)
   2163     return TDK_InstantiationDepth;
   2164 
   2165   if (Trap.hasErrorOccurred())
   2166     return Sema::TDK_SubstitutionFailure;
   2167 
   2168   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2169                                            Deduced, Info);
   2170 }
   2171 
   2172 /// \brief Determine whether the given type T is a simple-template-id type.
   2173 static bool isSimpleTemplateIdType(QualType T) {
   2174   if (const TemplateSpecializationType *Spec
   2175         = T->getAs<TemplateSpecializationType>())
   2176     return Spec->getTemplateName().getAsTemplateDecl() != 0;
   2177 
   2178   return false;
   2179 }
   2180 
   2181 /// \brief Substitute the explicitly-provided template arguments into the
   2182 /// given function template according to C++ [temp.arg.explicit].
   2183 ///
   2184 /// \param FunctionTemplate the function template into which the explicit
   2185 /// template arguments will be substituted.
   2186 ///
   2187 /// \param ExplicitTemplateArguments the explicitly-specified template
   2188 /// arguments.
   2189 ///
   2190 /// \param Deduced the deduced template arguments, which will be populated
   2191 /// with the converted and checked explicit template arguments.
   2192 ///
   2193 /// \param ParamTypes will be populated with the instantiated function
   2194 /// parameters.
   2195 ///
   2196 /// \param FunctionType if non-NULL, the result type of the function template
   2197 /// will also be instantiated and the pointed-to value will be updated with
   2198 /// the instantiated function type.
   2199 ///
   2200 /// \param Info if substitution fails for any reason, this object will be
   2201 /// populated with more information about the failure.
   2202 ///
   2203 /// \returns TDK_Success if substitution was successful, or some failure
   2204 /// condition.
   2205 Sema::TemplateDeductionResult
   2206 Sema::SubstituteExplicitTemplateArguments(
   2207                                       FunctionTemplateDecl *FunctionTemplate,
   2208                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2209                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2210                                  SmallVectorImpl<QualType> &ParamTypes,
   2211                                           QualType *FunctionType,
   2212                                           TemplateDeductionInfo &Info) {
   2213   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2214   TemplateParameterList *TemplateParams
   2215     = FunctionTemplate->getTemplateParameters();
   2216 
   2217   if (ExplicitTemplateArgs.size() == 0) {
   2218     // No arguments to substitute; just copy over the parameter types and
   2219     // fill in the function type.
   2220     for (FunctionDecl::param_iterator P = Function->param_begin(),
   2221                                    PEnd = Function->param_end();
   2222          P != PEnd;
   2223          ++P)
   2224       ParamTypes.push_back((*P)->getType());
   2225 
   2226     if (FunctionType)
   2227       *FunctionType = Function->getType();
   2228     return TDK_Success;
   2229   }
   2230 
   2231   // Substitution of the explicit template arguments into a function template
   2232   /// is a SFINAE context. Trap any errors that might occur.
   2233   SFINAETrap Trap(*this);
   2234 
   2235   // C++ [temp.arg.explicit]p3:
   2236   //   Template arguments that are present shall be specified in the
   2237   //   declaration order of their corresponding template-parameters. The
   2238   //   template argument list shall not specify more template-arguments than
   2239   //   there are corresponding template-parameters.
   2240   SmallVector<TemplateArgument, 4> Builder;
   2241 
   2242   // Enter a new template instantiation context where we check the
   2243   // explicitly-specified template arguments against this function template,
   2244   // and then substitute them into the function parameter types.
   2245   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2246                              FunctionTemplate, Deduced.data(), Deduced.size(),
   2247            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2248                              Info);
   2249   if (Inst)
   2250     return TDK_InstantiationDepth;
   2251 
   2252   if (CheckTemplateArgumentList(FunctionTemplate,
   2253                                 SourceLocation(),
   2254                                 ExplicitTemplateArgs,
   2255                                 true,
   2256                                 Builder) || Trap.hasErrorOccurred()) {
   2257     unsigned Index = Builder.size();
   2258     if (Index >= TemplateParams->size())
   2259       Index = TemplateParams->size() - 1;
   2260     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2261     return TDK_InvalidExplicitArguments;
   2262   }
   2263 
   2264   // Form the template argument list from the explicitly-specified
   2265   // template arguments.
   2266   TemplateArgumentList *ExplicitArgumentList
   2267     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2268   Info.reset(ExplicitArgumentList);
   2269 
   2270   // Template argument deduction and the final substitution should be
   2271   // done in the context of the templated declaration.  Explicit
   2272   // argument substitution, on the other hand, needs to happen in the
   2273   // calling context.
   2274   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2275 
   2276   // If we deduced template arguments for a template parameter pack,
   2277   // note that the template argument pack is partially substituted and record
   2278   // the explicit template arguments. They'll be used as part of deduction
   2279   // for this template parameter pack.
   2280   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2281     const TemplateArgument &Arg = Builder[I];
   2282     if (Arg.getKind() == TemplateArgument::Pack) {
   2283       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2284                                                  TemplateParams->getParam(I),
   2285                                                              Arg.pack_begin(),
   2286                                                              Arg.pack_size());
   2287       break;
   2288     }
   2289   }
   2290 
   2291   // Instantiate the types of each of the function parameters given the
   2292   // explicitly-specified template arguments.
   2293   if (SubstParmTypes(Function->getLocation(),
   2294                      Function->param_begin(), Function->getNumParams(),
   2295                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2296                      ParamTypes))
   2297     return TDK_SubstitutionFailure;
   2298 
   2299   // If the caller wants a full function type back, instantiate the return
   2300   // type and form that function type.
   2301   if (FunctionType) {
   2302     // FIXME: exception-specifications?
   2303     const FunctionProtoType *Proto
   2304       = Function->getType()->getAs<FunctionProtoType>();
   2305     assert(Proto && "Function template does not have a prototype?");
   2306 
   2307     QualType ResultType
   2308       = SubstType(Proto->getResultType(),
   2309                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2310                   Function->getTypeSpecStartLoc(),
   2311                   Function->getDeclName());
   2312     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2313       return TDK_SubstitutionFailure;
   2314 
   2315     *FunctionType = BuildFunctionType(ResultType,
   2316                                       ParamTypes.data(), ParamTypes.size(),
   2317                                       Proto->isVariadic(),
   2318                                       Proto->getTypeQuals(),
   2319                                       Proto->getRefQualifier(),
   2320                                       Function->getLocation(),
   2321                                       Function->getDeclName(),
   2322                                       Proto->getExtInfo());
   2323     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2324       return TDK_SubstitutionFailure;
   2325   }
   2326 
   2327   // C++ [temp.arg.explicit]p2:
   2328   //   Trailing template arguments that can be deduced (14.8.2) may be
   2329   //   omitted from the list of explicit template-arguments. If all of the
   2330   //   template arguments can be deduced, they may all be omitted; in this
   2331   //   case, the empty template argument list <> itself may also be omitted.
   2332   //
   2333   // Take all of the explicitly-specified arguments and put them into
   2334   // the set of deduced template arguments. Explicitly-specified
   2335   // parameter packs, however, will be set to NULL since the deduction
   2336   // mechanisms handle explicitly-specified argument packs directly.
   2337   Deduced.reserve(TemplateParams->size());
   2338   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2339     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2340     if (Arg.getKind() == TemplateArgument::Pack)
   2341       Deduced.push_back(DeducedTemplateArgument());
   2342     else
   2343       Deduced.push_back(Arg);
   2344   }
   2345 
   2346   return TDK_Success;
   2347 }
   2348 
   2349 /// \brief Check whether the deduced argument type for a call to a function
   2350 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2351 static bool
   2352 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2353                               QualType DeducedA) {
   2354   ASTContext &Context = S.Context;
   2355 
   2356   QualType A = OriginalArg.OriginalArgType;
   2357   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2358 
   2359   // Check for type equality (top-level cv-qualifiers are ignored).
   2360   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2361     return false;
   2362 
   2363   // Strip off references on the argument types; they aren't needed for
   2364   // the following checks.
   2365   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2366     DeducedA = DeducedARef->getPointeeType();
   2367   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2368     A = ARef->getPointeeType();
   2369 
   2370   // C++ [temp.deduct.call]p4:
   2371   //   [...] However, there are three cases that allow a difference:
   2372   //     - If the original P is a reference type, the deduced A (i.e., the
   2373   //       type referred to by the reference) can be more cv-qualified than
   2374   //       the transformed A.
   2375   if (const ReferenceType *OriginalParamRef
   2376       = OriginalParamType->getAs<ReferenceType>()) {
   2377     // We don't want to keep the reference around any more.
   2378     OriginalParamType = OriginalParamRef->getPointeeType();
   2379 
   2380     Qualifiers AQuals = A.getQualifiers();
   2381     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2382     if (AQuals == DeducedAQuals) {
   2383       // Qualifiers match; there's nothing to do.
   2384     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2385       return true;
   2386     } else {
   2387       // Qualifiers are compatible, so have the argument type adopt the
   2388       // deduced argument type's qualifiers as if we had performed the
   2389       // qualification conversion.
   2390       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2391     }
   2392   }
   2393 
   2394   //    - The transformed A can be another pointer or pointer to member
   2395   //      type that can be converted to the deduced A via a qualification
   2396   //      conversion.
   2397   //
   2398   // Also allow conversions which merely strip [[noreturn]] from function types
   2399   // (recursively) as an extension.
   2400   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
   2401   bool ObjCLifetimeConversion = false;
   2402   QualType ResultTy;
   2403   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2404       (S.IsQualificationConversion(A, DeducedA, false,
   2405                                    ObjCLifetimeConversion) ||
   2406        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2407     return false;
   2408 
   2409 
   2410   //    - If P is a class and P has the form simple-template-id, then the
   2411   //      transformed A can be a derived class of the deduced A. [...]
   2412   //     [...] Likewise, if P is a pointer to a class of the form
   2413   //      simple-template-id, the transformed A can be a pointer to a
   2414   //      derived class pointed to by the deduced A.
