Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "asm-printer"
     15 #include "llvm/CodeGen/AsmPrinter.h"
     16 #ifndef ANDROID_TARGET_BUILD
     17 #   include "DwarfDebug.h"
     18 #   include "DwarfException.h"
     19 #endif // ANDROID_TARGET_BUILD
     20 #include "llvm/Module.h"
     21 #include "llvm/CodeGen/GCMetadataPrinter.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     26 #include "llvm/CodeGen/MachineLoopInfo.h"
     27 #include "llvm/CodeGen/MachineModuleInfo.h"
     28 #include "llvm/Analysis/ConstantFolding.h"
     29 #include "llvm/Analysis/DebugInfo.h"
     30 #include "llvm/MC/MCAsmInfo.h"
     31 #include "llvm/MC/MCContext.h"
     32 #include "llvm/MC/MCExpr.h"
     33 #include "llvm/MC/MCInst.h"
     34 #include "llvm/MC/MCSection.h"
     35 #include "llvm/MC/MCStreamer.h"
     36 #include "llvm/MC/MCSymbol.h"
     37 #include "llvm/Target/Mangler.h"
     38 #include "llvm/Target/TargetData.h"
     39 #include "llvm/Target/TargetInstrInfo.h"
     40 #include "llvm/Target/TargetLowering.h"
     41 #include "llvm/Target/TargetLoweringObjectFile.h"
     42 #include "llvm/Target/TargetOptions.h"
     43 #include "llvm/Target/TargetRegisterInfo.h"
     44 #include "llvm/Assembly/Writer.h"
     45 #include "llvm/ADT/SmallString.h"
     46 #include "llvm/ADT/Statistic.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/Format.h"
     49 #include "llvm/Support/MathExtras.h"
     50 #include "llvm/Support/Timer.h"
     51 #include <ctype.h>
     52 using namespace llvm;
     53 
     54 static const char *DWARFGroupName = "DWARF Emission";
     55 static const char *DbgTimerName = "DWARF Debug Writer";
     56 static const char *EHTimerName = "DWARF Exception Writer";
     57 
     58 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     59 
     60 char AsmPrinter::ID = 0;
     61 
     62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
     63 static gcp_map_type &getGCMap(void *&P) {
     64   if (P == 0)
     65     P = new gcp_map_type();
     66   return *(gcp_map_type*)P;
     67 }
     68 
     69 
     70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     71 /// value in log2 form.  This rounds up to the preferred alignment if possible
     72 /// and legal.
     73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
     74                                    unsigned InBits = 0) {
     75   unsigned NumBits = 0;
     76   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     77     NumBits = TD.getPreferredAlignmentLog(GVar);
     78 
     79   // If InBits is specified, round it to it.
     80   if (InBits > NumBits)
     81     NumBits = InBits;
     82 
     83   // If the GV has a specified alignment, take it into account.
     84   if (GV->getAlignment() == 0)
     85     return NumBits;
     86 
     87   unsigned GVAlign = Log2_32(GV->getAlignment());
     88 
     89   // If the GVAlign is larger than NumBits, or if we are required to obey
     90   // NumBits because the GV has an assigned section, obey it.
     91   if (GVAlign > NumBits || GV->hasSection())
     92     NumBits = GVAlign;
     93   return NumBits;
     94 }
     95 
     96 
     97 
     98 
     99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
    100   : MachineFunctionPass(ID),
    101     TM(tm), MAI(tm.getMCAsmInfo()),
    102     OutContext(Streamer.getContext()),
    103     OutStreamer(Streamer),
    104     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
    105   DD = 0; DE = 0; MMI = 0; LI = 0;
    106   GCMetadataPrinters = 0;
    107   VerboseAsm = Streamer.isVerboseAsm();
    108 }
    109 
    110 AsmPrinter::~AsmPrinter() {
    111   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
    112 
    113   if (GCMetadataPrinters != 0) {
    114     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    115 
    116     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
    117       delete I->second;
    118     delete &GCMap;
    119     GCMetadataPrinters = 0;
    120   }
    121 
    122   delete &OutStreamer;
    123 }
    124 
    125 /// getFunctionNumber - Return a unique ID for the current function.
    126 ///
    127 unsigned AsmPrinter::getFunctionNumber() const {
    128   return MF->getFunctionNumber();
    129 }
    130 
    131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    132   return TM.getTargetLowering()->getObjFileLowering();
    133 }
    134 
    135 
    136 /// getTargetData - Return information about data layout.
    137 const TargetData &AsmPrinter::getTargetData() const {
    138   return *TM.getTargetData();
    139 }
    140 
    141 /// getCurrentSection() - Return the current section we are emitting to.
    142 const MCSection *AsmPrinter::getCurrentSection() const {
    143   return OutStreamer.getCurrentSection();
    144 }
    145 
    146 
    147 
    148 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    149   AU.setPreservesAll();
    150   MachineFunctionPass::getAnalysisUsage(AU);
    151   AU.addRequired<MachineModuleInfo>();
    152   AU.addRequired<GCModuleInfo>();
    153   if (isVerbose())
    154     AU.addRequired<MachineLoopInfo>();
    155 }
    156 
    157 bool AsmPrinter::doInitialization(Module &M) {
    158   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    159   MMI->AnalyzeModule(M);
    160 
    161   // Initialize TargetLoweringObjectFile.
    162   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    163     .Initialize(OutContext, TM);
    164 
    165   Mang = new Mangler(OutContext, *TM.getTargetData());
    166 
    167   // Allow the target to emit any magic that it wants at the start of the file.
    168   EmitStartOfAsmFile(M);
    169 
    170   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    171   // don't, this at least helps the user find where a global came from.
    172   if (MAI->hasSingleParameterDotFile()) {
    173     // .file "foo.c"
    174     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    175   }
    176 
    177   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    178   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    179   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
    180     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    181       MP->beginAssembly(*this);
    182 
    183   // Emit module-level inline asm if it exists.
    184   if (!M.getModuleInlineAsm().empty()) {
    185     OutStreamer.AddComment("Start of file scope inline assembly");
    186     OutStreamer.AddBlankLine();
    187     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
    188     OutStreamer.AddComment("End of file scope inline assembly");
    189     OutStreamer.AddBlankLine();
    190   }
    191 
    192 #ifndef ANDROID_TARGET_BUILD
    193   if (MAI->doesSupportDebugInformation())
    194     DD = new DwarfDebug(this, &M);
    195 
    196   switch (MAI->getExceptionHandlingType()) {
    197   case ExceptionHandling::None:
    198     return false;
    199   case ExceptionHandling::SjLj:
    200   case ExceptionHandling::DwarfCFI:
    201     DE = new DwarfCFIException(this);
    202     return false;
    203   case ExceptionHandling::ARM:
    204     DE = new ARMException(this);
    205     return false;
    206   case ExceptionHandling::Win64:
    207     DE = new Win64Exception(this);
    208     return false;
    209   }
    210 #else
    211   return false;
    212 #endif // ANDROID_TARGET_BUILD
    213 
    214   llvm_unreachable("Unknown exception type.");
    215 }
    216 
    217 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
    218   switch ((GlobalValue::LinkageTypes)Linkage) {
    219   case GlobalValue::CommonLinkage:
    220   case GlobalValue::LinkOnceAnyLinkage:
    221   case GlobalValue::LinkOnceODRLinkage:
    222   case GlobalValue::WeakAnyLinkage:
    223   case GlobalValue::WeakODRLinkage:
    224   case GlobalValue::LinkerPrivateWeakLinkage:
    225   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
    226     if (MAI->getWeakDefDirective() != 0) {
    227       // .globl _foo
    228       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    229 
    230       if ((GlobalValue::LinkageTypes)Linkage !=
    231           GlobalValue::LinkerPrivateWeakDefAutoLinkage)
    232         // .weak_definition _foo
    233         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    234       else
    235         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    236     } else if (MAI->getLinkOnceDirective() != 0) {
    237       // .globl _foo
    238       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    239       //NOTE: linkonce is handled by the section the symbol was assigned to.
    240     } else {
    241       // .weak _foo
    242       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    243     }
    244     break;
    245   case GlobalValue::DLLExportLinkage:
    246   case GlobalValue::AppendingLinkage:
    247     // FIXME: appending linkage variables should go into a section of
    248     // their name or something.  For now, just emit them as external.
    249   case GlobalValue::ExternalLinkage:
    250     // If external or appending, declare as a global symbol.
