Home | History | Annotate | Download | only in mips
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef  V8_MIPS_CONSTANTS_H_
     29 #define  V8_MIPS_CONSTANTS_H_
     30 
     31 // UNIMPLEMENTED_ macro for MIPS.
     32 #ifdef DEBUG
     33 #define UNIMPLEMENTED_MIPS()                                                  \
     34   v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
     35                        __FILE__, __LINE__, __func__)
     36 #else
     37 #define UNIMPLEMENTED_MIPS()
     38 #endif
     39 
     40 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
     41 
     42 
     43 #ifdef _MIPS_ARCH_MIPS32R2
     44   #define mips32r2 1
     45 #else
     46   #define mips32r2 0
     47 #endif
     48 
     49 
     50 // Defines constants and accessor classes to assemble, disassemble and
     51 // simulate MIPS32 instructions.
     52 //
     53 // See: MIPS32 Architecture For Programmers
     54 //      Volume II: The MIPS32 Instruction Set
     55 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
     56 
     57 namespace v8 {
     58 namespace internal {
     59 
     60 // -----------------------------------------------------------------------------
     61 // Registers and FPURegister.
     62 
     63 // Number of general purpose registers.
     64 static const int kNumRegisters = 32;
     65 static const int kInvalidRegister = -1;
     66 
     67 // Number of registers with HI, LO, and pc.
     68 static const int kNumSimuRegisters = 35;
     69 
     70 // In the simulator, the PC register is simulated as the 34th register.
     71 static const int kPCRegister = 34;
     72 
     73 // Number coprocessor registers.
     74 static const int kNumFPURegisters = 32;
     75 static const int kInvalidFPURegister = -1;
     76 
     77 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
     78 static const int kFCSRRegister = 31;
     79 static const int kInvalidFPUControlRegister = -1;
     80 static const uint32_t kFPUInvalidResult = (uint32_t) (1 << 31) - 1;
     81 
     82 // FCSR constants.
     83 static const uint32_t kFCSRFlagMask = (1 << 6) - 1;
     84 static const uint32_t kFCSRFlagShift = 2;
     85 
     86 // Helper functions for converting between register numbers and names.
     87 class Registers {
     88  public:
     89   // Return the name of the register.
     90   static const char* Name(int reg);
     91 
     92   // Lookup the register number for the name provided.
     93   static int Number(const char* name);
     94 
     95   struct RegisterAlias {
     96     int reg;
     97     const char *name;
     98   };
     99 
    100   static const int32_t kMaxValue = 0x7fffffff;
    101   static const int32_t kMinValue = 0x80000000;
    102 
    103  private:
    104 
    105   static const char* names_[kNumSimuRegisters];
    106   static const RegisterAlias aliases_[];
    107 };
    108 
    109 // Helper functions for converting between register numbers and names.
    110 class FPURegisters {
    111  public:
    112   // Return the name of the register.
    113   static const char* Name(int reg);
    114 
    115   // Lookup the register number for the name provided.
    116   static int Number(const char* name);
    117 
    118   struct RegisterAlias {
    119     int creg;
    120     const char *name;
    121   };
    122 
    123  private:
    124 
    125   static const char* names_[kNumFPURegisters];
    126   static const RegisterAlias aliases_[];
    127 };
    128 
    129 
    130 // -----------------------------------------------------------------------------
    131 // Instructions encoding constants.
    132 
    133 // On MIPS all instructions are 32 bits.
    134 typedef int32_t Instr;
    135 
    136 typedef unsigned char byte_;
    137 
    138 // Special Software Interrupt codes when used in the presence of the MIPS
    139 // simulator.
    140 enum SoftwareInterruptCodes {
    141   // Transition to C code.
    142   call_rt_redirected = 0xfffff
    143 };
    144 
    145 // ----- Fields offset and length.