   2415   if (const PointerType *OriginalParamPtr
   2416       = OriginalParamType->getAs<PointerType>()) {
   2417     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2418       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2419         if (A->getPointeeType()->isRecordType()) {
   2420           OriginalParamType = OriginalParamPtr->getPointeeType();
   2421           DeducedA = DeducedAPtr->getPointeeType();
   2422           A = APtr->getPointeeType();
   2423         }
   2424       }
   2425     }
   2426   }
   2427 
   2428   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2429     return false;
   2430 
   2431   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2432       S.IsDerivedFrom(A, DeducedA))
   2433     return false;
   2434 
   2435   return true;
   2436 }
   2437 
   2438 /// \brief Finish template argument deduction for a function template,
   2439 /// checking the deduced template arguments for completeness and forming
   2440 /// the function template specialization.
   2441 ///
   2442 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2443 /// which the deduced argument types should be compared.
   2444 Sema::TemplateDeductionResult
   2445 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2446                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2447                                       unsigned NumExplicitlySpecified,
   2448                                       FunctionDecl *&Specialization,
   2449                                       TemplateDeductionInfo &Info,
   2450         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
   2451   TemplateParameterList *TemplateParams
   2452     = FunctionTemplate->getTemplateParameters();
   2453 
   2454   // Template argument deduction for function templates in a SFINAE context.
   2455   // Trap any errors that might occur.
   2456   SFINAETrap Trap(*this);
   2457 
   2458   // Enter a new template instantiation context while we instantiate the
   2459   // actual function declaration.
   2460   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2461                              FunctionTemplate, Deduced.data(), Deduced.size(),
   2462               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2463                              Info);
   2464   if (Inst)
   2465     return TDK_InstantiationDepth;
   2466 
   2467   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2468 
   2469   // C++ [temp.deduct.type]p2:
   2470   //   [...] or if any template argument remains neither deduced nor
   2471   //   explicitly specified, template argument deduction fails.
   2472   SmallVector<TemplateArgument, 4> Builder;
   2473   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2474     NamedDecl *Param = TemplateParams->getParam(I);
   2475 
   2476     if (!Deduced[I].isNull()) {
   2477       if (I < NumExplicitlySpecified) {
   2478         // We have already fully type-checked and converted this
   2479         // argument, because it was explicitly-specified. Just record the
   2480         // presence of this argument.
   2481         Builder.push_back(Deduced[I]);
   2482         continue;
   2483       }
   2484 
   2485       // We have deduced this argument, so it still needs to be
   2486       // checked and converted.
   2487 
   2488       // First, for a non-type template parameter type that is
   2489       // initialized by a declaration, we need the type of the
   2490       // corresponding non-type template parameter.
   2491       QualType NTTPType;
   2492       if (NonTypeTemplateParmDecl *NTTP
   2493                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2494         NTTPType = NTTP->getType();
   2495         if (NTTPType->isDependentType()) {
   2496           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2497                                             Builder.data(), Builder.size());
   2498           NTTPType = SubstType(NTTPType,
   2499                                MultiLevelTemplateArgumentList(TemplateArgs),
   2500                                NTTP->getLocation(),
   2501                                NTTP->getDeclName());
   2502           if (NTTPType.isNull()) {
   2503             Info.Param = makeTemplateParameter(Param);
   2504             // FIXME: These template arguments are temporary. Free them!
   2505             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2506                                                         Builder.data(),
   2507                                                         Builder.size()));
   2508             return TDK_SubstitutionFailure;
   2509           }
   2510         }
   2511       }
   2512 
   2513       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2514                                          FunctionTemplate, NTTPType, 0, Info,
   2515                                          true, Builder)) {
   2516         Info.Param = makeTemplateParameter(Param);
   2517         // FIXME: These template arguments are temporary. Free them!
   2518         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2519                                                     Builder.size()));
   2520         return TDK_SubstitutionFailure;
   2521       }
   2522 
   2523       continue;
   2524     }
   2525 
   2526     // C++0x [temp.arg.explicit]p3:
   2527     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2528     //    be deduced to an empty sequence of template arguments.
   2529     // FIXME: Where did the word "trailing" come from?
   2530     if (Param->isTemplateParameterPack()) {
   2531       // We may have had explicitly-specified template arguments for this
   2532       // template parameter pack. If so, our empty deduction extends the
   2533       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2534       const TemplateArgument *ExplicitArgs;
   2535       unsigned NumExplicitArgs;
   2536       if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2537                                                              &NumExplicitArgs)
   2538           == Param)
   2539         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
   2540       else
   2541         Builder.push_back(TemplateArgument(0, 0));
   2542 
   2543       continue;
   2544     }
   2545 
   2546     // Substitute into the default template argument, if available.
   2547     TemplateArgumentLoc DefArg
   2548       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2549                                               FunctionTemplate->getLocation(),
   2550                                   FunctionTemplate->getSourceRange().getEnd(),
   2551                                                 Param,
   2552                                                 Builder);
   2553 
   2554     // If there was no default argument, deduction is incomplete.
   2555     if (DefArg.getArgument().isNull()) {
   2556       Info.Param = makeTemplateParameter(
   2557                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2558       return TDK_Incomplete;
   2559     }
   2560 
   2561     // Check whether we can actually use the default argument.
   2562     if (CheckTemplateArgument(Param, DefArg,
   2563                               FunctionTemplate,
   2564                               FunctionTemplate->getLocation(),
   2565                               FunctionTemplate->getSourceRange().getEnd(),
   2566                               0, Builder,
   2567                               CTAK_Specified)) {
   2568       Info.Param = makeTemplateParameter(
   2569                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2570       // FIXME: These template arguments are temporary. Free them!
   2571       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2572                                                   Builder.size()));
   2573       return TDK_SubstitutionFailure;
   2574     }
   2575 
   2576     // If we get here, we successfully used the default template argument.
   2577   }
   2578 
   2579   // Form the template argument list from the deduced template arguments.
   2580   TemplateArgumentList *DeducedArgumentList
   2581     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2582   Info.reset(DeducedArgumentList);
   2583 
   2584   // Substitute the deduced template arguments into the function template
   2585   // declaration to produce the function template specialization.
   2586   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2587   if (FunctionTemplate->getFriendObjectKind())
   2588     Owner = FunctionTemplate->getLexicalDeclContext();
   2589   Specialization = cast_or_null<FunctionDecl>(
   2590                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2591                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2592   if (!Specialization || Specialization->isInvalidDecl())
   2593     return TDK_SubstitutionFailure;
   2594 
   2595   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2596          FunctionTemplate->getCanonicalDecl());
   2597 
   2598   // If the template argument list is owned by the function template
   2599   // specialization, release it.
   2600   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2601       !Trap.hasErrorOccurred())
   2602     Info.take();
   2603 
   2604   // There may have been an error that did not prevent us from constructing a
   2605   // declaration. Mark the declaration invalid and return with a substitution
   2606   // failure.
   2607   if (Trap.hasErrorOccurred()) {
   2608     Specialization->setInvalidDecl(true);
   2609     return TDK_SubstitutionFailure;
   2610   }
   2611 
   2612   if (OriginalCallArgs) {
   2613     // C++ [temp.deduct.call]p4:
   2614     //   In general, the deduction process attempts to find template argument
   2615     //   values that will make the deduced A identical to A (after the type A
   2616     //   is transformed as described above). [...]
   2617     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2618       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2619       unsigned ParamIdx = OriginalArg.ArgIdx;
   2620 
   2621       if (ParamIdx >= Specialization->getNumParams())
   2622         continue;
   2623 
   2624       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2625       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2626         return Sema::TDK_SubstitutionFailure;
   2627     }
   2628   }
   2629 
   2630   // If we suppressed any diagnostics while performing template argument
   2631   // deduction, and if we haven't already instantiated this declaration,
   2632   // keep track of these diagnostics. They'll be emitted if this specialization
   2633   // is actually used.
   2634   if (Info.diag_begin() != Info.diag_end()) {
   2635     llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
   2636       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2637     if (Pos == SuppressedDiagnostics.end())
   2638         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2639           .append(Info.diag_begin(), Info.diag_end());
   2640   }
   2641 
   2642   return TDK_Success;
   2643 }
   2644 
   2645 /// Gets the type of a function for template-argument-deducton
   2646 /// purposes when it's considered as part of an overload set.
   2647 static QualType GetTypeOfFunction(ASTContext &Context,
   2648                                   const OverloadExpr::FindResult &R,
   2649                                   FunctionDecl *Fn) {
   2650   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   2651     if (Method->isInstance()) {
   2652       // An instance method that's referenced in a form that doesn't
   2653       // look like a member pointer is just invalid.
   2654       if (!R.HasFormOfMemberPointer) return QualType();
   2655 
   2656       return Context.getMemberPointerType(Fn->getType(),
   2657                Context.getTypeDeclType(Method->getParent()).getTypePtr());
   2658     }
   2659 
   2660   if (!R.IsAddressOfOperand) return Fn->getType();
   2661   return Context.getPointerType(Fn->getType());
   2662 }
   2663 
   2664 /// Apply the deduction rules for overload sets.
   2665 ///
   2666 /// \return the null type if this argument should be treated as an
   2667 /// undeduced context
   2668 static QualType
   2669 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   2670                             Expr *Arg, QualType ParamType,
   2671                             bool ParamWasReference) {
   2672 
   2673   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   2674 
   2675   OverloadExpr *Ovl = R.Expression;
   2676 
   2677   // C++0x [temp.deduct.call]p4
   2678   unsigned TDF = 0;
   2679   if (ParamWasReference)
   2680     TDF |= TDF_ParamWithReferenceType;
   2681   if (R.IsAddressOfOperand)
   2682     TDF |= TDF_IgnoreQualifiers;
   2683 
   2684   // If there were explicit template arguments, we can only find
   2685   // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
   2686   // unambiguously name a full specialization.
   2687   if (Ovl->hasExplicitTemplateArgs()) {
   2688     // But we can still look for an explicit specialization.
   2689     if (FunctionDecl *ExplicitSpec
   2690           = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   2691       return GetTypeOfFunction(S.Context, R, ExplicitSpec);
   2692     return QualType();
   2693   }
   2694 
   2695   // C++0x [temp.deduct.call]p6:
   2696   //   When P is a function type, pointer to function type, or pointer
   2697   //   to member function type:
   2698 
   2699   if (!ParamType->isFunctionType() &&
   2700       !ParamType->isFunctionPointerType() &&
   2701       !ParamType->isMemberFunctionPointerType())
   2702     return QualType();
   2703 
   2704   QualType Match;
   2705   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   2706          E = Ovl->decls_end(); I != E; ++I) {
   2707     NamedDecl *D = (*I)->getUnderlyingDecl();
   2708 
   2709     //   - If the argument is an overload set containing one or more
   2710     //     function templates, the parameter is treated as a
   2711     //     non-deduced context.