    251     // .globl _foo
    252     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    253     break;
    254   case GlobalValue::PrivateLinkage:
    255   case GlobalValue::InternalLinkage:
    256   case GlobalValue::LinkerPrivateLinkage:
    257     break;
    258   default:
    259     llvm_unreachable("Unknown linkage type!");
    260   }
    261 }
    262 
    263 
    264 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    265 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    266   if (GV->hasInitializer()) {
    267     // Check to see if this is a special global used by LLVM, if so, emit it.
    268     if (EmitSpecialLLVMGlobal(GV))
    269       return;
    270 
    271     if (isVerbose()) {
    272       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
    273                      /*PrintType=*/false, GV->getParent());
    274       OutStreamer.GetCommentOS() << '\n';
    275     }
    276   }
    277 
    278   MCSymbol *GVSym = Mang->getSymbol(GV);
    279   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    280 
    281   if (!GV->hasInitializer())   // External globals require no extra code.
    282     return;
    283 
    284   if (MAI->hasDotTypeDotSizeDirective())
    285     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    286 
    287   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    288 
    289   const TargetData *TD = TM.getTargetData();
    290   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
    291 
    292   // If the alignment is specified, we *must* obey it.  Overaligning a global
    293   // with a specified alignment is a prompt way to break globals emitted to
    294   // sections and expected to be contiguous (e.g. ObjC metadata).
    295   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
    296 
    297   // Handle common and BSS local symbols (.lcomm).
    298   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    299     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    300     unsigned Align = 1 << AlignLog;
    301 
    302     // Handle common symbols.
    303     if (GVKind.isCommon()) {
    304       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    305         Align = 0;
    306 
    307       // .comm _foo, 42, 4
    308       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    309       return;
    310     }
    311 
    312     // Handle local BSS symbols.
    313     if (MAI->hasMachoZeroFillDirective()) {
    314       const MCSection *TheSection =
    315         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    316       // .zerofill __DATA, __bss, _foo, 400, 5
    317       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    318       return;
    319     }
    320 
    321     if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
    322         (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
    323       // .lcomm _foo, 42
    324       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    325       return;
    326     }
    327 
    328     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    329       Align = 0;
    330 
    331     // .local _foo
    332     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    333     // .comm _foo, 42, 4
    334     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    335     return;
    336   }
    337 
    338   const MCSection *TheSection =
    339     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    340 
    341   // Handle the zerofill directive on darwin, which is a special form of BSS
    342   // emission.
    343   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    344     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    345 
    346     // .globl _foo
    347     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    348     // .zerofill __DATA, __common, _foo, 400, 5
    349     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    350     return;
    351   }
    352 
    353   // Handle thread local data for mach-o which requires us to output an
    354   // additional structure of data and mangle the original symbol so that we
    355   // can reference it later.
    356   //
    357   // TODO: This should become an "emit thread local global" method on TLOF.
    358   // All of this macho specific stuff should be sunk down into TLOFMachO and
    359   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    360   // TLOF class.  This will also make it more obvious that stuff like
    361   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    362   // specific code.
    363   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    364     // Emit the .tbss symbol
    365     MCSymbol *MangSym =
    366       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    367 
    368     if (GVKind.isThreadBSS())
    369       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    370     else if (GVKind.isThreadData()) {
    371       OutStreamer.SwitchSection(TheSection);
    372 
    373       EmitAlignment(AlignLog, GV);
    374       OutStreamer.EmitLabel(MangSym);
    375 
    376       EmitGlobalConstant(GV->getInitializer());
    377     }
    378 
    379     OutStreamer.AddBlankLine();
    380 
    381     // Emit the variable struct for the runtime.
    382     const MCSection *TLVSect
    383       = getObjFileLowering().getTLSExtraDataSection();
    384 
    385     OutStreamer.SwitchSection(TLVSect);
    386     // Emit the linkage here.
    387     EmitLinkage(GV->getLinkage(), GVSym);
    388     OutStreamer.EmitLabel(GVSym);
    389 
    390     // Three pointers in size:
    391     //   - __tlv_bootstrap - used to make sure support exists
    392     //   - spare pointer, used when mapped by the runtime
    393     //   - pointer to mangled symbol above with initializer
    394     unsigned PtrSize = TD->getPointerSizeInBits()/8;
    395     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    396                           PtrSize, 0);
    397     OutStreamer.EmitIntValue(0, PtrSize, 0);
    398     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
    399 
    400     OutStreamer.AddBlankLine();
    401     return;
    402   }
    403 
    404   OutStreamer.SwitchSection(TheSection);
    405 
    406   EmitLinkage(GV->getLinkage(), GVSym);
    407   EmitAlignment(AlignLog, GV);
    408 
    409   OutStreamer.EmitLabel(GVSym);
    410 
    411   EmitGlobalConstant(GV->getInitializer());
    412 
    413   if (MAI->hasDotTypeDotSizeDirective())
    414     // .size foo, 42
    415     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    416 
    417   OutStreamer.AddBlankLine();
    418 }
    419 
    420 /// EmitFunctionHeader - This method emits the header for the current
    421 /// function.
    422 void AsmPrinter::EmitFunctionHeader() {
    423   // Print out constants referenced by the function
    424   EmitConstantPool();
    425 
    426   // Print the 'header' of function.
    427   const Function *F = MF->getFunction();
    428 
    429   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
    430   EmitVisibility(CurrentFnSym, F->getVisibility());
    431 
    432   EmitLinkage(F->getLinkage(), CurrentFnSym);
    433   EmitAlignment(MF->getAlignment(), F);
    434 
    435   if (MAI->hasDotTypeDotSizeDirective())
    436     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    437 
    438   if (isVerbose()) {
    439     WriteAsOperand(OutStreamer.GetCommentOS(), F,
    440                    /*PrintType=*/false, F->getParent());
    441     OutStreamer.GetCommentOS() << '\n';
    442   }
    443 
    444   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    445   // do their wild and crazy things as required.
    446   EmitFunctionEntryLabel();
    447 
    448   // If the function had address-taken blocks that got deleted, then we have
    449   // references to the dangling symbols.  Emit them at the start of the function
    450   // so that we don't get references to undefined symbols.
    451   std::vector<MCSymbol*> DeadBlockSyms;
    452   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    453   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    454     OutStreamer.AddComment("Address taken block that was later removed");
    455     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    456   }
    457 
    458   // Add some workaround for linkonce linkage on Cygwin\MinGW.
    459   if (MAI->getLinkOnceDirective() != 0 &&
    460       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
    461     // FIXME: What is this?
    462     MCSymbol *FakeStub =
    463       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
    464                                    CurrentFnSym->getName());
    465     OutStreamer.EmitLabel(FakeStub);
    466   }
    467 
    468   // Emit pre-function debug and/or EH information.
    469 #ifndef ANDROID_TARGET_BUILD
    470   if (DE) {
    471     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    472     DE->BeginFunction(MF);
    473   }
    474   if (DD) {
    475     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    476     DD->beginFunction(MF);
    477   }
    478 #endif // ANDROID_TARGET_BUILD
    479 }
    480 
    481 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    482 /// function.  This can be overridden by targets as required to do custom stuff.
    483 void AsmPrinter::EmitFunctionEntryLabel() {
    484   // The function label could have already been emitted if two symbols end up
    485   // conflicting due to asm renaming.  Detect this and emit an error.
    486   if (CurrentFnSym->isUndefined()) {
    487     OutStreamer.ForceCodeRegion();
    488     return OutStreamer.EmitLabel(CurrentFnSym);
    489   }
    490 
    491   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    492                      "' label emitted multiple times to assembly file");
    493 }
    494 
    495 
    496 /// EmitComments - Pretty-print comments for instructions.
    497 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    498   const MachineFunction *MF = MI.getParent()->getParent();
    499   const TargetMachine &TM = MF->getTarget();
    500 
    501   // Check for spills and reloads
    502   int FI;
    503 
    504   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    505 
    506   // We assume a single instruction only has a spill or reload, not
    507   // both.
    508   const MachineMemOperand *MMO;
    509   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
    510     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    511       MMO = *MI.memoperands_begin();
    512       CommentOS << MMO->getSize() << "-byte Reload\n";
    513     }
    514   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
    515     if (FrameInfo->isSpillSlotObjectIndex(FI))
    516       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    517   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
    518     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    519       MMO = *MI.memoperands_begin();
    520       CommentOS << MMO->getSize() << "-byte Spill\n";
    521     }
    522   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
    523     if (FrameInfo->isSpillSlotObjectIndex(FI))
    524       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    525   }
    526 
    527   // Check for spill-induced copies
    528   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    529     CommentOS << " Reload Reuse\n";
    530 }
    531 
    532 /// EmitImplicitDef - This method emits the specified machine instruction
    533 /// that is an implicit def.