    146 static const int kOpcodeShift   = 26;
    147 static const int kOpcodeBits    = 6;
    148 static const int kRsShift       = 21;
    149 static const int kRsBits        = 5;
    150 static const int kRtShift       = 16;
    151 static const int kRtBits        = 5;
    152 static const int kRdShift       = 11;
    153 static const int kRdBits        = 5;
    154 static const int kSaShift       = 6;
    155 static const int kSaBits        = 5;
    156 static const int kFunctionShift = 0;
    157 static const int kFunctionBits  = 6;
    158 static const int kLuiShift      = 16;
    159 
    160 static const int kImm16Shift = 0;
    161 static const int kImm16Bits  = 16;
    162 static const int kImm26Shift = 0;
    163 static const int kImm26Bits  = 26;
    164 
    165 static const int kFsShift       = 11;
    166 static const int kFsBits        = 5;
    167 static const int kFtShift       = 16;
    168 static const int kFtBits        = 5;
    169 static const int kFdShift       = 6;
    170 static const int kFdBits        = 5;
    171 static const int kFCccShift     = 8;
    172 static const int kFCccBits      = 3;
    173 static const int kFBccShift     = 18;
    174 static const int kFBccBits      = 3;
    175 static const int kFBtrueShift   = 16;
    176 static const int kFBtrueBits    = 1;
    177 
    178 // ----- Miscellianous useful masks.
    179 // Instruction bit masks.
    180 static const int  kOpcodeMask   = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
    181 static const int  kImm16Mask    = ((1 << kImm16Bits) - 1) << kImm16Shift;
    182 static const int  kImm26Mask    = ((1 << kImm26Bits) - 1) << kImm26Shift;
    183 static const int  kRsFieldMask  = ((1 << kRsBits) - 1) << kRsShift;
    184 static const int  kRtFieldMask  = ((1 << kRtBits) - 1) << kRtShift;
    185 static const int  kRdFieldMask  = ((1 << kRdBits) - 1) << kRdShift;
    186 static const int  kSaFieldMask  = ((1 << kSaBits) - 1) << kSaShift;
    187 static const int  kFunctionFieldMask =
    188     ((1 << kFunctionBits) - 1) << kFunctionShift;
    189 // Misc masks.
    190 static const int  kHiMask       =   0xffff << 16;
    191 static const int  kLoMask       =   0xffff;
    192 static const int  kSignMask     =   0x80000000;
    193 
    194 
    195 // ----- MIPS Opcodes and Function Fields.
    196 // We use this presentation to stay close to the table representation in
    197 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
    198 enum Opcode {
    199   SPECIAL   =   0 << kOpcodeShift,
    200   REGIMM    =   1 << kOpcodeShift,
    201 
    202   J         =   ((0 << 3) + 2) << kOpcodeShift,
    203   JAL       =   ((0 << 3) + 3) << kOpcodeShift,
    204   BEQ       =   ((0 << 3) + 4) << kOpcodeShift,
    205   BNE       =   ((0 << 3) + 5) << kOpcodeShift,
    206   BLEZ      =   ((0 << 3) + 6) << kOpcodeShift,
    207   BGTZ      =   ((0 << 3) + 7) << kOpcodeShift,
    208 
    209   ADDI      =   ((1 << 3) + 0) << kOpcodeShift,
    210   ADDIU     =   ((1 << 3) + 1) << kOpcodeShift,
    211   SLTI      =   ((1 << 3) + 2) << kOpcodeShift,
    212   SLTIU     =   ((1 << 3) + 3) << kOpcodeShift,
    213   ANDI      =   ((1 << 3) + 4) << kOpcodeShift,
    214   ORI       =   ((1 << 3) + 5) << kOpcodeShift,
    215   XORI      =   ((1 << 3) + 6) << kOpcodeShift,