   2712     if (isa<FunctionTemplateDecl>(D))
   2713       return QualType();
   2714 
   2715     FunctionDecl *Fn = cast<FunctionDecl>(D);
   2716     QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
   2717     if (ArgType.isNull()) continue;
   2718 
   2719     // Function-to-pointer conversion.
   2720     if (!ParamWasReference && ParamType->isPointerType() &&
   2721         ArgType->isFunctionType())
   2722       ArgType = S.Context.getPointerType(ArgType);
   2723 
   2724     //   - If the argument is an overload set (not containing function
   2725     //     templates), trial argument deduction is attempted using each
   2726     //     of the members of the set. If deduction succeeds for only one
   2727     //     of the overload set members, that member is used as the
   2728     //     argument value for the deduction. If deduction succeeds for
   2729     //     more than one member of the overload set the parameter is
   2730     //     treated as a non-deduced context.
   2731 
   2732     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   2733     //   Type deduction is done independently for each P/A pair, and
   2734     //   the deduced template argument values are then combined.
   2735     // So we do not reject deductions which were made elsewhere.
   2736     SmallVector<DeducedTemplateArgument, 8>
   2737       Deduced(TemplateParams->size());
   2738     TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
   2739     Sema::TemplateDeductionResult Result
   2740       = DeduceTemplateArguments(S, TemplateParams,
   2741                                 ParamType, ArgType,
   2742                                 Info, Deduced, TDF);
   2743     if (Result) continue;
   2744     if (!Match.isNull()) return QualType();
   2745     Match = ArgType;
   2746   }
   2747 
   2748   return Match;
   2749 }
   2750 
   2751 /// \brief Perform the adjustments to the parameter and argument types
   2752 /// described in C++ [temp.deduct.call].
   2753 ///
   2754 /// \returns true if the caller should not attempt to perform any template
   2755 /// argument deduction based on this P/A pair.
   2756 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   2757                                           TemplateParameterList *TemplateParams,
   2758                                                       QualType &ParamType,
   2759                                                       QualType &ArgType,
   2760                                                       Expr *Arg,
   2761                                                       unsigned &TDF) {
   2762   // C++0x [temp.deduct.call]p3:
   2763   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   2764   //   are ignored for type deduction.
   2765   if (ParamType.hasQualifiers())
   2766     ParamType = ParamType.getUnqualifiedType();
   2767   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   2768   if (ParamRefType) {
   2769     QualType PointeeType = ParamRefType->getPointeeType();
   2770 
   2771     // If the argument has incomplete array type, try to complete it's type.
   2772     if (ArgType->isIncompleteArrayType() &&
   2773         !S.RequireCompleteExprType(Arg, S.PDiag(),
   2774                                    std::make_pair(SourceLocation(), S.PDiag())))
   2775       ArgType = Arg->getType();
   2776 
   2777     //   [C++0x] If P is an rvalue reference to a cv-unqualified
   2778     //   template parameter and the argument is an lvalue, the type
   2779     //   "lvalue reference to A" is used in place of A for type
   2780     //   deduction.
   2781     if (isa<RValueReferenceType>(ParamType)) {
   2782       if (!PointeeType.getQualifiers() &&
   2783           isa<TemplateTypeParmType>(PointeeType) &&
   2784           Arg->Classify(S.Context).isLValue() &&
   2785           Arg->getType() != S.Context.OverloadTy &&
   2786           Arg->getType() != S.Context.BoundMemberTy)
   2787         ArgType = S.Context.getLValueReferenceType(ArgType);
   2788     }
   2789 
   2790     //   [...] If P is a reference type, the type referred to by P is used
   2791     //   for type deduction.
   2792     ParamType = PointeeType;
   2793   }
   2794 
   2795   // Overload sets usually make this parameter an undeduced
   2796   // context, but there are sometimes special circumstances.
   2797   if (ArgType == S.Context.OverloadTy) {
   2798     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   2799                                           Arg, ParamType,
   2800                                           ParamRefType != 0);
   2801     if (ArgType.isNull())
   2802       return true;
   2803   }
   2804 
   2805   if (ParamRefType) {
   2806     // C++0x [temp.deduct.call]p3:
   2807     //   [...] If P is of the form T&&, where T is a template parameter, and
   2808     //   the argument is an lvalue, the type A& is used in place of A for
   2809     //   type deduction.
   2810     if (ParamRefType->isRValueReferenceType() &&
   2811         ParamRefType->getAs<TemplateTypeParmType>() &&
   2812         Arg->isLValue())
   2813       ArgType = S.Context.getLValueReferenceType(ArgType);
   2814   } else {
   2815     // C++ [temp.deduct.call]p2:
   2816     //   If P is not a reference type:
   2817     //   - If A is an array type, the pointer type produced by the
   2818     //     array-to-pointer standard conversion (4.2) is used in place of
   2819     //     A for type deduction; otherwise,
   2820     if (ArgType->isArrayType())
   2821       ArgType = S.Context.getArrayDecayedType(ArgType);
   2822     //   - If A is a function type, the pointer type produced by the
   2823     //     function-to-pointer standard conversion (4.3) is used in place
   2824     //     of A for type deduction; otherwise,
   2825     else if (ArgType->isFunctionType())
   2826       ArgType = S.Context.getPointerType(ArgType);
   2827     else {
   2828       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   2829       //   type are ignored for type deduction.
   2830       ArgType = ArgType.getUnqualifiedType();
   2831     }
   2832   }
   2833 
   2834   // C++0x [temp.deduct.call]p4:
   2835   //   In general, the deduction process attempts to find template argument
   2836   //   values that will make the deduced A identical to A (after the type A
   2837   //   is transformed as described above). [...]
   2838   TDF = TDF_SkipNonDependent;
   2839 
   2840   //     - If the original P is a reference type, the deduced A (i.e., the
   2841   //       type referred to by the reference) can be more cv-qualified than
   2842   //       the transformed A.
   2843   if (ParamRefType)
   2844     TDF |= TDF_ParamWithReferenceType;
   2845   //     - The transformed A can be another pointer or pointer to member
   2846   //       type that can be converted to the deduced A via a qualification
   2847   //       conversion (4.4).
   2848   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   2849       ArgType->isObjCObjectPointerType())
   2850     TDF |= TDF_IgnoreQualifiers;
   2851   //     - If P is a class and P has the form simple-template-id, then the
   2852   //       transformed A can be a derived class of the deduced A. Likewise,
   2853   //       if P is a pointer to a class of the form simple-template-id, the
   2854   //       transformed A can be a pointer to a derived class pointed to by
   2855   //       the deduced A.
   2856   if (isSimpleTemplateIdType(ParamType) ||
   2857       (isa<PointerType>(ParamType) &&
   2858        isSimpleTemplateIdType(
   2859                               ParamType->getAs<PointerType>()->getPointeeType())))
   2860     TDF |= TDF_DerivedClass;
   2861 
   2862   return false;
   2863 }
   2864 
   2865 static bool hasDeducibleTemplateParameters(Sema &S,
   2866                                            FunctionTemplateDecl *FunctionTemplate,
   2867                                            QualType T);
   2868 
   2869 /// \brief Perform template argument deduction from a function call
   2870 /// (C++ [temp.deduct.call]).
   2871 ///
   2872 /// \param FunctionTemplate the function template for which we are performing
   2873 /// template argument deduction.
   2874 ///
   2875 /// \param ExplicitTemplateArguments the explicit template arguments provided
   2876 /// for this call.
   2877 ///
   2878 /// \param Args the function call arguments
   2879 ///
   2880 /// \param NumArgs the number of arguments in Args
   2881 ///
   2882 /// \param Name the name of the function being called. This is only significant
   2883 /// when the function template is a conversion function template, in which
   2884 /// case this routine will also perform template argument deduction based on
   2885 /// the function to which
   2886 ///
   2887 /// \param Specialization if template argument deduction was successful,
   2888 /// this will be set to the function template specialization produced by
   2889 /// template argument deduction.
   2890 ///
   2891 /// \param Info the argument will be updated to provide additional information
   2892 /// about template argument deduction.
   2893 ///
   2894 /// \returns the result of template argument deduction.
   2895 Sema::TemplateDeductionResult
   2896 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   2897                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   2898                               Expr **Args, unsigned NumArgs,
   2899                               FunctionDecl *&Specialization,
   2900                               TemplateDeductionInfo &Info) {
   2901   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2902 
   2903   // C++ [temp.deduct.call]p1:
   2904   //   Template argument deduction is done by comparing each function template
   2905   //   parameter type (call it P) with the type of the corresponding argument
   2906   //   of the call (call it A) as described below.
   2907   unsigned CheckArgs = NumArgs;
   2908   if (NumArgs < Function->getMinRequiredArguments())
   2909     return TDK_TooFewArguments;
   2910   else if (NumArgs > Function->getNumParams()) {
   2911     const FunctionProtoType *Proto
   2912       = Function->getType()->getAs<FunctionProtoType>();
   2913     if (Proto->isTemplateVariadic())
   2914       /* Do nothing */;
   2915     else if (Proto->isVariadic())
   2916       CheckArgs = Function->getNumParams();
   2917     else
   2918       return TDK_TooManyArguments;
   2919   }
   2920 
   2921   // The types of the parameters from which we will perform template argument
   2922   // deduction.
   2923   LocalInstantiationScope InstScope(*this);
   2924   TemplateParameterList *TemplateParams
   2925     = FunctionTemplate->getTemplateParameters();
   2926   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2927   SmallVector<QualType, 4> ParamTypes;
   2928   unsigned NumExplicitlySpecified = 0;
   2929   if (ExplicitTemplateArgs) {
   2930     TemplateDeductionResult Result =
   2931       SubstituteExplicitTemplateArguments(FunctionTemplate,
   2932                                           *ExplicitTemplateArgs,
   2933                                           Deduced,
   2934                                           ParamTypes,
   2935                                           0,
   2936                                           Info);
   2937     if (Result)
   2938       return Result;
   2939 
   2940     NumExplicitlySpecified = Deduced.size();
   2941   } else {
   2942     // Just fill in the parameter types from the function declaration.
   2943     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   2944       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   2945   }
   2946 
   2947   // Deduce template arguments from the function parameters.