    534 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
    535   unsigned RegNo = MI->getOperand(0).getReg();
    536   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
    537                             AP.TM.getRegisterInfo()->getName(RegNo));
    538   AP.OutStreamer.AddBlankLine();
    539 }
    540 
    541 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
    542   std::string Str = "kill:";
    543   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    544     const MachineOperand &Op = MI->getOperand(i);
    545     assert(Op.isReg() && "KILL instruction must have only register operands");
    546     Str += ' ';
    547     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
    548     Str += (Op.isDef() ? "<def>" : "<kill>");
    549   }
    550   AP.OutStreamer.AddComment(Str);
    551   AP.OutStreamer.AddBlankLine();
    552 }
    553 
    554 /// EmitDebugValueComment - This method handles the target-independent form
    555 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    556 /// means the target will need to handle MI in EmitInstruction.
    557 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    558   // This code handles only the 3-operand target-independent form.
    559   if (MI->getNumOperands() != 3)
    560     return false;
    561 
    562   SmallString<128> Str;
    563   raw_svector_ostream OS(Str);
    564   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
    565 
    566   // cast away const; DIetc do not take const operands for some reason.
    567   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
    568   if (V.getContext().isSubprogram())
    569     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
    570   OS << V.getName() << " <- ";
    571 
    572   // Register or immediate value. Register 0 means undef.
    573   if (MI->getOperand(0).isFPImm()) {
    574     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    575     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    576       OS << (double)APF.convertToFloat();
    577     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    578       OS << APF.convertToDouble();
    579     } else {
    580       // There is no good way to print long double.  Convert a copy to
    581       // double.  Ah well, it's only a comment.
    582       bool ignored;
    583       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    584                   &ignored);
    585       OS << "(long double) " << APF.convertToDouble();
    586     }
    587   } else if (MI->getOperand(0).isImm()) {
    588     OS << MI->getOperand(0).getImm();
    589   } else if (MI->getOperand(0).isCImm()) {
    590     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    591   } else {
    592     assert(MI->getOperand(0).isReg() && "Unknown operand type");
    593     if (MI->getOperand(0).getReg() == 0) {
    594       // Suppress offset, it is not meaningful here.
    595       OS << "undef";
    596       // NOTE: Want this comment at start of line, don't emit with AddComment.
    597       AP.OutStreamer.EmitRawText(OS.str());
    598       return true;
    599     }
    600     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
    601   }
    602 
    603   OS << '+' << MI->getOperand(1).getImm();
    604   // NOTE: Want this comment at start of line, don't emit with AddComment.
    605   AP.OutStreamer.EmitRawText(OS.str());
    606   return true;
    607 }
    608 
    609 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    610   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    611       MF->getFunction()->needsUnwindTableEntry())
    612     return CFI_M_EH;
    613 
    614   if (MMI->hasDebugInfo())
    615     return CFI_M_Debug;
    616 
    617   return CFI_M_None;
    618 }
    619 
    620 bool AsmPrinter::needsSEHMoves() {
    621   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
    622     MF->getFunction()->needsUnwindTableEntry();
    623 }
    624 
    625 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
    626   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
    627 
    628   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
    629     return;
    630 
    631   if (needsCFIMoves() == CFI_M_None)
    632     return;
    633 
    634   if (MMI->getCompactUnwindEncoding() != 0)
    635     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
    636 
    637   MachineModuleInfo &MMI = MF->getMMI();
    638   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    639   bool FoundOne = false;
    640   (void)FoundOne;
    641   for (std::vector<MachineMove>::iterator I = Moves.begin(),
    642          E = Moves.end(); I != E; ++I) {
    643     if (I->getLabel() == Label) {
    644       EmitCFIFrameMove(*I);
    645       FoundOne = true;
    646     }
    647   }
    648   assert(FoundOne);
    649 }
    650 
    651 /// EmitFunctionBody - This method emits the body and trailer for a
    652 /// function.
    653 void AsmPrinter::EmitFunctionBody() {
    654   // Emit target-specific gunk before the function body.
    655   EmitFunctionBodyStart();
    656 
    657   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
    658 
    659   // Print out code for the function.
    660   bool HasAnyRealCode = false;
    661   const MachineInstr *LastMI = 0;
    662   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
    663        I != E; ++I) {
    664     // Print a label for the basic block.
    665     EmitBasicBlockStart(I);
    666     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
    667          II != IE; ++II) {
    668       LastMI = II;
    669 
    670       // Print the assembly for the instruction.
    671       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
    672           !II->isDebugValue()) {
    673         HasAnyRealCode = true;
    674 
    675         ++EmittedInsts;
    676       }
    677 #ifndef ANDROID_TARGET_BUILD
    678       if (ShouldPrintDebugScopes) {
    679         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    680         DD->beginInstruction(II);
    681       }
    682 #endif // ANDROID_TARGET_BUILD
    683 
    684       if (isVerbose())
    685         EmitComments(*II, OutStreamer.GetCommentOS());
    686 
    687       switch (II->getOpcode()) {
    688       case TargetOpcode::PROLOG_LABEL:
    689         emitPrologLabel(*II);
    690         break;
    691 
    692       case TargetOpcode::EH_LABEL:
    693       case TargetOpcode::GC_LABEL:
    694         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
    695         break;
    696       case TargetOpcode::INLINEASM:
    697         EmitInlineAsm(II);
    698         break;
    699       case TargetOpcode::DBG_VALUE:
    700         if (isVerbose()) {
    701           if (!EmitDebugValueComment(II, *this))
    702             EmitInstruction(II);
    703         }
    704         break;
    705       case TargetOpcode::IMPLICIT_DEF:
    706         if (isVerbose()) EmitImplicitDef(II, *this);
    707         break;
    708       case TargetOpcode::KILL:
    709         if (isVerbose()) EmitKill(II, *this);
    710         break;
    711       default:
    712         if (!TM.hasMCUseLoc())
    713           MCLineEntry::Make(&OutStreamer, getCurrentSection());
    714 
    715         EmitInstruction(II);
    716         break;
    717       }
    718 
    719 #ifndef ANDROID_TARGET_BUILD
    720       if (ShouldPrintDebugScopes) {
    721         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    722         DD->endInstruction(II);
    723       }
    724 #endif // ANDROID_TARGET_BUILD
    725     }
    726   }
    727 
    728   // If the last instruction was a prolog label, then we have a situation where
    729   // we emitted a prolog but no function body. This results in the ending prolog
    730   // label equaling the end of function label and an invalid "row" in the
    731   // FDE. We need to emit a noop in this situation so that the FDE's rows are
    732   // valid.
    733   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
    734 
    735   // If the function is empty and the object file uses .subsections_via_symbols,
    736   // then we need to emit *something* to the function body to prevent the
    737   // labels from collapsing together.  Just emit a noop.
    738   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
    739     MCInst Noop;
    740     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
    741     if (Noop.getOpcode()) {
    742       OutStreamer.AddComment("avoids zero-length function");
    743       OutStreamer.EmitInstruction(Noop);
    744     } else  // Target not mc-ized yet.
    745       OutStreamer.EmitRawText(StringRef("\tnop\n"));
    746   }
    747 
    748   // Emit target-specific gunk after the function body.
    749   EmitFunctionBodyEnd();
    750 
    751   // If the target wants a .size directive for the size of the function, emit
    752   // it.
    753   if (MAI->hasDotTypeDotSizeDirective()) {
    754     // Create a symbol for the end of function, so we can get the size as
    755     // difference between the function label and the temp label.
    756     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
    757     OutStreamer.EmitLabel(FnEndLabel);
    758 
    759     const MCExpr *SizeExp =
    760       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
    761                               MCSymbolRefExpr::Create(CurrentFnSym, OutContext),
    762                               OutContext);
    763     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    764   }
    765 
    766   // Emit post-function debug information.
    767 #ifndef ANDROID_TARGET_BUILD
    768   if (DD) {
    769     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    770     DD->endFunction(MF);
    771   }
    772   if (DE) {
    773     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    774     DE->EndFunction();
    775   }
    776 #endif // ANDROID_TARGET_BUILD
    777   MMI->EndFunction();
    778 
    779   // Print out jump tables referenced by the function.
    780   EmitJumpTableInfo();
    781 
    782   OutStreamer.AddBlankLine();
    783 }
    784 
    785 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
    786 /// operands.