    216   LUI       =   ((1 << 3) + 7) << kOpcodeShift,
    217 
    218   COP1      =   ((2 << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class
    219   BEQL      =   ((2 << 3) + 4) << kOpcodeShift,
    220   BNEL      =   ((2 << 3) + 5) << kOpcodeShift,
    221   BLEZL     =   ((2 << 3) + 6) << kOpcodeShift,
    222   BGTZL     =   ((2 << 3) + 7) << kOpcodeShift,
    223 
    224   SPECIAL2  =   ((3 << 3) + 4) << kOpcodeShift,
    225   SPECIAL3  =   ((3 << 3) + 7) << kOpcodeShift,
    226 
    227   LB        =   ((4 << 3) + 0) << kOpcodeShift,
    228   LH        =   ((4 << 3) + 1) << kOpcodeShift,
    229   LWL       =   ((4 << 3) + 2) << kOpcodeShift,
    230   LW        =   ((4 << 3) + 3) << kOpcodeShift,
    231   LBU       =   ((4 << 3) + 4) << kOpcodeShift,
    232   LHU       =   ((4 << 3) + 5) << kOpcodeShift,
    233   LWR       =   ((4 << 3) + 6) << kOpcodeShift,
    234   SB        =   ((5 << 3) + 0) << kOpcodeShift,
    235   SH        =   ((5 << 3) + 1) << kOpcodeShift,
    236   SWL       =   ((5 << 3) + 2) << kOpcodeShift,
    237   SW        =   ((5 << 3) + 3) << kOpcodeShift,
    238   SWR       =   ((5 << 3) + 6) << kOpcodeShift,
    239 
    240   LWC1      =   ((6 << 3) + 1) << kOpcodeShift,
    241   LDC1      =   ((6 << 3) + 5) << kOpcodeShift,
    242 
    243   SWC1      =   ((7 << 3) + 1) << kOpcodeShift,
    244   SDC1      =   ((7 << 3) + 5) << kOpcodeShift
    245 };
    246 
    247 enum SecondaryField {
    248   // SPECIAL Encoding of Function Field.
    249   SLL       =   ((0 << 3) + 0),
    250   SRL       =   ((0 << 3) + 2),
    251   SRA       =   ((0 << 3) + 3),
    252   SLLV      =   ((0 << 3) + 4),
    253   SRLV      =   ((0 << 3) + 6),
    254   SRAV      =   ((0 << 3) + 7),
    255   MOVCI     =   ((0 << 3) + 1),
    256 
    257   JR        =   ((1 << 3) + 0),
    258   JALR      =   ((1 << 3) + 1),
    259   MOVZ      =   ((1 << 3) + 2),
    260   MOVN      =   ((1 << 3) + 3),
    261   BREAK     =   ((1 << 3) + 5),
    262 
    263   MFHI      =   ((2 << 3) + 0),
    264   MFLO      =   ((2 << 3) + 2),
    265 
    266   MULT      =   ((3 << 3) + 0),
    267   MULTU     =   ((3 << 3) + 1),
    268   DIV       =   ((3 << 3) + 2),
    269   DIVU      =   ((3 << 3) + 3),
    270 
    271   ADD       =   ((4 << 3) + 0),
    272   ADDU      =   ((4 << 3) + 1),
    273   SUB       =   ((4 << 3) + 2),
    274   SUBU      =   ((4 << 3) + 3),
    275   AND       =   ((4 << 3) + 4),
    276   OR        =   ((4 << 3) + 5),
    277   XOR       =   ((4 << 3) + 6),
    278   NOR       =   ((4 << 3) + 7),
    279 
    280   SLT       =   ((5 << 3) + 2),
    281   SLTU      =   ((5 << 3) + 3),
    282 
    283   TGE       =   ((6 << 3) + 0),
    284   TGEU      =   ((6 << 3) + 1),
    285   TLT       =   ((6 << 3) + 2),
    286   TLTU      =   ((6 << 3) + 3),
    287   TEQ       =   ((6 << 3) + 4),
    288   TNE       =   ((6 << 3) + 6),
    289 
    290   // SPECIAL2 Encoding of Function Field.
    291   MUL       =   ((0 << 3) + 2),
    292   CLZ       =   ((4 << 3) + 0),
    293   CLO       =   ((4 << 3) + 1),
    294 
    295   // SPECIAL3 Encoding of Function Field.
    296   EXT       =   ((0 << 3) + 0),
    297   INS       =   ((0 << 3) + 4),
    298 
    299   // REGIMM  encoding of rt Field.