   2948   Deduced.resize(TemplateParams->size());
   2949   unsigned ArgIdx = 0;
   2950   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   2951   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
   2952        ParamIdx != NumParams; ++ParamIdx) {
   2953     QualType OrigParamType = ParamTypes[ParamIdx];
   2954     QualType ParamType = OrigParamType;
   2955 
   2956     const PackExpansionType *ParamExpansion
   2957       = dyn_cast<PackExpansionType>(ParamType);
   2958     if (!ParamExpansion) {
   2959       // Simple case: matching a function parameter to a function argument.
   2960       if (ArgIdx >= CheckArgs)
   2961         break;
   2962 
   2963       Expr *Arg = Args[ArgIdx++];
   2964       QualType ArgType = Arg->getType();
   2965 
   2966       unsigned TDF = 0;
   2967       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   2968                                                     ParamType, ArgType, Arg,
   2969                                                     TDF))
   2970         continue;
   2971 
   2972       // If we have nothing to deduce, we're done.
   2973       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   2974         continue;
   2975 
   2976       // Keep track of the argument type and corresponding parameter index,
   2977       // so we can check for compatibility between the deduced A and A.
   2978       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   2979                                                  ArgType));
   2980 
   2981       if (TemplateDeductionResult Result
   2982             = ::DeduceTemplateArguments(*this, TemplateParams,
   2983                                         ParamType, ArgType, Info, Deduced,
   2984                                         TDF))
   2985         return Result;
   2986 
   2987       continue;
   2988     }
   2989 
   2990     // C++0x [temp.deduct.call]p1:
   2991     //   For a function parameter pack that occurs at the end of the
   2992     //   parameter-declaration-list, the type A of each remaining argument of
   2993     //   the call is compared with the type P of the declarator-id of the
   2994     //   function parameter pack. Each comparison deduces template arguments
   2995     //   for subsequent positions in the template parameter packs expanded by
   2996     //   the function parameter pack. For a function parameter pack that does
   2997     //   not occur at the end of the parameter-declaration-list, the type of
   2998     //   the parameter pack is a non-deduced context.
   2999     if (ParamIdx + 1 < NumParams)
   3000       break;
   3001 
   3002     QualType ParamPattern = ParamExpansion->getPattern();
   3003     SmallVector<unsigned, 2> PackIndices;
   3004     {
   3005       llvm::BitVector SawIndices(TemplateParams->size());
   3006       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   3007       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
   3008       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   3009         unsigned Depth, Index;
   3010         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   3011         if (Depth == 0 && !SawIndices[Index]) {
   3012           SawIndices[Index] = true;
   3013           PackIndices.push_back(Index);
   3014         }
   3015       }
   3016     }
   3017     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   3018 
   3019     // Keep track of the deduced template arguments for each parameter pack
   3020     // expanded by this pack expansion (the outer index) and for each
   3021     // template argument (the inner SmallVectors).
   3022     SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
   3023       NewlyDeducedPacks(PackIndices.size());
   3024     SmallVector<DeducedTemplateArgument, 2>
   3025       SavedPacks(PackIndices.size());
   3026     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
   3027                                  NewlyDeducedPacks);
   3028     bool HasAnyArguments = false;
   3029     for (; ArgIdx < NumArgs; ++ArgIdx) {
   3030       HasAnyArguments = true;
   3031 
   3032       QualType OrigParamType = ParamPattern;
   3033       ParamType = OrigParamType;
   3034       Expr *Arg = Args[ArgIdx];
   3035       QualType ArgType = Arg->getType();
   3036 
   3037       unsigned TDF = 0;
   3038       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3039                                                     ParamType, ArgType, Arg,
   3040                                                     TDF)) {
   3041         // We can't actually perform any deduction for this argument, so stop
   3042         // deduction at this point.
   3043         ++ArgIdx;
   3044         break;
   3045       }
   3046 
   3047       // Keep track of the argument type and corresponding argument index,
   3048       // so we can check for compatibility between the deduced A and A.
   3049       if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3050         OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3051                                                    ArgType));
   3052 
   3053       if (TemplateDeductionResult Result
   3054           = ::DeduceTemplateArguments(*this, TemplateParams,
   3055                                       ParamType, ArgType, Info, Deduced,
   3056                                       TDF))
   3057         return Result;
   3058 
   3059       // Capture the deduced template arguments for each parameter pack expanded
   3060       // by this pack expansion, add them to the list of arguments we've deduced
   3061       // for that pack, then clear out the deduced argument.
   3062       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   3063         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   3064         if (!DeducedArg.isNull()) {
   3065           NewlyDeducedPacks[I].push_back(DeducedArg);
   3066           DeducedArg = DeducedTemplateArgument();
   3067         }
   3068       }
   3069     }
   3070 
   3071     // Build argument packs for each of the parameter packs expanded by this
   3072     // pack expansion.
   3073     if (Sema::TemplateDeductionResult Result
   3074           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
   3075                                         Deduced, PackIndices, SavedPacks,
   3076                                         NewlyDeducedPacks, Info))
   3077       return Result;
   3078 
   3079     // After we've matching against a parameter pack, we're done.
   3080     break;
   3081   }
   3082 
   3083   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3084                                          NumExplicitlySpecified,
   3085                                          Specialization, Info, &OriginalCallArgs);
   3086 }
   3087 
   3088 /// \brief Deduce template arguments when taking the address of a function
   3089 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3090 /// a template.
   3091 ///
   3092 /// \param FunctionTemplate the function template for which we are performing
   3093 /// template argument deduction.
   3094 ///
   3095 /// \param ExplicitTemplateArguments the explicitly-specified template
   3096 /// arguments.
   3097 ///
   3098 /// \param ArgFunctionType the function type that will be used as the
   3099 /// "argument" type (A) when performing template argument deduction from the
   3100 /// function template's function type. This type may be NULL, if there is no
   3101 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3102 ///
   3103 /// \param Specialization if template argument deduction was successful,
   3104 /// this will be set to the function template specialization produced by
   3105 /// template argument deduction.
   3106 ///
   3107 /// \param Info the argument will be updated to provide additional information
   3108 /// about template argument deduction.
   3109 ///
   3110 /// \returns the result of template argument deduction.
   3111 Sema::TemplateDeductionResult
   3112 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3113                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3114                               QualType ArgFunctionType,
   3115                               FunctionDecl *&Specialization,
   3116                               TemplateDeductionInfo &Info) {
   3117   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3118   TemplateParameterList *TemplateParams
   3119     = FunctionTemplate->getTemplateParameters();
   3120   QualType FunctionType = Function->getType();
   3121 
   3122   // Substitute any explicit template arguments.
   3123   LocalInstantiationScope InstScope(*this);
   3124   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3125   unsigned NumExplicitlySpecified = 0;
   3126   SmallVector<QualType, 4> ParamTypes;
   3127   if (ExplicitTemplateArgs) {
   3128     if (TemplateDeductionResult Result
   3129           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3130                                                 *ExplicitTemplateArgs,
   3131                                                 Deduced, ParamTypes,
   3132                                                 &FunctionType, Info))
   3133       return Result;
   3134 
   3135     NumExplicitlySpecified = Deduced.size();
   3136   }
   3137 
   3138   // Template argument deduction for function templates in a SFINAE context.
   3139   // Trap any errors that might occur.
   3140   SFINAETrap Trap(*this);
   3141 
   3142   Deduced.resize(TemplateParams->size());
   3143 
   3144   if (!ArgFunctionType.isNull()) {
   3145     // Deduce template arguments from the function type.
   3146     if (TemplateDeductionResult Result
   3147           = ::DeduceTemplateArguments(*this, TemplateParams,
   3148                                       FunctionType, ArgFunctionType, Info,
   3149                                       Deduced, TDF_TopLevelParameterTypeList))
   3150       return Result;
   3151   }
   3152 
   3153   if (TemplateDeductionResult Result
   3154         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3155                                           NumExplicitlySpecified,
   3156                                           Specialization, Info))
   3157     return Result;
   3158 
   3159   // If the requested function type does not match the actual type of the
   3160   // specialization, template argument deduction fails.
   3161   if (!ArgFunctionType.isNull() &&
   3162       !Context.hasSameType(ArgFunctionType, Specialization->getType()))
   3163     return TDK_NonDeducedMismatch;
   3164 
   3165   return TDK_Success;
   3166 }
   3167 
   3168 /// \brief Deduce template arguments for a templated conversion
   3169 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3170 /// conversion function template specialization.
   3171 Sema::TemplateDeductionResult
   3172 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3173                               QualType ToType,
   3174                               CXXConversionDecl *&Specialization,
   3175                               TemplateDeductionInfo &Info) {
   3176   CXXConversionDecl *Conv
   3177     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
   3178   QualType FromType = Conv->getConversionType();
   3179 
   3180   // Canonicalize the types for deduction.
   3181   QualType P = Context.getCanonicalType(FromType);
   3182   QualType A = Context.getCanonicalType(ToType);
   3183 
   3184   // C++0x [temp.deduct.conv]p2:
   3185   //   If P is a reference type, the type referred to by P is used for
   3186   //   type deduction.
   3187   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3188     P = PRef->getPointeeType();
   3189 
   3190   // C++0x [temp.deduct.conv]p4:
   3191   //   [...] If A is a reference type, the type referred to by A is used
   3192   //   for type deduction.
   3193   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3194     A = ARef->getPointeeType().getUnqualifiedType();
   3195   // C++ [temp.deduct.conv]p3:
   3196   //
   3197   //   If A is not a reference type:
   3198   else {
   3199     assert(!A->isReferenceType() && "Reference types were handled above");
   3200 
   3201     //   - If P is an array type, the pointer type produced by the
   3202     //     array-to-pointer standard conversion (4.2) is used in place
   3203     //     of P for type deduction; otherwise,
   3204     if (P->isArrayType())
   3205       P = Context.getArrayDecayedType(P);
   3206     //   - If P is a function type, the pointer type produced by the
   3207     //     function-to-pointer standard conversion (4.3) is used in
   3208     //     place of P for type deduction; otherwise,
   3209     else if (P->isFunctionType())
   3210       P = Context.getPointerType(P);
   3211     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3212     //     P's type are ignored for type deduction.
   3213     else
   3214       P = P.getUnqualifiedType();
   3215 
   3216     // C++0x [temp.deduct.conv]p4:
   3217     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3218     //   type are ignored for type deduction. If A is a reference type, the type
   3219     //   referred to by A is used for type deduction.