    787 MachineLocation AsmPrinter::
    788 getDebugValueLocation(const MachineInstr *MI) const {
    789   // Target specific DBG_VALUE instructions are handled by each target.
    790   return MachineLocation();
    791 }
    792 
    793 /// EmitDwarfRegOp - Emit dwarf register operation.
    794 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
    795   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    796   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
    797 
    798   for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg());
    799        *SR && Reg < 0; ++SR) {
    800     Reg = TRI->getDwarfRegNum(*SR, false);
    801     // FIXME: Get the bit range this register uses of the superregister
    802     // so that we can produce a DW_OP_bit_piece
    803   }
    804 
    805   // FIXME: Handle cases like a super register being encoded as
    806   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
    807 
    808   // FIXME: We have no reasonable way of handling errors in here. The
    809   // caller might be in the middle of an dwarf expression. We should
    810   // probably assert that Reg >= 0 once debug info generation is more mature.
    811 
    812   if (int Offset =  MLoc.getOffset()) {
    813     if (Reg < 32) {
    814       OutStreamer.AddComment(
    815         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
    816       EmitInt8(dwarf::DW_OP_breg0 + Reg);
    817     } else {
    818       OutStreamer.AddComment("DW_OP_bregx");
    819       EmitInt8(dwarf::DW_OP_bregx);
    820       OutStreamer.AddComment(Twine(Reg));
    821       EmitULEB128(Reg);
    822     }
    823     EmitSLEB128(Offset);
    824   } else {
    825     if (Reg < 32) {
    826       OutStreamer.AddComment(
    827         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
    828       EmitInt8(dwarf::DW_OP_reg0 + Reg);
    829     } else {
    830       OutStreamer.AddComment("DW_OP_regx");
    831       EmitInt8(dwarf::DW_OP_regx);
    832       OutStreamer.AddComment(Twine(Reg));
    833       EmitULEB128(Reg);
    834     }
    835   }
    836 
    837   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
    838 }
    839 
    840 bool AsmPrinter::doFinalization(Module &M) {
    841   // Emit global variables.
    842   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    843        I != E; ++I)
    844     EmitGlobalVariable(I);
    845 
    846   // Emit visibility info for declarations
    847   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    848     const Function &F = *I;
    849     if (!F.isDeclaration())
    850       continue;
    851     GlobalValue::VisibilityTypes V = F.getVisibility();
    852     if (V == GlobalValue::DefaultVisibility)
    853       continue;
    854 
    855     MCSymbol *Name = Mang->getSymbol(&F);
    856     EmitVisibility(Name, V, false);
    857   }
    858 
    859   // Finalize debug and EH information.
    860 #ifndef ANDROID_TARGET_BUILD
    861   if (DE) {
    862     {
    863       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    864       DE->EndModule();
    865     }
    866     delete DE; DE = 0;
    867   }
    868   if (DD) {
    869     {
    870       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    871       DD->endModule();
    872     }
    873     delete DD; DD = 0;
    874   }
    875 #endif // ANDROID_TARGET_BUILD
    876 
    877   // If the target wants to know about weak references, print them all.
    878   if (MAI->getWeakRefDirective()) {
    879     // FIXME: This is not lazy, it would be nice to only print weak references
    880     // to stuff that is actually used.  Note that doing so would require targets
    881     // to notice uses in operands (due to constant exprs etc).  This should
    882     // happen with the MC stuff eventually.
    883 
    884     // Print out module-level global variables here.
    885     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    886          I != E; ++I) {
    887       if (!I->hasExternalWeakLinkage()) continue;
    888       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    889     }
    890 
    891     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    892       if (!I->hasExternalWeakLinkage()) continue;
    893       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    894     }
    895   }
    896 
    897   if (MAI->hasSetDirective()) {
    898     OutStreamer.AddBlankLine();
    899     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    900          I != E; ++I) {
    901       MCSymbol *Name = Mang->getSymbol(I);
    902 
    903       const GlobalValue *GV = I->getAliasedGlobal();
    904       MCSymbol *Target = Mang->getSymbol(GV);
    905 
    906       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
    907         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
    908       else if (I->hasWeakLinkage())
    909         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
    910       else
    911         assert(I->hasLocalLinkage() && "Invalid alias linkage");
    912 
    913       EmitVisibility(Name, I->getVisibility());
    914 
    915       // Emit the directives as assignments aka .set:
    916       OutStreamer.EmitAssignment(Name,
    917                                  MCSymbolRefExpr::Create(Target, OutContext));
    918     }
    919   }
    920 
    921   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    922   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    923   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
    924     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
    925       MP->finishAssembly(*this);
    926 
    927   // If we don't have any trampolines, then we don't require stack memory
    928   // to be executable. Some targets have a directive to declare this.
    929   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
    930   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
    931     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
    932       OutStreamer.SwitchSection(S);
    933 
    934   // Allow the target to emit any magic that it wants at the end of the file,
    935   // after everything else has gone out.
    936   EmitEndOfAsmFile(M);
    937 
    938   delete Mang; Mang = 0;
    939   MMI = 0;
    940 
    941   OutStreamer.Finish();
    942   return false;
    943 }
    944 
    945 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
    946   this->MF = &MF;
    947   // Get the function symbol.
    948   CurrentFnSym = Mang->getSymbol(MF.getFunction());
    949 
    950   if (isVerbose())
    951     LI = &getAnalysis<MachineLoopInfo>();
    952 }
    953 
    954 namespace {
    955   // SectionCPs - Keep track the alignment, constpool entries per Section.
    956   struct SectionCPs {
    957     const MCSection *S;
    958     unsigned Alignment;
    959     SmallVector<unsigned, 4> CPEs;
    960     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
    961   };
    962 }
    963 
    964 /// EmitConstantPool - Print to the current output stream assembly
    965 /// representations of the constants in the constant pool MCP. This is
    966 /// used to print out constants which have been "spilled to memory" by
    967 /// the code generator.
    968 ///
    969 void AsmPrinter::EmitConstantPool() {
    970   const MachineConstantPool *MCP = MF->getConstantPool();
    971   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
    972   if (CP.empty()) return;
    973 
    974   // Calculate sections for constant pool entries. We collect entries to go into
    975   // the same section together to reduce amount of section switch statements.
    976   SmallVector<SectionCPs, 4> CPSections;
    977   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    978     const MachineConstantPoolEntry &CPE = CP[i];
    979     unsigned Align = CPE.getAlignment();
    980 
    981     SectionKind Kind;
    982     switch (CPE.getRelocationInfo()) {
    983     default: llvm_unreachable("Unknown section kind");
    984     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
    985     case 1:
    986       Kind = SectionKind::getReadOnlyWithRelLocal();
    987       break;
    988     case 0:
    989     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
    990     case 4:  Kind = SectionKind::getMergeableConst4(); break;
    991     case 8:  Kind = SectionKind::getMergeableConst8(); break;
    992     case 16: Kind = SectionKind::getMergeableConst16();break;
    993     default: Kind = SectionKind::getMergeableConst(); break;
    994     }
    995     }
    996 
    997     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
    998 
    999     // The number of sections are small, just do a linear search from the
   1000     // last section to the first.
   1001     bool Found = false;
   1002     unsigned SecIdx = CPSections.size();
   1003     while (SecIdx != 0) {
   1004       if (CPSections[--SecIdx].S == S) {
   1005         Found = true;
   1006         break;
   1007       }
   1008     }
   1009     if (!Found) {
   1010       SecIdx = CPSections.size();
   1011       CPSections.push_back(SectionCPs(S, Align));
   1012     }
   1013 
   1014     if (Align > CPSections[SecIdx].Alignment)
   1015       CPSections[SecIdx].Alignment = Align;
   1016     CPSections[SecIdx].CPEs.push_back(i);
   1017   }
   1018 
   1019   // Now print stuff into the calculated sections.
   1020   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1021     OutStreamer.SwitchSection(CPSections[i].S);
   1022     EmitAlignment(Log2_32(CPSections[i].Alignment));
   1023 
   1024     unsigned Offset = 0;
   1025     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1026       unsigned CPI = CPSections[i].CPEs[j];
   1027       MachineConstantPoolEntry CPE = CP[CPI];
   1028 
   1029       // Emit inter-object padding for alignment.
   1030       unsigned AlignMask = CPE.getAlignment() - 1;
   1031       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1032       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
   1033 
   1034       Type *Ty = CPE.getType();
   1035       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
   1036       OutStreamer.EmitLabel(GetCPISymbol(CPI));
   1037 
   1038       if (CPE.isMachineConstantPoolEntry())
   1039         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1040       else
   1041         EmitGlobalConstant(CPE.Val.ConstVal);
   1042     }
   1043   }
   1044 }
   1045 
   1046 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1047 /// by the current function to the current output stream.