    300   BLTZ      =   ((0 << 3) + 0) << 16,
    301   BGEZ      =   ((0 << 3) + 1) << 16,
    302   BLTZAL    =   ((2 << 3) + 0) << 16,
    303   BGEZAL    =   ((2 << 3) + 1) << 16,
    304 
    305   // COP1 Encoding of rs Field.
    306   MFC1      =   ((0 << 3) + 0) << 21,
    307   CFC1      =   ((0 << 3) + 2) << 21,
    308   MFHC1     =   ((0 << 3) + 3) << 21,
    309   MTC1      =   ((0 << 3) + 4) << 21,
    310   CTC1      =   ((0 << 3) + 6) << 21,
    311   MTHC1     =   ((0 << 3) + 7) << 21,
    312   BC1       =   ((1 << 3) + 0) << 21,
    313   S         =   ((2 << 3) + 0) << 21,
    314   D         =   ((2 << 3) + 1) << 21,
    315   W         =   ((2 << 3) + 4) << 21,
    316   L         =   ((2 << 3) + 5) << 21,
    317   PS        =   ((2 << 3) + 6) << 21,
    318   // COP1 Encoding of Function Field When rs=S.
    319   ROUND_L_S =   ((1 << 3) + 0),
    320   TRUNC_L_S =   ((1 << 3) + 1),
    321   CEIL_L_S  =   ((1 << 3) + 2),
    322   FLOOR_L_S =   ((1 << 3) + 3),
    323   ROUND_W_S =   ((1 << 3) + 4),
    324   TRUNC_W_S =   ((1 << 3) + 5),
    325   CEIL_W_S  =   ((1 << 3) + 6),
    326   FLOOR_W_S =   ((1 << 3) + 7),
    327   CVT_D_S   =   ((4 << 3) + 1),
    328   CVT_W_S   =   ((4 << 3) + 4),
    329   CVT_L_S   =   ((4 << 3) + 5),
    330   CVT_PS_S  =   ((4 << 3) + 6),
    331   // COP1 Encoding of Function Field When rs=D.
    332   ADD_D     =   ((0 << 3) + 0),
    333   SUB_D     =   ((0 << 3) + 1),
    334   MUL_D     =   ((0 << 3) + 2),
    335   DIV_D     =   ((0 << 3) + 3),
    336   SQRT_D    =   ((0 << 3) + 4),
    337   ABS_D     =   ((0 << 3) + 5),
    338   MOV_D     =   ((0 << 3) + 6),
    339   NEG_D     =   ((0 << 3) + 7),
    340   ROUND_L_D =   ((1 << 3) + 0),
    341   TRUNC_L_D =   ((1 << 3) + 1),
    342   CEIL_L_D  =   ((1 << 3) + 2),
    343   FLOOR_L_D =   ((1 << 3) + 3),
    344   ROUND_W_D =   ((1 << 3) + 4),
    345   TRUNC_W_D =   ((1 << 3) + 5),
    346   CEIL_W_D  =   ((1 << 3) + 6),
    347   FLOOR_W_D =   ((1 << 3) + 7),
    348   CVT_S_D   =   ((4 << 3) + 0),
    349   CVT_W_D   =   ((4 << 3) + 4),
    350   CVT_L_D   =   ((4 << 3) + 5),
    351   C_F_D     =   ((6 << 3) + 0),
    352   C_UN_D    =   ((6 << 3) + 1),
    353   C_EQ_D    =   ((6 << 3) + 2),
    354   C_UEQ_D   =   ((6 << 3) + 3),
    355   C_OLT_D   =   ((6 << 3) + 4),
    356   C_ULT_D   =   ((6 << 3) + 5),
    357   C_OLE_D   =   ((6 << 3) + 6),
    358   C_ULE_D   =   ((6 << 3) + 7),
    359   // COP1 Encoding of Function Field When rs=W or L.
    360   CVT_S_W   =   ((4 << 3) + 0),
    361   CVT_D_W   =   ((4 << 3) + 1),
    362   CVT_S_L   =   ((4 << 3) + 0),
    363   CVT_D_L   =   ((4 << 3) + 1),
    364   // COP1 Encoding of Function Field When rs=PS.
    365 
    366   NULLSF    =   0
    367 };
    368 
    369 
    370 // ----- Emulated conditions.