   3220     A = A.getUnqualifiedType();
   3221   }
   3222 
   3223   // Template argument deduction for function templates in a SFINAE context.
   3224   // Trap any errors that might occur.
   3225   SFINAETrap Trap(*this);
   3226 
   3227   // C++ [temp.deduct.conv]p1:
   3228   //   Template argument deduction is done by comparing the return
   3229   //   type of the template conversion function (call it P) with the
   3230   //   type that is required as the result of the conversion (call it
   3231   //   A) as described in 14.8.2.4.
   3232   TemplateParameterList *TemplateParams
   3233     = FunctionTemplate->getTemplateParameters();
   3234   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3235   Deduced.resize(TemplateParams->size());
   3236 
   3237   // C++0x [temp.deduct.conv]p4:
   3238   //   In general, the deduction process attempts to find template
   3239   //   argument values that will make the deduced A identical to
   3240   //   A. However, there are two cases that allow a difference:
   3241   unsigned TDF = 0;
   3242   //     - If the original A is a reference type, A can be more
   3243   //       cv-qualified than the deduced A (i.e., the type referred to
   3244   //       by the reference)
   3245   if (ToType->isReferenceType())
   3246     TDF |= TDF_ParamWithReferenceType;
   3247   //     - The deduced A can be another pointer or pointer to member
   3248   //       type that can be converted to A via a qualification
   3249   //       conversion.
   3250   //
   3251   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3252   // both P and A are pointers or member pointers. In this case, we
   3253   // just ignore cv-qualifiers completely).
   3254   if ((P->isPointerType() && A->isPointerType()) ||
   3255       (P->isMemberPointerType() && A->isMemberPointerType()))
   3256     TDF |= TDF_IgnoreQualifiers;
   3257   if (TemplateDeductionResult Result
   3258         = ::DeduceTemplateArguments(*this, TemplateParams,
   3259                                     P, A, Info, Deduced, TDF))
   3260     return Result;
   3261 
   3262   // Finish template argument deduction.
   3263   LocalInstantiationScope InstScope(*this);
   3264   FunctionDecl *Spec = 0;
   3265   TemplateDeductionResult Result
   3266     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
   3267                                       Info);
   3268   Specialization = cast_or_null<CXXConversionDecl>(Spec);
   3269   return Result;
   3270 }
   3271 
   3272 /// \brief Deduce template arguments for a function template when there is
   3273 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3274 ///
   3275 /// \param FunctionTemplate the function template for which we are performing
   3276 /// template argument deduction.
   3277 ///
   3278 /// \param ExplicitTemplateArguments the explicitly-specified template
   3279 /// arguments.
   3280 ///
   3281 /// \param Specialization if template argument deduction was successful,
   3282 /// this will be set to the function template specialization produced by
   3283 /// template argument deduction.
   3284 ///
   3285 /// \param Info the argument will be updated to provide additional information
   3286 /// about template argument deduction.
   3287 ///
   3288 /// \returns the result of template argument deduction.
   3289 Sema::TemplateDeductionResult
   3290 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3291                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3292                               FunctionDecl *&Specialization,
   3293                               TemplateDeductionInfo &Info) {
   3294   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3295                                  QualType(), Specialization, Info);
   3296 }
   3297 
   3298 namespace {
   3299   /// Substitute the 'auto' type specifier within a type for a given replacement
   3300   /// type.
   3301   class SubstituteAutoTransform :
   3302     public TreeTransform<SubstituteAutoTransform> {
   3303     QualType Replacement;
   3304   public:
   3305     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
   3306       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
   3307     }
   3308     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3309       // If we're building the type pattern to deduce against, don't wrap the
   3310       // substituted type in an AutoType. Certain template deduction rules
   3311       // apply only when a template type parameter appears directly (and not if
   3312       // the parameter is found through desugaring). For instance:
   3313       //   auto &&lref = lvalue;
   3314       // must transform into "rvalue reference to T" not "rvalue reference to
   3315       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3316       if (isa<TemplateTypeParmType>(Replacement)) {
   3317         QualType Result = Replacement;
   3318         TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
   3319         NewTL.setNameLoc(TL.getNameLoc());
   3320         return Result;
   3321       } else {
   3322         QualType Result = RebuildAutoType(Replacement);
   3323         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3324         NewTL.setNameLoc(TL.getNameLoc());
   3325         return Result;
   3326       }
   3327     }
   3328   };
   3329 }
   3330 
   3331 /// \brief Deduce the type for an auto type-specifier (C++0x [dcl.spec.auto]p6)
   3332 ///
   3333 /// \param Type the type pattern using the auto type-specifier.
   3334 ///
   3335 /// \param Init the initializer for the variable whose type is to be deduced.
   3336 ///
   3337 /// \param Result if type deduction was successful, this will be set to the
   3338 /// deduced type. This may still contain undeduced autos if the type is
   3339 /// dependent. This will be set to null if deduction succeeded, but auto
   3340 /// substitution failed; the appropriate diagnostic will already have been
   3341 /// produced in that case.
   3342 ///
   3343 /// \returns true if deduction succeeded, false if it failed.
   3344 bool
   3345 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *Init,
   3346                      TypeSourceInfo *&Result) {
   3347   if (Init->isTypeDependent()) {
   3348     Result = Type;
   3349     return true;
   3350   }
   3351 
   3352   SourceLocation Loc = Init->getExprLoc();
   3353 
   3354   LocalInstantiationScope InstScope(*this);
   3355 
   3356   // Build template<class TemplParam> void Func(FuncParam);
   3357   TemplateTypeParmDecl *TemplParam =
   3358     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
   3359                                  false, false);
   3360   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   3361   NamedDecl *TemplParamPtr = TemplParam;
   3362   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
   3363                                                    Loc);
   3364 
   3365   TypeSourceInfo *FuncParamInfo =
   3366     SubstituteAutoTransform(*this, TemplArg).TransformType(Type);
   3367   assert(FuncParamInfo && "substituting template parameter for 'auto' failed");
   3368   QualType FuncParam = FuncParamInfo->getType();
   3369 
   3370   // Deduce type of TemplParam in Func(Init)
   3371   SmallVector<DeducedTemplateArgument, 1> Deduced;
   3372   Deduced.resize(1);
   3373   QualType InitType = Init->getType();
   3374   unsigned TDF = 0;
   3375   if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
   3376                                                 FuncParam, InitType, Init,
   3377                                                 TDF))
   3378     return false;
   3379 
   3380   TemplateDeductionInfo Info(Context, Loc);
   3381   if (::DeduceTemplateArguments(*this, &TemplateParams,
   3382                                 FuncParam, InitType, Info, Deduced,
   3383                                 TDF))
   3384     return false;
   3385 
   3386   QualType DeducedType = Deduced[0].getAsType();
   3387   if (DeducedType.isNull())
   3388     return false;
   3389 
   3390   Result = SubstituteAutoTransform(*this, DeducedType).TransformType(Type);
   3391 
   3392   // Check that the deduced argument type is compatible with the original
   3393   // argument type per C++ [temp.deduct.call]p4.
   3394   if (Result &&
   3395       CheckOriginalCallArgDeduction(*this,
   3396                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   3397                                     Result->getType())) {
   3398     Result = 0;
   3399     return false;
   3400   }
   3401 
   3402   return true;
   3403 }
   3404 
   3405 static void
   3406 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
   3407                            bool OnlyDeduced,
   3408                            unsigned Level,
   3409                            SmallVectorImpl<bool> &Deduced);
   3410 
   3411 /// \brief If this is a non-static member function,
   3412 static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
   3413                                                 CXXMethodDecl *Method,
   3414                                  SmallVectorImpl<QualType> &ArgTypes) {
   3415   if (Method->isStatic())
   3416     return;
   3417 
   3418   // C++ [over.match.funcs]p4:
   3419   //
   3420   //   For non-static member functions, the type of the implicit
   3421   //   object parameter is
   3422   //     - "lvalue reference to cv X" for functions declared without a
   3423   //       ref-qualifier or with the & ref-qualifier
   3424   //     - "rvalue reference to cv X" for functions declared with the
   3425   //       && ref-qualifier
   3426   //
   3427   // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
   3428   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   3429   ArgTy = Context.getQualifiedType(ArgTy,
   3430                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   3431   ArgTy = Context.getLValueReferenceType(ArgTy);
   3432   ArgTypes.push_back(ArgTy);
   3433 }
   3434 
   3435 /// \brief Determine whether the function template \p FT1 is at least as
   3436 /// specialized as \p FT2.
   3437 static bool isAtLeastAsSpecializedAs(Sema &S,
   3438                                      SourceLocation Loc,
   3439                                      FunctionTemplateDecl *FT1,
   3440                                      FunctionTemplateDecl *FT2,
   3441                                      TemplatePartialOrderingContext TPOC,
   3442                                      unsigned NumCallArguments,
   3443     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
   3444   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   3445   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   3446   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   3447   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   3448 
   3449   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   3450   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   3451   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3452   Deduced.resize(TemplateParams->size());
   3453 
   3454   // C++0x [temp.deduct.partial]p3:
   3455   //   The types used to determine the ordering depend on the context in which
   3456   //   the partial ordering is done:
   3457   TemplateDeductionInfo Info(S.Context, Loc);
   3458   CXXMethodDecl *Method1 = 0;
   3459   CXXMethodDecl *Method2 = 0;
   3460   bool IsNonStatic2 = false;
   3461   bool IsNonStatic1 = false;
   3462   unsigned Skip2 = 0;
   3463   switch (TPOC) {
   3464   case TPOC_Call: {
   3465     //   - In the context of a function call, the function parameter types are
   3466     //     used.
   3467     Method1 = dyn_cast<CXXMethodDecl>(FD1);
   3468     Method2 = dyn_cast<CXXMethodDecl>(FD2);
   3469     IsNonStatic1 = Method1 && !Method1->isStatic();
   3470     IsNonStatic2 = Method2 && !Method2->isStatic();
   3471 
   3472     // C++0x [temp.func.order]p3:
   3473     //   [...] If only one of the function templates is a non-static
   3474     //   member, that function template is considered to have a new
   3475     //   first parameter inserted in its function parameter list. The
   3476     //   new parameter is of type "reference to cv A," where cv are
   3477     //   the cv-qualifiers of the function template (if any) and A is
   3478     //   the class of which the function template is a member.