   1048 ///
   1049 void AsmPrinter::EmitJumpTableInfo() {
   1050   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1051   if (MJTI == 0) return;
   1052   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1053   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1054   if (JT.empty()) return;
   1055 
   1056   // Pick the directive to use to print the jump table entries, and switch to
   1057   // the appropriate section.
   1058   const Function *F = MF->getFunction();
   1059   bool JTInDiffSection = false;
   1060   if (// In PIC mode, we need to emit the jump table to the same section as the
   1061       // function body itself, otherwise the label differences won't make sense.
   1062       // FIXME: Need a better predicate for this: what about custom entries?
   1063       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
   1064       // We should also do if the section name is NULL or function is declared
   1065       // in discardable section
   1066       // FIXME: this isn't the right predicate, should be based on the MCSection
   1067       // for the function.
   1068       F->isWeakForLinker()) {
   1069     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
   1070   } else {
   1071     // Otherwise, drop it in the readonly section.
   1072     const MCSection *ReadOnlySection =
   1073       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
   1074     OutStreamer.SwitchSection(ReadOnlySection);
   1075     JTInDiffSection = true;
   1076   }
   1077 
   1078   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
   1079 
   1080   // If we know the form of the jump table, go ahead and tag it as such.
   1081   if (!JTInDiffSection) {
   1082     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
   1083       OutStreamer.EmitJumpTable32Region();
   1084     } else {
   1085       OutStreamer.EmitDataRegion();
   1086     }
   1087   }
   1088 
   1089   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1090     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1091 
   1092     // If this jump table was deleted, ignore it.
   1093     if (JTBBs.empty()) continue;
   1094 
   1095     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
   1096     // .set directive for each unique entry.  This reduces the number of
   1097     // relocations the assembler will generate for the jump table.
   1098     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1099         MAI->hasSetDirective()) {
   1100       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1101       const TargetLowering *TLI = TM.getTargetLowering();
   1102       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1103       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1104         const MachineBasicBlock *MBB = JTBBs[ii];
   1105         if (!EmittedSets.insert(MBB)) continue;
   1106 
   1107         // .set LJTSet, LBB32-base
   1108         const MCExpr *LHS =
   1109           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1110         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1111                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1112       }
   1113     }
   1114 
   1115     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1116     // before each jump table.  The first label is never referenced, but tells
   1117     // the assembler and linker the extents of the jump table object.  The
   1118     // second label is actually referenced by the code.
   1119     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
   1120       // FIXME: This doesn't have to have any specific name, just any randomly
   1121       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1122       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1123 
   1124     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1125 
   1126     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1127       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1128   }
   1129 }
   1130 
   1131 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1132 /// current stream.
   1133 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1134                                     const MachineBasicBlock *MBB,
   1135                                     unsigned UID) const {
   1136   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1137   const MCExpr *Value = 0;
   1138   switch (MJTI->getEntryKind()) {
   1139   case MachineJumpTableInfo::EK_Inline:
   1140     llvm_unreachable("Cannot emit EK_Inline jump table entry"); break;
   1141   case MachineJumpTableInfo::EK_Custom32:
   1142     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
   1143                                                               OutContext);
   1144     break;
   1145   case MachineJumpTableInfo::EK_BlockAddress:
   1146     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1147     //     .word LBB123
   1148     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1149     break;
   1150   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1151     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1152     // with a relocation as gp-relative, e.g.:
   1153     //     .gprel32 LBB123
   1154     MCSymbol *MBBSym = MBB->getSymbol();
   1155     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1156     return;
   1157   }
   1158 
   1159   case MachineJumpTableInfo::EK_LabelDifference32: {
   1160     // EK_LabelDifference32 - Each entry is the address of the block minus
   1161     // the address of the jump table.  This is used for PIC jump tables where
   1162     // gprel32 is not supported.  e.g.:
   1163     //      .word LBB123 - LJTI1_2
   1164     // If the .set directive is supported, this is emitted as:
   1165     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1166     //      .word L4_5_set_123
   1167 
   1168     // If we have emitted set directives for the jump table entries, print
   1169     // them rather than the entries themselves.  If we're emitting PIC, then
   1170     // emit the table entries as differences between two text section labels.
   1171     if (MAI->hasSetDirective()) {
   1172       // If we used .set, reference the .set's symbol.
   1173       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1174                                       OutContext);
   1175       break;
   1176     }
   1177     // Otherwise, use the difference as the jump table entry.
   1178     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1179     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
   1180     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
   1181     break;
   1182   }
   1183   }
   1184 
   1185   assert(Value && "Unknown entry kind!");
   1186 
   1187   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
   1188   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
   1189 }
   1190 
   1191 
   1192 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1193 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1194 /// do nothing and return false.
   1195 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1196   if (GV->getName() == "llvm.used") {
   1197     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1198       EmitLLVMUsedList(GV->getInitializer());
   1199     return true;
   1200   }
   1201 
   1202   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1203   if (GV->getSection() == "llvm.metadata" ||
   1204       GV->hasAvailableExternallyLinkage())
   1205     return true;
   1206 
   1207   if (!GV->hasAppendingLinkage()) return false;
   1208 
   1209   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1210 
   1211   const TargetData *TD = TM.getTargetData();
   1212   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
   1213   if (GV->getName() == "llvm.global_ctors") {
   1214     OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
   1215     EmitAlignment(Align);
   1216     EmitXXStructorList(GV->getInitializer());
   1217 
   1218     if (TM.getRelocationModel() == Reloc::Static &&
   1219         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1220       StringRef Sym(".constructors_used");
   1221       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1222                                       MCSA_Reference);
   1223     }
   1224     return true;
   1225   }
   1226 
   1227   if (GV->getName() == "llvm.global_dtors") {
   1228     OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
   1229     EmitAlignment(Align);
   1230     EmitXXStructorList(GV->getInitializer());
   1231 
   1232     if (TM.getRelocationModel() == Reloc::Static &&
   1233         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1234       StringRef Sym(".destructors_used");
   1235       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1236                                       MCSA_Reference);
   1237     }
   1238     return true;
   1239   }
   1240 
   1241   return false;
   1242 }
   1243 
   1244 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1245 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1246 /// is true, as being used with this directive.
   1247 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
   1248   // Should be an array of 'i8*'.
   1249   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1250   if (InitList == 0) return;
   1251 
   1252   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1253     const GlobalValue *GV =
   1254       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1255     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
   1256       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
   1257   }
   1258 }
   1259 
   1260 typedef std::pair<int, Constant*> Structor;
   1261 
   1262 static bool priority_order(const Structor& lhs, const Structor& rhs) {
   1263   return lhs.first < rhs.first;
   1264 }
   1265 
   1266 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1267 /// priority.
   1268 void AsmPrinter::EmitXXStructorList(const Constant *List) {
   1269   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1270   // init priority.
   1271   if (!isa<ConstantArray>(List)) return;
   1272 
   1273   // Sanity check the structors list.
   1274   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1275   if (!InitList) return; // Not an array!
   1276   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1277   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
   1278   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1279       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1280 
   1281   // Gather the structors in a form that's convenient for sorting by priority.
   1282   SmallVector<Structor, 8> Structors;
   1283   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1284     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
   1285     if (!CS) continue; // Malformed.
   1286     if (CS->getOperand(1)->isNullValue())
   1287       break;  // Found a null terminator, skip the rest.
   1288     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1289     if (!Priority) continue; // Malformed.
   1290     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
   1291                                        CS->getOperand(1)));
   1292   }
   1293 
   1294   // Emit the function pointers in reverse priority order.
   1295   switch (MAI->getStructorOutputOrder()) {
   1296   case Structors::None:
   1297     break;
   1298   case Structors::PriorityOrder:
   1299     std::sort(Structors.begin(), Structors.end(), priority_order);
   1300     break;
   1301   case Structors::ReversePriorityOrder:
   1302     std::sort(Structors.rbegin(), Structors.rend(), priority_order);
   1303     break;
   1304   }
   1305   for (unsigned i = 0, e = Structors.size(); i != e; ++i)
   1306     EmitGlobalConstant(Structors[i].second);
   1307 }
   1308 
   1309 //===--------------------------------------------------------------------===//
   1310 // Emission and print routines
   1311 //
   1312 
   1313 /// EmitInt8 - Emit a byte directive and value.