    371 // On MIPS we use this enum to abstract from conditionnal branch instructions.
    372 // the 'U' prefix is used to specify unsigned comparisons.
    373 enum Condition {
    374   // Any value < 0 is considered no_condition.
    375   kNoCondition  = -1,
    376 
    377   overflow      =  0,
    378   no_overflow   =  1,
    379   Uless         =  2,
    380   Ugreater_equal=  3,
    381   equal         =  4,
    382   not_equal     =  5,
    383   Uless_equal   =  6,
    384   Ugreater      =  7,
    385   negative      =  8,
    386   positive      =  9,
    387   parity_even   = 10,
    388   parity_odd    = 11,
    389   less          = 12,
    390   greater_equal = 13,
    391   less_equal    = 14,
    392   greater       = 15,
    393 
    394   cc_always     = 16,
    395 
    396   // aliases
    397   carry         = Uless,
    398   not_carry     = Ugreater_equal,
    399   zero          = equal,
    400   eq            = equal,
    401   not_zero      = not_equal,
    402   ne            = not_equal,
    403   nz            = not_equal,
    404   sign          = negative,
    405   not_sign      = positive,
    406   mi            = negative,
    407   pl            = positive,
    408   hi            = Ugreater,
    409   ls            = Uless_equal,
    410   ge            = greater_equal,
    411   lt            = less,
    412   gt            = greater,
    413   le            = less_equal,
    414   hs            = Ugreater_equal,
    415   lo            = Uless,
    416   al            = cc_always,
    417 
    418   cc_default    = kNoCondition
    419 };
    420 
    421 
    422 // Returns the equivalent of !cc.
    423 // Negation of the default kNoCondition (-1) results in a non-default
    424 // no_condition value (-2). As long as tests for no_condition check
    425 // for condition < 0, this will work as expected.
    426 inline Condition NegateCondition(Condition cc) {
    427   ASSERT(cc != cc_always);
    428   return static_cast<Condition>(cc ^ 1);
    429 }
    430 
    431 
    432 inline Condition ReverseCondition(Condition cc) {
    433   switch (cc) {
    434     case Uless:
    435       return Ugreater;
    436     case Ugreater:
    437       return Uless;
    438     case Ugreater_equal:
    439       return Uless_equal;
    440     case Uless_equal:
    441       return Ugreater_equal;
    442     case less:
    443       return greater;
    444     case greater:
    445       return less;
    446     case greater_equal:
    447       return less_equal;
    448     case less_equal:
    449       return greater_equal;
    450     default:
    451       return cc;
    452   };
    453 }
    454 
    455 
    456 // ----- Coprocessor conditions.
    457 enum FPUCondition {
    458   F,    // False
    459   UN,   // Unordered
    460   EQ,   // Equal
    461   UEQ,  // Unordered or Equal
    462   OLT,  // Ordered or Less Than
    463   ULT,  // Unordered or Less Than
    464   OLE,  // Ordered or Less Than or Equal
    465   ULE   // Unordered or Less Than or Equal
    466 };
    467 
    468 
    469 // -----------------------------------------------------------------------------
    470 // Hints.
    471 
    472 // Branch hints are not used on the MIPS.  They are defined so that they can
    473 // appear in shared function signatures, but will be ignored in MIPS
    474 // implementations.
    475 enum Hint {
    476   no_hint = 0
    477 };
    478 
    479 
    480 inline Hint NegateHint(Hint hint) {
    481   return no_hint;
    482 }
    483 
    484 
    485 // -----------------------------------------------------------------------------
    486 // Specific instructions, constants, and masks.
    487 // These constants are declared in assembler-mips.cc, as they use named
    488 // registers and other constants.
    489 
    490 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
    491 // operations as post-increment of sp.