   3479     //
   3480     // C++98/03 doesn't have this provision, so instead we drop the
   3481     // first argument of the free function or static member, which
   3482     // seems to match existing practice.
   3483     SmallVector<QualType, 4> Args1;
   3484     unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
   3485       IsNonStatic2 && !IsNonStatic1;
   3486     if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
   3487       MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
   3488     Args1.insert(Args1.end(),
   3489                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
   3490 
   3491     SmallVector<QualType, 4> Args2;
   3492     Skip2 = !S.getLangOptions().CPlusPlus0x &&
   3493       IsNonStatic1 && !IsNonStatic2;
   3494     if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3495       MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
   3496     Args2.insert(Args2.end(),
   3497                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
   3498 
   3499     // C++ [temp.func.order]p5:
   3500     //   The presence of unused ellipsis and default arguments has no effect on
   3501     //   the partial ordering of function templates.
   3502     if (Args1.size() > NumCallArguments)
   3503       Args1.resize(NumCallArguments);
   3504     if (Args2.size() > NumCallArguments)
   3505       Args2.resize(NumCallArguments);
   3506     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   3507                                 Args1.data(), Args1.size(), Info, Deduced,
   3508                                 TDF_None, /*PartialOrdering=*/true,
   3509                                 RefParamComparisons))
   3510         return false;
   3511 
   3512     break;
   3513   }
   3514 
   3515   case TPOC_Conversion:
   3516     //   - In the context of a call to a conversion operator, the return types
   3517     //     of the conversion function templates are used.
   3518     if (DeduceTemplateArguments(S, TemplateParams, Proto2->getResultType(),
   3519                                 Proto1->getResultType(), Info, Deduced,
   3520                                 TDF_None, /*PartialOrdering=*/true,
   3521                                 RefParamComparisons))
   3522       return false;
   3523     break;
   3524 
   3525   case TPOC_Other:
   3526     //   - In other contexts (14.6.6.2) the function template's function type
   3527     //     is used.
   3528     if (DeduceTemplateArguments(S, TemplateParams, FD2->getType(),
   3529                                 FD1->getType(), Info, Deduced, TDF_None,
   3530                                 /*PartialOrdering=*/true, RefParamComparisons))
   3531       return false;
   3532     break;
   3533   }
   3534 
   3535   // C++0x [temp.deduct.partial]p11:
   3536   //   In most cases, all template parameters must have values in order for
   3537   //   deduction to succeed, but for partial ordering purposes a template
   3538   //   parameter may remain without a value provided it is not used in the
   3539   //   types being used for partial ordering. [ Note: a template parameter used
   3540   //   in a non-deduced context is considered used. -end note]
   3541   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   3542   for (; ArgIdx != NumArgs; ++ArgIdx)
   3543     if (Deduced[ArgIdx].isNull())
   3544       break;
   3545 
   3546   if (ArgIdx == NumArgs) {
   3547     // All template arguments were deduced. FT1 is at least as specialized
   3548     // as FT2.
   3549     return true;
   3550   }
   3551 
   3552   // Figure out which template parameters were used.
   3553   SmallVector<bool, 4> UsedParameters;
   3554   UsedParameters.resize(TemplateParams->size());
   3555   switch (TPOC) {
   3556   case TPOC_Call: {
   3557     unsigned NumParams = std::min(NumCallArguments,
   3558                                   std::min(Proto1->getNumArgs(),
   3559                                            Proto2->getNumArgs()));
   3560     if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
   3561       ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
   3562                                    TemplateParams->getDepth(), UsedParameters);
   3563     for (unsigned I = Skip2; I < NumParams; ++I)
   3564       ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
   3565                                    TemplateParams->getDepth(),
   3566                                    UsedParameters);
   3567     break;
   3568   }
   3569 
   3570   case TPOC_Conversion:
   3571     ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
   3572                                  TemplateParams->getDepth(),
   3573                                  UsedParameters);
   3574     break;
   3575 
   3576   case TPOC_Other:
   3577     ::MarkUsedTemplateParameters(S, FD2->getType(), false,
   3578                                  TemplateParams->getDepth(),
   3579                                  UsedParameters);
   3580     break;
   3581   }
   3582 
   3583   for (; ArgIdx != NumArgs; ++ArgIdx)
   3584     // If this argument had no value deduced but was used in one of the types
   3585     // used for partial ordering, then deduction fails.
   3586     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   3587       return false;
   3588 
   3589   return true;
   3590 }
   3591 
   3592 /// \brief Determine whether this a function template whose parameter-type-list
   3593 /// ends with a function parameter pack.
   3594 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   3595   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   3596   unsigned NumParams = Function->getNumParams();
   3597   if (NumParams == 0)
   3598     return false;
   3599 
   3600   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   3601   if (!Last->isParameterPack())
   3602     return false;
   3603 
   3604   // Make sure that no previous parameter is a parameter pack.
   3605   while (--NumParams > 0) {
   3606     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   3607       return false;
   3608   }
   3609 
   3610   return true;
   3611 }
   3612 
   3613 /// \brief Returns the more specialized function template according
   3614 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   3615 ///
   3616 /// \param FT1 the first function template
   3617 ///
   3618 /// \param FT2 the second function template
   3619 ///
   3620 /// \param TPOC the context in which we are performing partial ordering of
   3621 /// function templates.
   3622 ///
   3623 /// \param NumCallArguments The number of arguments in a call, used only
   3624 /// when \c TPOC is \c TPOC_Call.
   3625 ///
   3626 /// \returns the more specialized function template. If neither
   3627 /// template is more specialized, returns NULL.
   3628 FunctionTemplateDecl *
   3629 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   3630                                  FunctionTemplateDecl *FT2,
   3631                                  SourceLocation Loc,
   3632                                  TemplatePartialOrderingContext TPOC,
   3633                                  unsigned NumCallArguments) {
   3634   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
   3635   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   3636                                           NumCallArguments, 0);
   3637   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   3638                                           NumCallArguments,
   3639                                           &RefParamComparisons);
   3640 
   3641   if (Better1 != Better2) // We have a clear winner
   3642     return Better1? FT1 : FT2;
   3643 
   3644   if (!Better1 && !Better2) // Neither is better than the other
   3645     return 0;
   3646 
   3647   // C++0x [temp.deduct.partial]p10:
   3648   //   If for each type being considered a given template is at least as
   3649   //   specialized for all types and more specialized for some set of types and
   3650   //   the other template is not more specialized for any types or is not at
   3651   //   least as specialized for any types, then the given template is more
   3652   //   specialized than the other template. Otherwise, neither template is more
   3653   //   specialized than the other.
   3654   Better1 = false;
   3655   Better2 = false;
   3656   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
   3657     // C++0x [temp.deduct.partial]p9:
   3658     //   If, for a given type, deduction succeeds in both directions (i.e., the
   3659     //   types are identical after the transformations above) and both P and A
   3660     //   were reference types (before being replaced with the type referred to
   3661     //   above):
   3662 
   3663     //     -- if the type from the argument template was an lvalue reference
   3664     //        and the type from the parameter template was not, the argument
   3665     //        type is considered to be more specialized than the other;
   3666     //        otherwise,
   3667     if (!RefParamComparisons[I].ArgIsRvalueRef &&
   3668         RefParamComparisons[I].ParamIsRvalueRef) {
   3669       Better2 = true;
   3670       if (Better1)
   3671         return 0;
   3672       continue;
   3673     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
   3674                RefParamComparisons[I].ArgIsRvalueRef) {
   3675       Better1 = true;
   3676       if (Better2)
   3677         return 0;
   3678       continue;
   3679     }
   3680 
   3681     //     -- if the type from the argument template is more cv-qualified than
   3682     //        the type from the parameter template (as described above), the
   3683     //        argument type is considered to be more specialized than the
   3684     //        other; otherwise,
   3685     switch (RefParamComparisons[I].Qualifiers) {
   3686     case NeitherMoreQualified:
   3687       break;
   3688 
   3689     case ParamMoreQualified:
   3690       Better1 = true;
   3691       if (Better2)
   3692         return 0;
   3693       continue;
   3694 
   3695     case ArgMoreQualified:
   3696       Better2 = true;
   3697       if (Better1)
   3698         return 0;
   3699       continue;
   3700     }
   3701 
   3702     //     -- neither type is more specialized than the other.
   3703   }
   3704 
   3705   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
   3706   if (Better1)
   3707     return FT1;
   3708   else if (Better2)
   3709     return FT2;
   3710 
   3711   // FIXME: This mimics what GCC implements, but doesn't match up with the
   3712   // proposed resolution for core issue 692. This area needs to be sorted out,
   3713   // but for now we attempt to maintain compatibility.
   3714   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   3715   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   3716   if (Variadic1 != Variadic2)
   3717     return Variadic1? FT2 : FT1;
   3718 
   3719   return 0;
   3720 }
   3721 
   3722 /// \brief Determine if the two templates are equivalent.
   3723 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   3724   if (T1 == T2)
   3725     return true;
   3726 
   3727   if (!T1 || !T2)
   3728     return false;
   3729 
   3730   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   3731 }
   3732 
   3733 /// \brief Retrieve the most specialized of the given function template
   3734 /// specializations.
   3735 ///
   3736 /// \param SpecBegin the start iterator of the function template
   3737 /// specializations that we will be comparing.
   3738 ///
   3739 /// \param SpecEnd the end iterator of the function template
   3740 /// specializations, paired with \p SpecBegin.
   3741 ///
   3742 /// \param TPOC the partial ordering context to use to compare the function
   3743 /// template specializations.
   3744 ///
   3745 /// \param NumCallArguments The number of arguments in a call, used only
   3746 /// when \c TPOC is \c TPOC_Call.
   3747 ///
   3748 /// \param Loc the location where the ambiguity or no-specializations
   3749 /// diagnostic should occur.
   3750 ///
   3751 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   3752 /// no matching candidates.
   3753 ///
   3754 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   3755 /// occurs.
   3756 ///
   3757 /// \param CandidateDiag partial diagnostic used for each function template
   3758 /// specialization that is a candidate in the ambiguous ordering. One parameter
   3759 /// in this diagnostic should be unbound, which will correspond to the string
   3760 /// describing the template arguments for the function template specialization.
   3761 ///
   3762 /// \param Index if non-NULL and the result of this function is non-nULL,
   3763 /// receives the index corresponding to the resulting function template
   3764 /// specialization.