   1314 ///
   1315 void AsmPrinter::EmitInt8(int Value) const {
   1316   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
   1317 }
   1318 
   1319 /// EmitInt16 - Emit a short directive and value.
   1320 ///
   1321 void AsmPrinter::EmitInt16(int Value) const {
   1322   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
   1323 }
   1324 
   1325 /// EmitInt32 - Emit a long directive and value.
   1326 ///
   1327 void AsmPrinter::EmitInt32(int Value) const {
   1328   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
   1329 }
   1330 
   1331 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
   1332 /// in bytes of the directive is specified by Size and Hi/Lo specify the
   1333 /// labels.  This implicitly uses .set if it is available.
   1334 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1335                                      unsigned Size) const {
   1336   // Get the Hi-Lo expression.
   1337   const MCExpr *Diff =
   1338     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1339                             MCSymbolRefExpr::Create(Lo, OutContext),
   1340                             OutContext);
   1341 
   1342   if (!MAI->hasSetDirective()) {
   1343     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
   1344     return;
   1345   }
   1346 
   1347   // Otherwise, emit with .set (aka assignment).
   1348   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1349   OutStreamer.EmitAssignment(SetLabel, Diff);
   1350   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
   1351 }
   1352 
   1353 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
   1354 /// where the size in bytes of the directive is specified by Size and Hi/Lo
   1355 /// specify the labels.  This implicitly uses .set if it is available.
   1356 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
   1357                                            const MCSymbol *Lo, unsigned Size)
   1358   const {
   1359 
   1360   // Emit Hi+Offset - Lo
   1361   // Get the Hi+Offset expression.
   1362   const MCExpr *Plus =
   1363     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
   1364                             MCConstantExpr::Create(Offset, OutContext),
   1365                             OutContext);
   1366 
   1367   // Get the Hi+Offset-Lo expression.
   1368   const MCExpr *Diff =
   1369     MCBinaryExpr::CreateSub(Plus,
   1370                             MCSymbolRefExpr::Create(Lo, OutContext),
   1371                             OutContext);
   1372 
   1373   if (!MAI->hasSetDirective())
   1374     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
   1375   else {
   1376     // Otherwise, emit with .set (aka assignment).
   1377     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1378     OutStreamer.EmitAssignment(SetLabel, Diff);
   1379     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
   1380   }
   1381 }
   1382 
   1383 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1384 /// where the size in bytes of the directive is specified by Size and Label
   1385 /// specifies the label.  This implicitly uses .set if it is available.
   1386 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1387                                       unsigned Size)
   1388   const {
   1389 
   1390   // Emit Label+Offset
   1391   const MCExpr *Plus =
   1392     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
   1393                             MCConstantExpr::Create(Offset, OutContext),
   1394                             OutContext);
   1395 
   1396   OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
   1397 }
   1398 
   1399 
   1400 //===----------------------------------------------------------------------===//
   1401 
   1402 // EmitAlignment - Emit an alignment directive to the specified power of
   1403 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1404 // byte alignment.  If a global value is specified, and if that global has
   1405 // an explicit alignment requested, it will override the alignment request
   1406 // if required for correctness.
   1407 //
   1408 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
   1409   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
   1410 
   1411   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1412 
   1413   if (getCurrentSection()->getKind().isText())
   1414     OutStreamer.EmitCodeAlignment(1 << NumBits);
   1415   else
   1416     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
   1417 }
   1418 
   1419 //===----------------------------------------------------------------------===//
   1420 // Constant emission.
   1421 //===----------------------------------------------------------------------===//
   1422 
   1423 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
   1424 ///
   1425 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
   1426   MCContext &Ctx = AP.OutContext;
   1427 
   1428   if (CV->isNullValue() || isa<UndefValue>(CV))
   1429     return MCConstantExpr::Create(0, Ctx);
   1430 
   1431   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1432     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1433 
   1434   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1435     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
   1436 
   1437   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1438     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
   1439 
   1440   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1441   if (CE == 0) {
   1442     llvm_unreachable("Unknown constant value to lower!");
   1443     return MCConstantExpr::Create(0, Ctx);
   1444   }
   1445 
   1446   switch (CE->getOpcode()) {
   1447   default:
   1448     // If the code isn't optimized, there may be outstanding folding
   1449     // opportunities. Attempt to fold the expression using TargetData as a
   1450     // last resort before giving up.
   1451     if (Constant *C =
   1452           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
   1453       if (C != CE)
   1454         return LowerConstant(C, AP);
   1455 
   1456     // Otherwise report the problem to the user.
   1457     {
   1458       std::string S;
   1459       raw_string_ostream OS(S);
   1460       OS << "Unsupported expression in static initializer: ";
   1461       WriteAsOperand(OS, CE, /*PrintType=*/false,
   1462                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
   1463       report_fatal_error(OS.str());
   1464     }
   1465     return MCConstantExpr::Create(0, Ctx);
   1466   case Instruction::GetElementPtr: {
   1467     const TargetData &TD = *AP.TM.getTargetData();
   1468     // Generate a symbolic expression for the byte address
   1469     const Constant *PtrVal = CE->getOperand(0);
   1470     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
   1471     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
   1472 
   1473     const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
   1474     if (Offset == 0)
   1475       return Base;
   1476 
   1477     // Truncate/sext the offset to the pointer size.
   1478     if (TD.getPointerSizeInBits() != 64) {
   1479       int SExtAmount = 64-TD.getPointerSizeInBits();
   1480       Offset = (Offset << SExtAmount) >> SExtAmount;
   1481     }
   1482 
   1483     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1484                                    Ctx);
   1485   }
   1486 
   1487   case Instruction::Trunc:
   1488     // We emit the value and depend on the assembler to truncate the generated
   1489     // expression properly.  This is important for differences between
   1490     // blockaddress labels.  Since the two labels are in the same function, it
   1491     // is reasonable to treat their delta as a 32-bit value.
   1492     // FALL THROUGH.
   1493   case Instruction::BitCast:
   1494     return LowerConstant(CE->getOperand(0), AP);
   1495 
   1496   case Instruction::IntToPtr: {
   1497     const TargetData &TD = *AP.TM.getTargetData();
   1498     // Handle casts to pointers by changing them into casts to the appropriate
   1499     // integer type.  This promotes constant folding and simplifies this code.
   1500     Constant *Op = CE->getOperand(0);
   1501     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
   1502                                       false/*ZExt*/);
   1503     return LowerConstant(Op, AP);
   1504   }
   1505 
   1506   case Instruction::PtrToInt: {
   1507     const TargetData &TD = *AP.TM.getTargetData();
   1508     // Support only foldable casts to/from pointers that can be eliminated by
   1509     // changing the pointer to the appropriately sized integer type.
   1510     Constant *Op = CE->getOperand(0);
   1511     Type *Ty = CE->getType();
   1512 
   1513     const MCExpr *OpExpr = LowerConstant(Op, AP);
   1514 
   1515     // We can emit the pointer value into this slot if the slot is an
   1516     // integer slot equal to the size of the pointer.
   1517     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
   1518       return OpExpr;
   1519 
   1520     // Otherwise the pointer is smaller than the resultant integer, mask off
   1521     // the high bits so we are sure to get a proper truncation if the input is
   1522     // a constant expr.
   1523     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
   1524     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1525     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1526   }
   1527 
   1528   // The MC library also has a right-shift operator, but it isn't consistently
   1529   // signed or unsigned between different targets.
   1530   case Instruction::Add:
   1531   case Instruction::Sub:
   1532   case Instruction::Mul:
   1533   case Instruction::SDiv:
   1534   case Instruction::SRem:
   1535   case Instruction::Shl:
   1536   case Instruction::And:
   1537   case Instruction::Or:
   1538   case Instruction::Xor: {
   1539     const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
   1540     const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
   1541     switch (CE->getOpcode()) {
   1542     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1543     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1544     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1545     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1546     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1547     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1548     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1549     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1550     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1551     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1552     }
   1553   }
   1554   }
   1555 }
   1556 
   1557 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
   1558                                    AsmPrinter &AP);
   1559 
   1560 /// isRepeatedByteSequence - Determine whether the given value is
   1561 /// composed of a repeated sequence of identical bytes and return the
   1562 /// byte value.  If it is not a repeated sequence, return -1.
   1563 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1564 
   1565   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1566     if (CI->getBitWidth() > 64) return -1;
   1567 
   1568     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
   1569     uint64_t Value = CI->getZExtValue();
   1570 
   1571     // Make sure the constant is at least 8 bits long and has a power
   1572     // of 2 bit width.  This guarantees the constant bit width is
   1573     // always a multiple of 8 bits, avoiding issues with padding out
   1574     // to Size and other such corner cases.