    492 extern const Instr kPopInstruction;
    493 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
    494 extern const Instr kPushInstruction;
    495 // sw(r, MemOperand(sp, 0))
    496 extern const Instr kPushRegPattern;
    497 //  lw(r, MemOperand(sp, 0))
    498 extern const Instr kPopRegPattern;
    499 extern const Instr kLwRegFpOffsetPattern;
    500 extern const Instr kSwRegFpOffsetPattern;
    501 extern const Instr kLwRegFpNegOffsetPattern;
    502 extern const Instr kSwRegFpNegOffsetPattern;
    503 // A mask for the Rt register for push, pop, lw, sw instructions.
    504 extern const Instr kRtMask;
    505 extern const Instr kLwSwInstrTypeMask;
    506 extern const Instr kLwSwInstrArgumentMask;
    507 extern const Instr kLwSwOffsetMask;
    508 
    509 // Break 0xfffff, reserved for redirected real time call.
    510 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
    511 // A nop instruction. (Encoding of sll 0 0 0).
    512 const Instr nopInstr = 0;
    513 
    514 class Instruction {
    515  public:
    516   enum {
    517     kInstrSize = 4,
    518     kInstrSizeLog2 = 2,
    519     // On MIPS PC cannot actually be directly accessed. We behave as if PC was
    520     // always the value of the current instruction being executed.
    521     kPCReadOffset = 0
    522   };
    523 
    524   // Get the raw instruction bits.
    525   inline Instr InstructionBits() const {
    526     return *reinterpret_cast<const Instr*>(this);
    527   }
    528 
    529   // Set the raw instruction bits to value.
    530   inline void SetInstructionBits(Instr value) {
    531     *reinterpret_cast<Instr*>(this) = value;
    532   }
    533 
    534   // Read one particular bit out of the instruction bits.
    535   inline int Bit(int nr) const {
    536     return (InstructionBits() >> nr) & 1;
    537   }
    538 
    539   // Read a bit field out of the instruction bits.
    540   inline int Bits(int hi, int lo) const {
    541     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    542   }
    543 
    544   // Instruction type.
    545   enum Type {
    546     kRegisterType,
    547     kImmediateType,
    548     kJumpType,
    549     kUnsupported = -1
    550   };
    551 
    552   // Get the encoding type of the instruction.
    553   Type InstructionType() const;
    554 
    555 
    556   // Accessors for the different named fields used in the MIPS encoding.
    557   inline Opcode OpcodeValue() const {
    558     return static_cast<Opcode>(
    559         Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
    560   }
    561 
    562   inline int RsValue() const {
    563     ASSERT(InstructionType() == kRegisterType ||
    564            InstructionType() == kImmediateType);
    565     return Bits(kRsShift + kRsBits - 1, kRsShift);
    566   }
    567 
    568   inline int RtValue() const {
    569     ASSERT(InstructionType() == kRegisterType ||
    570            InstructionType() == kImmediateType);
    571     return Bits(kRtShift + kRtBits - 1, kRtShift);
    572   }
    573 
    574   inline int RdValue() const {
    575     ASSERT(InstructionType() == kRegisterType);
    576     return Bits(kRdShift + kRdBits - 1, kRdShift);
    577   }
    578 
    579   inline int SaValue() const {
    580     ASSERT(InstructionType() == kRegisterType);
    581     return Bits(kSaShift + kSaBits - 1, kSaShift);
    582   }
    583 
    584   inline int FunctionValue() const {
    585     ASSERT(InstructionType() == kRegisterType ||
    586            InstructionType() == kImmediateType);
    587     return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
    588   }
    589 
    590   inline int FdValue() const {
    591     return Bits(kFdShift + kFdBits - 1, kFdShift);
    592   }
    593 
    594   inline int FsValue() const {
    595     return Bits(kFsShift + kFsBits - 1, kFsShift);
    596   }
    597 
    598   inline int FtValue() const {
    599     return Bits(kFtShift + kFtBits - 1, kFtShift);
    600   }
    601 
    602   // Float Compare condition code instruction bits.
    603   inline int FCccValue() const {
    604     return Bits(kFCccShift + kFCccBits - 1, kFCccShift);
    605   }
    606 
    607   // Float Branch condition code instruction bits.
    608   inline int FBccValue() const {
    609     return Bits(kFBccShift + kFBccBits - 1, kFBccShift);
    610   }
    611 
    612   // Float Branch true/false instruction bit.