   3765 ///
   3766 /// \returns the most specialized function template specialization, if
   3767 /// found. Otherwise, returns SpecEnd.
   3768 ///
   3769 /// \todo FIXME: Consider passing in the "also-ran" candidates that failed
   3770 /// template argument deduction.
   3771 UnresolvedSetIterator
   3772 Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
   3773                         UnresolvedSetIterator SpecEnd,
   3774                          TemplatePartialOrderingContext TPOC,
   3775                          unsigned NumCallArguments,
   3776                          SourceLocation Loc,
   3777                          const PartialDiagnostic &NoneDiag,
   3778                          const PartialDiagnostic &AmbigDiag,
   3779                          const PartialDiagnostic &CandidateDiag,
   3780                          bool Complain) {
   3781   if (SpecBegin == SpecEnd) {
   3782     if (Complain)
   3783       Diag(Loc, NoneDiag);
   3784     return SpecEnd;
   3785   }
   3786 
   3787   if (SpecBegin + 1 == SpecEnd)
   3788     return SpecBegin;
   3789 
   3790   // Find the function template that is better than all of the templates it
   3791   // has been compared to.
   3792   UnresolvedSetIterator Best = SpecBegin;
   3793   FunctionTemplateDecl *BestTemplate
   3794     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   3795   assert(BestTemplate && "Not a function template specialization?");
   3796   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   3797     FunctionTemplateDecl *Challenger
   3798       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   3799     assert(Challenger && "Not a function template specialization?");
   3800     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   3801                                                   Loc, TPOC, NumCallArguments),
   3802                        Challenger)) {
   3803       Best = I;
   3804       BestTemplate = Challenger;
   3805     }
   3806   }
   3807 
   3808   // Make sure that the "best" function template is more specialized than all
   3809   // of the others.
   3810   bool Ambiguous = false;
   3811   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   3812     FunctionTemplateDecl *Challenger
   3813       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   3814     if (I != Best &&
   3815         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   3816                                                    Loc, TPOC, NumCallArguments),
   3817                         BestTemplate)) {
   3818       Ambiguous = true;
   3819       break;
   3820     }
   3821   }
   3822 
   3823   if (!Ambiguous) {
   3824     // We found an answer. Return it.
   3825     return Best;
   3826   }
   3827 
   3828   // Diagnose the ambiguity.
   3829   if (Complain)
   3830     Diag(Loc, AmbigDiag);
   3831 
   3832   if (Complain)
   3833   // FIXME: Can we order the candidates in some sane way?
   3834     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
   3835       Diag((*I)->getLocation(), CandidateDiag)
   3836         << getTemplateArgumentBindingsText(
   3837           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   3838                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   3839 
   3840   return SpecEnd;
   3841 }
   3842 
   3843 /// \brief Returns the more specialized class template partial specialization
   3844 /// according to the rules of partial ordering of class template partial
   3845 /// specializations (C++ [temp.class.order]).
   3846 ///
   3847 /// \param PS1 the first class template partial specialization
   3848 ///
   3849 /// \param PS2 the second class template partial specialization
   3850 ///
   3851 /// \returns the more specialized class template partial specialization. If
   3852 /// neither partial specialization is more specialized, returns NULL.
   3853 ClassTemplatePartialSpecializationDecl *
   3854 Sema::getMoreSpecializedPartialSpecialization(
   3855                                   ClassTemplatePartialSpecializationDecl *PS1,
   3856                                   ClassTemplatePartialSpecializationDecl *PS2,
   3857                                               SourceLocation Loc) {
   3858   // C++ [temp.class.order]p1:
   3859   //   For two class template partial specializations, the first is at least as
   3860   //   specialized as the second if, given the following rewrite to two
   3861   //   function templates, the first function template is at least as
   3862   //   specialized as the second according to the ordering rules for function
   3863   //   templates (14.6.6.2):
   3864   //     - the first function template has the same template parameters as the
   3865   //       first partial specialization and has a single function parameter
   3866   //       whose type is a class template specialization with the template
   3867   //       arguments of the first partial specialization, and
   3868   //     - the second function template has the same template parameters as the
   3869   //       second partial specialization and has a single function parameter
   3870   //       whose type is a class template specialization with the template
   3871   //       arguments of the second partial specialization.
   3872   //
   3873   // Rather than synthesize function templates, we merely perform the
   3874   // equivalent partial ordering by performing deduction directly on
   3875   // the template arguments of the class template partial
   3876   // specializations. This computation is slightly simpler than the
   3877   // general problem of function template partial ordering, because
   3878   // class template partial specializations are more constrained. We
   3879   // know that every template parameter is deducible from the class
   3880   // template partial specialization's template arguments, for
   3881   // example.
   3882   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3883   TemplateDeductionInfo Info(Context, Loc);
   3884 
   3885   QualType PT1 = PS1->getInjectedSpecializationType();
   3886   QualType PT2 = PS2->getInjectedSpecializationType();
   3887 
   3888   // Determine whether PS1 is at least as specialized as PS2
   3889   Deduced.resize(PS2->getTemplateParameters()->size());
   3890   bool Better1 = !::DeduceTemplateArguments(*this, PS2->getTemplateParameters(),
   3891                                             PT2, PT1, Info, Deduced, TDF_None,
   3892                                             /*PartialOrdering=*/true,
   3893                                             /*RefParamComparisons=*/0);
   3894   if (Better1) {
   3895     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
   3896                                Deduced.data(), Deduced.size(), Info);
   3897     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   3898                                                  PS1->getTemplateArgs(),
   3899                                                  Deduced, Info);
   3900   }
   3901 
   3902   // Determine whether PS2 is at least as specialized as PS1
   3903   Deduced.clear();
   3904   Deduced.resize(PS1->getTemplateParameters()->size());
   3905   bool Better2 = !::DeduceTemplateArguments(*this, PS1->getTemplateParameters(),
   3906                                             PT1, PT2, Info, Deduced, TDF_None,
   3907                                             /*PartialOrdering=*/true,
   3908                                             /*RefParamComparisons=*/0);
   3909   if (Better2) {
   3910     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
   3911                                Deduced.data(), Deduced.size(), Info);
   3912     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   3913                                                  PS2->getTemplateArgs(),
   3914                                                  Deduced, Info);
   3915   }
   3916 
   3917   if (Better1 == Better2)
   3918     return 0;
   3919 
   3920   return Better1? PS1 : PS2;
   3921 }
   3922 
   3923 static void
   3924 MarkUsedTemplateParameters(Sema &SemaRef,
   3925                            const TemplateArgument &TemplateArg,
   3926                            bool OnlyDeduced,
   3927                            unsigned Depth,
   3928                            SmallVectorImpl<bool> &Used);
   3929 
   3930 /// \brief Mark the template parameters that are used by the given
   3931 /// expression.
   3932 static void
   3933 MarkUsedTemplateParameters(Sema &SemaRef,
   3934                            const Expr *E,
   3935                            bool OnlyDeduced,
   3936                            unsigned Depth,
   3937                            SmallVectorImpl<bool> &Used) {
   3938   // We can deduce from a pack expansion.
   3939   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   3940     E = Expansion->getPattern();
   3941 
   3942   // Skip through any implicit casts we added while type-checking.
   3943   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   3944     E = ICE->getSubExpr();
   3945 
   3946   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   3947   // find other occurrences of template parameters.
   3948   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   3949   if (!DRE)
   3950     return;
   3951 
   3952   const NonTypeTemplateParmDecl *NTTP
   3953     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   3954   if (!NTTP)
   3955     return;
   3956 
   3957   if (NTTP->getDepth() == Depth)
   3958     Used[NTTP->getIndex()] = true;
   3959 }
   3960 
   3961 /// \brief Mark the template parameters that are used by the given
   3962 /// nested name specifier.
   3963 static void
   3964 MarkUsedTemplateParameters(Sema &SemaRef,
   3965                            NestedNameSpecifier *NNS,
   3966                            bool OnlyDeduced,
   3967                            unsigned Depth,
   3968                            SmallVectorImpl<bool> &Used) {
   3969   if (!NNS)
   3970     return;
   3971 
   3972   MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
   3973                              Used);
   3974   MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
   3975                              OnlyDeduced, Depth, Used);
   3976 }
   3977 
   3978 /// \brief Mark the template parameters that are used by the given
   3979 /// template name.
   3980 static void
   3981 MarkUsedTemplateParameters(Sema &SemaRef,
   3982                            TemplateName Name,
   3983                            bool OnlyDeduced,
   3984                            unsigned Depth,
   3985                            SmallVectorImpl<bool> &Used) {
   3986   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   3987     if (TemplateTemplateParmDecl *TTP
   3988           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   3989       if (TTP->getDepth() == Depth)
   3990         Used[TTP->getIndex()] = true;
   3991     }
   3992     return;
   3993   }
   3994 
   3995   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   3996     MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
   3997                                Depth, Used);
   3998   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   3999     MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
   4000                                Depth, Used);
   4001 }
   4002 
   4003 /// \brief Mark the template parameters that are used by the given
   4004 /// type.