   1575     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1576 
   1577     uint8_t Byte = static_cast<uint8_t>(Value);
   1578 
   1579     for (unsigned i = 1; i < Size; ++i) {
   1580       Value >>= 8;
   1581       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1582     }
   1583     return Byte;
   1584   }
   1585   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1586     // Make sure all array elements are sequences of the same repeated
   1587     // byte.
   1588     if (CA->getNumOperands() == 0) return -1;
   1589 
   1590     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1591     if (Byte == -1) return -1;
   1592 
   1593     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1594       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1595       if (ThisByte == -1) return -1;
   1596       if (Byte != ThisByte) return -1;
   1597     }
   1598     return Byte;
   1599   }
   1600 
   1601   return -1;
   1602 }
   1603 
   1604 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
   1605                                     AsmPrinter &AP) {
   1606   if (AddrSpace != 0 || !CA->isString()) {
   1607     // Not a string.  Print the values in successive locations.
   1608 
   1609     // See if we can aggregate some values.  Make sure it can be
   1610     // represented as a series of bytes of the constant value.
   1611     int Value = isRepeatedByteSequence(CA, AP.TM);
   1612 
   1613     if (Value != -1) {
   1614       uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
   1615       AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1616     }
   1617     else {
   1618       for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1619         EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
   1620     }
   1621     return;
   1622   }
   1623 
   1624   // Otherwise, it can be emitted as .ascii.
   1625   SmallVector<char, 128> TmpVec;
   1626   TmpVec.reserve(CA->getNumOperands());
   1627   for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1628     TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
   1629 
   1630   AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace);
   1631 }
   1632 
   1633 static void EmitGlobalConstantVector(const ConstantVector *CV,
   1634                                      unsigned AddrSpace, AsmPrinter &AP) {
   1635   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1636     EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
   1637 
   1638   const TargetData &TD = *AP.TM.getTargetData();
   1639   unsigned Size = TD.getTypeAllocSize(CV->getType());
   1640   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
   1641                          CV->getType()->getNumElements();
   1642   if (unsigned Padding = Size - EmittedSize)
   1643     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1644 }
   1645 
   1646 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
   1647                                      unsigned AddrSpace, AsmPrinter &AP) {
   1648   // Print the fields in successive locations. Pad to align if needed!
   1649   const TargetData *TD = AP.TM.getTargetData();
   1650   unsigned Size = TD->getTypeAllocSize(CS->getType());
   1651   const StructLayout *Layout = TD->getStructLayout(CS->getType());
   1652   uint64_t SizeSoFar = 0;
   1653   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1654     const Constant *Field = CS->getOperand(i);
   1655 
   1656     // Check if padding is needed and insert one or more 0s.
   1657     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
   1658     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1659                         - Layout->getElementOffset(i)) - FieldSize;
   1660     SizeSoFar += FieldSize + PadSize;
   1661 
   1662     // Now print the actual field value.
   1663     EmitGlobalConstantImpl(Field, AddrSpace, AP);
   1664 
   1665     // Insert padding - this may include padding to increase the size of the
   1666     // current field up to the ABI size (if the struct is not packed) as well
   1667     // as padding to ensure that the next field starts at the right offset.
   1668     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
   1669   }
   1670   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1671          "Layout of constant struct may be incorrect!");
   1672 }
   1673 
   1674 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
   1675                                  AsmPrinter &AP) {
   1676   // FP Constants are printed as integer constants to avoid losing
   1677   // precision.
   1678   if (CFP->getType()->isDoubleTy()) {
   1679     if (AP.isVerbose()) {
   1680       double Val = CFP->getValueAPF().convertToDouble();
   1681       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
   1682     }
   1683 
   1684     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1685     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1686     return;
   1687   }
   1688 
   1689   if (CFP->getType()->isFloatTy()) {
   1690     if (AP.isVerbose()) {
   1691       float Val = CFP->getValueAPF().convertToFloat();
   1692       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
   1693     }
   1694     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1695     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
   1696     return;
   1697   }
   1698 
   1699   if (CFP->getType()->isX86_FP80Ty()) {
   1700     // all long double variants are printed as hex
   1701     // API needed to prevent premature destruction
   1702     APInt API = CFP->getValueAPF().bitcastToAPInt();
   1703     const uint64_t *p = API.getRawData();
   1704     if (AP.isVerbose()) {
   1705       // Convert to double so we can print the approximate val as a comment.
   1706       APFloat DoubleVal = CFP->getValueAPF();
   1707       bool ignored;
   1708       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
   1709                         &ignored);
   1710       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
   1711         << DoubleVal.convertToDouble() << '\n';
   1712     }
   1713 
   1714     if (AP.TM.getTargetData()->isBigEndian()) {
   1715       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1716       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1717     } else {
   1718       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1719       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1720     }
   1721 
   1722     // Emit the tail padding for the long double.
   1723     const TargetData &TD = *AP.TM.getTargetData();
   1724     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
   1725                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
   1726     return;
   1727   }
   1728 
   1729   assert(CFP->getType()->isPPC_FP128Ty() &&
   1730          "Floating point constant type not handled");
   1731   // All long double variants are printed as hex
   1732   // API needed to prevent premature destruction.
   1733   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1734   const uint64_t *p = API.getRawData();
   1735   if (AP.TM.getTargetData()->isBigEndian()) {
   1736     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1737     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1738   } else {
   1739     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1740     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1741   }
   1742 }
   1743 
   1744 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
   1745                                        unsigned AddrSpace, AsmPrinter &AP) {
   1746   const TargetData *TD = AP.TM.getTargetData();
   1747   unsigned BitWidth = CI->getBitWidth();
   1748   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
   1749 
   1750   // We don't expect assemblers to support integer data directives
   1751   // for more than 64 bits, so we emit the data in at most 64-bit
   1752   // quantities at a time.
   1753   const uint64_t *RawData = CI->getValue().getRawData();
   1754   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   1755     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   1756     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1757   }
   1758 }
   1759 
   1760 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
   1761                                    AsmPrinter &AP) {
   1762   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
   1763     uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
   1764     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
   1765   }
   1766 
   1767   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1768     unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
   1769     switch (Size) {
   1770     case 1:
   1771     case 2:
   1772     case 4:
   1773     case 8:
   1774       if (AP.isVerbose())
   1775         AP.OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue());
   1776       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
   1777       return;
   1778     default:
   1779       EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
   1780       return;
   1781     }
   1782   }
   1783 
   1784   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   1785     return EmitGlobalConstantArray(CVA, AddrSpace, AP);
   1786 
   1787   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   1788     return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
   1789 
   1790   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   1791     return EmitGlobalConstantFP(CFP, AddrSpace, AP);
   1792 
   1793   if (isa<ConstantPointerNull>(CV)) {
   1794     unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
   1795     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
   1796     return;
   1797   }
   1798 
   1799   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   1800     return EmitGlobalConstantVector(V, AddrSpace, AP);
   1801 
   1802   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   1803   // thread the streamer with EmitValue.
   1804   AP.OutStreamer.EmitValue(LowerConstant(CV, AP),
   1805                          AP.TM.getTargetData()->getTypeAllocSize(CV->getType()),
   1806                            AddrSpace);
   1807 }
   1808 
   1809 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   1810 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
   1811   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
   1812   if (Size)
   1813     EmitGlobalConstantImpl(CV, AddrSpace, *this);
   1814   else if (MAI->hasSubsectionsViaSymbols()) {
   1815     // If the global has zero size, emit a single byte so that two labels don't
   1816     // look like they are at the same location.
   1817     OutStreamer.EmitIntValue(0, 1, AddrSpace);
   1818   }
   1819 }
   1820 
   1821 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   1822   // Target doesn't support this yet!
   1823   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   1824 }
   1825 
   1826 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   1827   if (Offset > 0)
   1828     OS << '+' << Offset;
   1829   else if (Offset < 0)
   1830     OS << Offset;
   1831 }
   1832 
   1833 //===----------------------------------------------------------------------===//
   1834 // Symbol Lowering Routines.
   1835 //===----------------------------------------------------------------------===//
   1836 
   1837 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
   1838 /// temporary label with the specified stem and unique ID.
   1839 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
   1840   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
   1841                                       Name + Twine(ID));
   1842 }
   1843 
   1844 /// GetTempSymbol - Return an assembler temporary label with the specified
   1845 /// stem.