    613   inline int FBtrueValue() const {
    614     return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
    615   }
    616 
    617   // Return the fields at their original place in the instruction encoding.
    618   inline Opcode OpcodeFieldRaw() const {
    619     return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
    620   }
    621 
    622   inline int RsFieldRaw() const {
    623     ASSERT(InstructionType() == kRegisterType ||
    624            InstructionType() == kImmediateType);
    625     return InstructionBits() & kRsFieldMask;
    626   }
    627 
    628   // Same as above function, but safe to call within InstructionType().
    629   inline int RsFieldRawNoAssert() const {
    630     return InstructionBits() & kRsFieldMask;
    631   }
    632 
    633   inline int RtFieldRaw() const {
    634     ASSERT(InstructionType() == kRegisterType ||
    635            InstructionType() == kImmediateType);
    636     return InstructionBits() & kRtFieldMask;
    637   }
    638 
    639   inline int RdFieldRaw() const {
    640     ASSERT(InstructionType() == kRegisterType);
    641     return InstructionBits() & kRdFieldMask;
    642   }
    643 
    644   inline int SaFieldRaw() const {
    645     ASSERT(InstructionType() == kRegisterType);
    646     return InstructionBits() & kSaFieldMask;
    647   }
    648 
    649   inline int FunctionFieldRaw() const {
    650     return InstructionBits() & kFunctionFieldMask;
    651   }
    652 
    653   // Get the secondary field according to the opcode.
    654   inline int SecondaryValue() const {
    655     Opcode op = OpcodeFieldRaw();
    656     switch (op) {
    657       case SPECIAL:
    658       case SPECIAL2:
    659         return FunctionValue();
    660       case COP1:
    661         return RsValue();
    662       case REGIMM:
    663         return RtValue();
    664       default:
    665         return NULLSF;
    666     }
    667   }
    668 
    669   inline int32_t Imm16Value() const {
    670     ASSERT(InstructionType() == kImmediateType);
    671     return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
    672   }
    673 
    674   inline int32_t Imm26Value() const {
    675     ASSERT(InstructionType() == kJumpType);
    676     return Bits(kImm16Shift + kImm26Bits - 1, kImm26Shift);
    677   }
    678 
    679   // Say if the instruction should not be used in a branch delay slot.
    680   bool IsForbiddenInBranchDelay() const;
    681   // Say if the instruction 'links'. eg: jal, bal.
    682   bool IsLinkingInstruction() const;
    683   // Say if the instruction is a break or a trap.
    684   bool IsTrap() const;
    685 
    686   // Instructions are read of out a code stream. The only way to get a
    687   // reference to an instruction is to convert a pointer. There is no way
    688   // to allocate or create instances of class Instruction.
    689   // Use the At(pc) function to create references to Instruction.
    690   static Instruction* At(byte_* pc) {
    691     return reinterpret_cast<Instruction*>(pc);
    692   }
    693 
    694  private:
    695   // We need to prevent the creation of instances of class Instruction.
    696   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    697 };
    698 
    699 
    700 // -----------------------------------------------------------------------------
    701 // MIPS assembly various constants.
    702 
    703 
    704 static const int kArgsSlotsSize  = 4 * Instruction::kInstrSize;
    705 static const int kArgsSlotsNum   = 4;
    706 // C/C++ argument slots size.
    707 static const int kCArgsSlotsSize = 4 * Instruction::kInstrSize;
    708 // JS argument slots size.
    709 static const int kJSArgsSlotsSize = 0 * Instruction::kInstrSize;
    710 // Assembly builtins argument slots size.
    711 static const int kBArgsSlotsSize = 0 * Instruction::kInstrSize;
    712 
    713 static const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
    714 
    715 static const int kDoubleAlignmentBits = 3;
    716 static const int kDoubleAlignment = (1 << kDoubleAlignmentBits);
    717 static const int kDoubleAlignmentMask = kDoubleAlignment - 1;
    718 
    719 
    720 } }   // namespace v8::internal
    721 
    722 #endif    // #ifndef V8_MIPS_CONSTANTS_H_
    723 
    724