   4005 static void
   4006 MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
   4007                            bool OnlyDeduced,
   4008                            unsigned Depth,
   4009                            SmallVectorImpl<bool> &Used) {
   4010   if (T.isNull())
   4011     return;
   4012 
   4013   // Non-dependent types have nothing deducible
   4014   if (!T->isDependentType())
   4015     return;
   4016 
   4017   T = SemaRef.Context.getCanonicalType(T);
   4018   switch (T->getTypeClass()) {
   4019   case Type::Pointer:
   4020     MarkUsedTemplateParameters(SemaRef,
   4021                                cast<PointerType>(T)->getPointeeType(),
   4022                                OnlyDeduced,
   4023                                Depth,
   4024                                Used);
   4025     break;
   4026 
   4027   case Type::BlockPointer:
   4028     MarkUsedTemplateParameters(SemaRef,
   4029                                cast<BlockPointerType>(T)->getPointeeType(),
   4030                                OnlyDeduced,
   4031                                Depth,
   4032                                Used);
   4033     break;
   4034 
   4035   case Type::LValueReference:
   4036   case Type::RValueReference:
   4037     MarkUsedTemplateParameters(SemaRef,
   4038                                cast<ReferenceType>(T)->getPointeeType(),
   4039                                OnlyDeduced,
   4040                                Depth,
   4041                                Used);
   4042     break;
   4043 
   4044   case Type::MemberPointer: {
   4045     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4046     MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
   4047                                Depth, Used);
   4048     MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
   4049                                OnlyDeduced, Depth, Used);
   4050     break;
   4051   }
   4052 
   4053   case Type::DependentSizedArray:
   4054     MarkUsedTemplateParameters(SemaRef,
   4055                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4056                                OnlyDeduced, Depth, Used);
   4057     // Fall through to check the element type
   4058 
   4059   case Type::ConstantArray:
   4060   case Type::IncompleteArray:
   4061     MarkUsedTemplateParameters(SemaRef,
   4062                                cast<ArrayType>(T)->getElementType(),
   4063                                OnlyDeduced, Depth, Used);
   4064     break;
   4065 
   4066   case Type::Vector:
   4067   case Type::ExtVector:
   4068     MarkUsedTemplateParameters(SemaRef,
   4069                                cast<VectorType>(T)->getElementType(),
   4070                                OnlyDeduced, Depth, Used);
   4071     break;
   4072 
   4073   case Type::DependentSizedExtVector: {
   4074     const DependentSizedExtVectorType *VecType
   4075       = cast<DependentSizedExtVectorType>(T);
   4076     MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
   4077                                Depth, Used);
   4078     MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
   4079                                Depth, Used);
   4080     break;
   4081   }
   4082 
   4083   case Type::FunctionProto: {
   4084     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4085     MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
   4086                                Depth, Used);
   4087     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
   4088       MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
   4089                                  Depth, Used);
   4090     break;
   4091   }
   4092 
   4093   case Type::TemplateTypeParm: {
   4094     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4095     if (TTP->getDepth() == Depth)
   4096       Used[TTP->getIndex()] = true;
   4097     break;
   4098   }
   4099 
   4100   case Type::SubstTemplateTypeParmPack: {
   4101     const SubstTemplateTypeParmPackType *Subst
   4102       = cast<SubstTemplateTypeParmPackType>(T);
   4103     MarkUsedTemplateParameters(SemaRef,
   4104                                QualType(Subst->getReplacedParameter(), 0),
   4105                                OnlyDeduced, Depth, Used);
   4106     MarkUsedTemplateParameters(SemaRef, Subst->getArgumentPack(),
   4107                                OnlyDeduced, Depth, Used);
   4108     break;
   4109   }
   4110 
   4111   case Type::InjectedClassName:
   4112     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4113     // fall through
   4114 
   4115   case Type::TemplateSpecialization: {
   4116     const TemplateSpecializationType *Spec
   4117       = cast<TemplateSpecializationType>(T);
   4118     MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
   4119                                Depth, Used);
   4120 
   4121     // C++0x [temp.deduct.type]p9:
   4122     //   If the template argument list of P contains a pack expansion that is not
   4123     //   the last template argument, the entire template argument list is a
   4124     //   non-deduced context.
   4125     if (OnlyDeduced &&
   4126         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4127       break;
   4128 
   4129     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4130       MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
   4131                                  Used);
   4132     break;
   4133   }
   4134 
   4135   case Type::Complex:
   4136     if (!OnlyDeduced)
   4137       MarkUsedTemplateParameters(SemaRef,
   4138                                  cast<ComplexType>(T)->getElementType(),
   4139                                  OnlyDeduced, Depth, Used);
   4140     break;
   4141 
   4142   case Type::Atomic:
   4143     if (!OnlyDeduced)
   4144       MarkUsedTemplateParameters(SemaRef,
   4145                                  cast<AtomicType>(T)->getValueType(),
   4146                                  OnlyDeduced, Depth, Used);
   4147     break;
   4148 
   4149   case Type::DependentName:
   4150     if (!OnlyDeduced)
   4151       MarkUsedTemplateParameters(SemaRef,
   4152                                  cast<DependentNameType>(T)->getQualifier(),
   4153                                  OnlyDeduced, Depth, Used);
   4154     break;
   4155 
   4156   case Type::DependentTemplateSpecialization: {
   4157     const DependentTemplateSpecializationType *Spec
   4158       = cast<DependentTemplateSpecializationType>(T);
   4159     if (!OnlyDeduced)
   4160       MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
   4161                                  OnlyDeduced, Depth, Used);
   4162 
   4163     // C++0x [temp.deduct.type]p9:
   4164     //   If the template argument list of P contains a pack expansion that is not
   4165     //   the last template argument, the entire template argument list is a
   4166     //   non-deduced context.
   4167     if (OnlyDeduced &&
   4168         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4169       break;
   4170 
   4171     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4172       MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
   4173                                  Used);
   4174     break;
   4175   }
   4176 
   4177   case Type::TypeOf:
   4178     if (!OnlyDeduced)
   4179       MarkUsedTemplateParameters(SemaRef,
   4180                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4181                                  OnlyDeduced, Depth, Used);
   4182     break;
   4183 
   4184   case Type::TypeOfExpr:
   4185     if (!OnlyDeduced)
   4186       MarkUsedTemplateParameters(SemaRef,
   4187                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4188                                  OnlyDeduced, Depth, Used);
   4189     break;
   4190 
   4191   case Type::Decltype:
   4192     if (!OnlyDeduced)
   4193       MarkUsedTemplateParameters(SemaRef,
   4194                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4195                                  OnlyDeduced, Depth, Used);
   4196     break;
   4197 
   4198   case Type::UnaryTransform:
   4199     if (!OnlyDeduced)
   4200       MarkUsedTemplateParameters(SemaRef,
   4201                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4202                                  OnlyDeduced, Depth, Used);
   4203     break;
   4204 
   4205   case Type::PackExpansion:
   4206     MarkUsedTemplateParameters(SemaRef,
   4207                                cast<PackExpansionType>(T)->getPattern(),
   4208                                OnlyDeduced, Depth, Used);
   4209     break;
   4210 
   4211   case Type::Auto:
   4212     MarkUsedTemplateParameters(SemaRef,
   4213                                cast<AutoType>(T)->getDeducedType(),
   4214                                OnlyDeduced, Depth, Used);
   4215 
   4216   // None of these types have any template parameters in them.
   4217   case Type::Builtin:
   4218   case Type::VariableArray:
   4219   case Type::FunctionNoProto:
   4220   case Type::Record:
   4221   case Type::Enum:
   4222   case Type::ObjCInterface:
   4223   case Type::ObjCObject:
   4224   case Type::ObjCObjectPointer:
   4225   case Type::UnresolvedUsing:
   4226 #define TYPE(Class, Base)
   4227 #define ABSTRACT_TYPE(Class, Base)
   4228 #define DEPENDENT_TYPE(Class, Base)
   4229 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4230 #include "clang/AST/TypeNodes.def"
   4231     break;
   4232   }
   4233 }
   4234 
   4235 /// \brief Mark the template parameters that are used by this
   4236 /// template argument.
   4237 static void
   4238 MarkUsedTemplateParameters(Sema &SemaRef,
   4239                            const TemplateArgument &TemplateArg,
   4240                            bool OnlyDeduced,
   4241                            unsigned Depth,
   4242                            SmallVectorImpl<bool> &Used) {
   4243   switch (TemplateArg.getKind()) {
   4244   case TemplateArgument::Null:
   4245   case TemplateArgument::Integral:
   4246     case TemplateArgument::Declaration:
   4247     break;
   4248 
   4249   case TemplateArgument::Type:
   4250     MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
   4251                                Depth, Used);
   4252     break;
   4253 
   4254   case TemplateArgument::Template:
   4255   case TemplateArgument::TemplateExpansion:
   4256     MarkUsedTemplateParameters(SemaRef,
   4257                                TemplateArg.getAsTemplateOrTemplatePattern(),
   4258                                OnlyDeduced, Depth, Used);
   4259     break;
   4260 
   4261   case TemplateArgument::Expression:
   4262     MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
   4263                                Depth, Used);
   4264     break;
   4265 
   4266   case TemplateArgument::Pack:
   4267     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
   4268                                       PEnd = TemplateArg.pack_end();
   4269          P != PEnd; ++P)
   4270       MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
   4271     break;
   4272   }
   4273 }
   4274 
   4275 /// \brief Mark the template parameters can be deduced by the given
   4276 /// template argument list.
   4277 ///
   4278 /// \param TemplateArgs the template argument list from which template
   4279 /// parameters will be deduced.
   4280 ///
   4281 /// \param Deduced a bit vector whose elements will be set to \c true
   4282 /// to indicate when the corresponding template parameter will be
   4283 /// deduced.
   4284 void
   4285 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   4286                                  bool OnlyDeduced, unsigned Depth,
   4287                                  SmallVectorImpl<bool> &Used) {
   4288   // C++0x [temp.deduct.type]p9:
   4289   //   If the template argument list of P contains a pack expansion that is not
   4290   //   the last template argument, the entire template argument list is a
   4291   //   non-deduced context.
   4292   if (OnlyDeduced &&
   4293       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   4294     return;
   4295 
   4296   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   4297     ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
   4298                                  Depth, Used);
   4299 }
   4300 
   4301 /// \brief Marks all of the template parameters that will be deduced by a
   4302 /// call to the given function template.
   4303 void
   4304 Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
   4305                                     SmallVectorImpl<bool> &Deduced) {
   4306   TemplateParameterList *TemplateParams
   4307     = FunctionTemplate->getTemplateParameters();
   4308   Deduced.clear();
   4309   Deduced.resize(TemplateParams->size());
   4310 
   4311   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   4312   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   4313     ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
   4314                                  true, TemplateParams->getDepth(), Deduced);
   4315 }
   4316 
   4317 bool hasDeducibleTemplateParameters(Sema &S,
   4318                                     FunctionTemplateDecl *FunctionTemplate,
   4319                                     QualType T) {
   4320   if (!T->isDependentType())
   4321     return false;
   4322 
   4323   TemplateParameterList *TemplateParams
   4324     = FunctionTemplate->getTemplateParameters();
   4325   SmallVector<bool, 4> Deduced;
   4326   Deduced.resize(TemplateParams->size());
   4327   ::MarkUsedTemplateParameters(S, T, true, TemplateParams->getDepth(),
   4328                                Deduced);
   4329 
   4330   for (unsigned I = 0, N = Deduced.size(); I != N; ++I)
   4331     if (Deduced[I])
   4332       return true;
   4333 
   4334   return false;
   4335 }
   4336