   1846 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
   1847   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
   1848                                       Name);
   1849 }
   1850 
   1851 
   1852 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   1853   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   1854 }
   1855 
   1856 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   1857   return MMI->getAddrLabelSymbol(BB);
   1858 }
   1859 
   1860 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   1861 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   1862   return OutContext.GetOrCreateSymbol
   1863     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   1864      + "_" + Twine(CPID));
   1865 }
   1866 
   1867 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   1868 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   1869   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   1870 }
   1871 
   1872 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   1873 /// FIXME: privatize to AsmPrinter.
   1874 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   1875   return OutContext.GetOrCreateSymbol
   1876   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   1877    Twine(UID) + "_set_" + Twine(MBBID));
   1878 }
   1879 
   1880 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
   1881 /// global value name as its base, with the specified suffix, and where the
   1882 /// symbol is forced to have private linkage if ForcePrivate is true.
   1883 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
   1884                                                    StringRef Suffix,
   1885                                                    bool ForcePrivate) const {
   1886   SmallString<60> NameStr;
   1887   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
   1888   NameStr.append(Suffix.begin(), Suffix.end());
   1889   return OutContext.GetOrCreateSymbol(NameStr.str());
   1890 }
   1891 
   1892 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   1893 /// ExternalSymbol.
   1894 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   1895   SmallString<60> NameStr;
   1896   Mang->getNameWithPrefix(NameStr, Sym);
   1897   return OutContext.GetOrCreateSymbol(NameStr.str());
   1898 }
   1899 
   1900 
   1901 
   1902 /// PrintParentLoopComment - Print comments about parent loops of this one.
   1903 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   1904                                    unsigned FunctionNumber) {
   1905   if (Loop == 0) return;
   1906   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   1907   OS.indent(Loop->getLoopDepth()*2)
   1908     << "Parent Loop BB" << FunctionNumber << "_"
   1909     << Loop->getHeader()->getNumber()
   1910     << " Depth=" << Loop->getLoopDepth() << '\n';
   1911 }
   1912 
   1913 
   1914 /// PrintChildLoopComment - Print comments about child loops within
   1915 /// the loop for this basic block, with nesting.
   1916 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   1917                                   unsigned FunctionNumber) {
   1918   // Add child loop information
   1919   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
   1920     OS.indent((*CL)->getLoopDepth()*2)
   1921       << "Child Loop BB" << FunctionNumber << "_"
   1922       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
   1923       << '\n';
   1924     PrintChildLoopComment(OS, *CL, FunctionNumber);
   1925   }
   1926 }
   1927 
   1928 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   1929 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   1930                                        const MachineLoopInfo *LI,
   1931                                        const AsmPrinter &AP) {
   1932   // Add loop depth information
   1933   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   1934   if (Loop == 0) return;
   1935 
   1936   MachineBasicBlock *Header = Loop->getHeader();
   1937   assert(Header && "No header for loop");
   1938 
   1939   // If this block is not a loop header, just print out what is the loop header
   1940   // and return.
   1941   if (Header != &MBB) {
   1942     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   1943                               Twine(AP.getFunctionNumber())+"_" +
   1944                               Twine(Loop->getHeader()->getNumber())+
   1945                               " Depth="+Twine(Loop->getLoopDepth()));
   1946     return;
   1947   }
   1948 
   1949   // Otherwise, it is a loop header.  Print out information about child and
   1950   // parent loops.
   1951   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   1952 
   1953   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   1954 
   1955   OS << "=>";
   1956   OS.indent(Loop->getLoopDepth()*2-2);
   1957 
   1958   OS << "This ";
   1959   if (Loop->empty())
   1960     OS << "Inner ";
   1961   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   1962 
   1963   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   1964 }
   1965 
   1966 
   1967 /// EmitBasicBlockStart - This method prints the label for the specified
   1968 /// MachineBasicBlock, an alignment (if present) and a comment describing
   1969 /// it if appropriate.
   1970 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
   1971   // Emit an alignment directive for this block, if needed.
   1972   if (unsigned Align = MBB->getAlignment())
   1973     EmitAlignment(Log2_32(Align));
   1974 
   1975   // If the block has its address taken, emit any labels that were used to
   1976   // reference the block.  It is possible that there is more than one label
   1977   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   1978   // the references were generated.
   1979   if (MBB->hasAddressTaken()) {
   1980     const BasicBlock *BB = MBB->getBasicBlock();
   1981     if (isVerbose())
   1982       OutStreamer.AddComment("Block address taken");
   1983 
   1984     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
   1985 
   1986     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
   1987       OutStreamer.EmitLabel(Syms[i]);
   1988   }
   1989 
   1990   // Print the main label for the block.
   1991   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
   1992     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
   1993       if (const BasicBlock *BB = MBB->getBasicBlock())
   1994         if (BB->hasName())
   1995           OutStreamer.AddComment("%" + BB->getName());
   1996 
   1997       EmitBasicBlockLoopComments(*MBB, LI, *this);
   1998 
   1999       // NOTE: Want this comment at start of line, don't emit with AddComment.
   2000       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
   2001                               Twine(MBB->getNumber()) + ":");
   2002     }
   2003   } else {
   2004     if (isVerbose()) {
   2005       if (const BasicBlock *BB = MBB->getBasicBlock())
   2006         if (BB->hasName())
   2007           OutStreamer.AddComment("%" + BB->getName());
   2008       EmitBasicBlockLoopComments(*MBB, LI, *this);
   2009     }
   2010 
   2011     OutStreamer.EmitLabel(MBB->getSymbol());
   2012   }
   2013 }
   2014 
   2015 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   2016                                 bool IsDefinition) const {
   2017   MCSymbolAttr Attr = MCSA_Invalid;
   2018 
   2019   switch (Visibility) {
   2020   default: break;
   2021   case GlobalValue::HiddenVisibility:
   2022     if (IsDefinition)
   2023       Attr = MAI->getHiddenVisibilityAttr();
   2024     else
   2025       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2026     break;
   2027   case GlobalValue::ProtectedVisibility:
   2028     Attr = MAI->getProtectedVisibilityAttr();
   2029     break;
   2030   }
   2031 
   2032   if (Attr != MCSA_Invalid)
   2033     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2034 }
   2035 
   2036 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2037 /// exactly one predecessor and the control transfer mechanism between
   2038 /// the predecessor and this block is a fall-through.
   2039 bool AsmPrinter::
   2040 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2041   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2042   // then nothing falls through to it.
   2043   if (MBB->isLandingPad() || MBB->pred_empty())
   2044     return false;
   2045 
   2046   // If there isn't exactly one predecessor, it can't be a fall through.
   2047   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
   2048   ++PI2;
   2049   if (PI2 != MBB->pred_end())
   2050     return false;
   2051 
   2052   // The predecessor has to be immediately before this block.
   2053   MachineBasicBlock *Pred = *PI;
   2054 
   2055   if (!Pred->isLayoutSuccessor(MBB))
   2056     return false;
   2057 
   2058   // If the block is completely empty, then it definitely does fall through.
   2059   if (Pred->empty())
   2060     return true;
   2061 
   2062   // Check the terminators in the previous blocks
   2063   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
   2064          IE = Pred->end(); II != IE; ++II) {
   2065     MachineInstr &MI = *II;
   2066 
   2067     // If it is not a simple branch, we are in a table somewhere.
   2068     if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch())
   2069       return false;
   2070 
   2071     // If we are the operands of one of the branches, this is not
   2072     // a fall through.
   2073     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
   2074            OE = MI.operands_end(); OI != OE; ++OI) {
   2075       const MachineOperand& OP = *OI;
   2076       if (OP.isJTI())
   2077         return false;
   2078       if (OP.isMBB() && OP.getMBB() == MBB)
   2079         return false;
   2080     }
   2081   }
   2082 
   2083   return true;
   2084 }
   2085 
   2086 
   2087 
   2088 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
   2089   if (!S->usesMetadata())
   2090     return 0;
   2091 
   2092   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2093   gcp_map_type::iterator GCPI = GCMap.find(S);
   2094   if (GCPI != GCMap.end())
   2095     return GCPI->second;
   2096 
   2097   const char *Name = S->getName().c_str();
   2098 
   2099   for (GCMetadataPrinterRegistry::iterator
   2100          I = GCMetadataPrinterRegistry::begin(),
   2101          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2102     if (strcmp(Name, I->getName()) == 0) {
   2103       GCMetadataPrinter *GMP = I->instantiate();
   2104       GMP->S = S;
   2105       GCMap.insert(std::make_pair(S, GMP));
   2106       return GMP;
   2107     }
   2108 
   2109   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2110   return 0;
   2111 }
   2112 
   2113