Home | History | Annotate | Download | only in Analysis
      1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements inline cost analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/InlineCost.h"
     15 #include "llvm/Support/CallSite.h"
     16 #include "llvm/CallingConv.h"
     17 #include "llvm/IntrinsicInst.h"
     18 #include "llvm/Target/TargetData.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 
     21 using namespace llvm;
     22 
     23 /// callIsSmall - If a call is likely to lower to a single target instruction,
     24 /// or is otherwise deemed small return true.
     25 /// TODO: Perhaps calls like memcpy, strcpy, etc?
     26 bool llvm::callIsSmall(const Function *F) {
     27   if (!F) return false;
     28 
     29   if (F->hasLocalLinkage()) return false;
     30 
     31   if (!F->hasName()) return false;
     32 
     33   StringRef Name = F->getName();
     34 
     35   // These will all likely lower to a single selection DAG node.
     36   if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
     37       Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
     38       Name == "sin" || Name == "sinf" || Name == "sinl" ||
     39       Name == "cos" || Name == "cosf" || Name == "cosl" ||
     40       Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
     41     return true;
     42 
     43   // These are all likely to be optimized into something smaller.
     44   if (Name == "pow" || Name == "powf" || Name == "powl" ||
     45       Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
     46       Name == "floor" || Name == "floorf" || Name == "ceil" ||
     47       Name == "round" || Name == "ffs" || Name == "ffsl" ||
     48       Name == "abs" || Name == "labs" || Name == "llabs")
     49     return true;
     50 
     51   return false;
     52 }
     53 
     54 /// analyzeBasicBlock - Fill in the current structure with information gleaned
     55 /// from the specified block.
     56 void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB,
     57                                     const TargetData *TD) {
     58   ++NumBlocks;
     59   unsigned NumInstsBeforeThisBB = NumInsts;
     60   for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
     61        II != E; ++II) {
     62     if (isa<PHINode>(II)) continue;           // PHI nodes don't count.
     63 
     64     // Special handling for calls.
     65     if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
     66       if (isa<DbgInfoIntrinsic>(II))
     67         continue;  // Debug intrinsics don't count as size.
     68 
     69       ImmutableCallSite CS(cast<Instruction>(II));
     70 
     71       if (const Function *F = CS.getCalledFunction()) {
     72         // If a function is both internal and has a single use, then it is
     73         // extremely likely to get inlined in the future (it was probably
     74         // exposed by an interleaved devirtualization pass).
     75         if (F->hasInternalLinkage() && F->hasOneUse())
     76           ++NumInlineCandidates;
     77 
     78         // If this call is to function itself, then the function is recursive.
     79         // Inlining it into other functions is a bad idea, because this is
     80         // basically just a form of loop peeling, and our metrics aren't useful
     81         // for that case.
     82         if (F == BB->getParent())
     83           isRecursive = true;
     84       }
     85 
     86       if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) {
     87         // Each argument to a call takes on average one instruction to set up.
     88         NumInsts += CS.arg_size();
     89 
     90         // We don't want inline asm to count as a call - that would prevent loop
     91         // unrolling. The argument setup cost is still real, though.
     92         if (!isa<InlineAsm>(CS.getCalledValue()))
     93           ++NumCalls;
     94       }
     95     }
     96 
     97     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     98       if (!AI->isStaticAlloca())
     99         this->usesDynamicAlloca = true;
    100     }
    101 
    102     if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy())
    103       ++NumVectorInsts;
    104 
    105     if (const CastInst *CI = dyn_cast<CastInst>(II)) {
    106       // Noop casts, including ptr <-> int,  don't count.
    107       if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
    108           isa<PtrToIntInst>(CI))
    109         continue;
    110       // trunc to a native type is free (assuming the target has compare and
    111       // shift-right of the same width).
    112       if (isa<TruncInst>(CI) && TD &&
    113           TD->isLegalInteger(TD->getTypeSizeInBits(CI->getType())))
    114         continue;
    115       // Result of a cmp instruction is often extended (to be used by other
    116       // cmp instructions, logical or return instructions). These are usually
    117       // nop on most sane targets.
    118       if (isa<CmpInst>(CI->getOperand(0)))
    119         continue;
    120     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){
    121       // If a GEP has all constant indices, it will probably be folded with
    122       // a load/store.
    123       if (GEPI->hasAllConstantIndices())
    124         continue;
    125     }
    126 
    127     ++NumInsts;
    128   }
    129 
    130   if (isa<ReturnInst>(BB->getTerminator()))
    131     ++NumRets;
    132 
    133   // We never want to inline functions that contain an indirectbr.  This is
    134   // incorrect because all the blockaddress's (in static global initializers
    135   // for example) would be referring to the original function, and this indirect
    136   // jump would jump from the inlined copy of the function into the original
    137   // function which is extremely undefined behavior.
    138   if (isa<IndirectBrInst>(BB->getTerminator()))
    139     containsIndirectBr = true;
    140 
    141   // Remember NumInsts for this BB.
    142   NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
    143 }
    144 
    145 // CountCodeReductionForConstant - Figure out an approximation for how many
    146 // instructions will be constant folded if the specified value is constant.
    147 //
    148 unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) {
    149   unsigned Reduction = 0;
    150   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    151     User *U = *UI;
    152     if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
    153       // We will be able to eliminate all but one of the successors.
    154       const TerminatorInst &TI = cast<TerminatorInst>(*U);
    155       const unsigned NumSucc = TI.getNumSuccessors();
    156       unsigned Instrs = 0;
    157       for (unsigned I = 0; I != NumSucc; ++I)
    158         Instrs += NumBBInsts[TI.getSuccessor(I)];
    159       // We don't know which blocks will be eliminated, so use the average size.
    160       Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc;
    161     } else {
    162       // Figure out if this instruction will be removed due to simple constant
    163       // propagation.
    164       Instruction &Inst = cast<Instruction>(*U);
    165 
    166       // We can't constant propagate instructions which have effects or
    167       // read memory.
    168       //
    169       // FIXME: It would be nice to capture the fact that a load from a
    170       // pointer-to-constant-global is actually a *really* good thing to zap.
    171       // Unfortunately, we don't know the pointer that may get propagated here,
    172       // so we can't make this decision.
    173       if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
    174           isa<AllocaInst>(Inst))
    175         continue;
    176 
    177       bool AllOperandsConstant = true;
    178       for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
    179         if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
    180           AllOperandsConstant = false;
    181           break;
    182         }
    183 
    184       if (AllOperandsConstant) {
    185         // We will get to remove this instruction...
    186         Reduction += InlineConstants::InstrCost;
    187 
    188         // And any other instructions that use it which become constants
    189         // themselves.
    190         Reduction += CountCodeReductionForConstant(&Inst);
    191       }
    192     }
    193   }
    194   return Reduction;
    195 }
    196 
    197 // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
    198 // the function will be if it is inlined into a context where an argument
    199 // becomes an alloca.
    200 //
    201 unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) {
    202   if (!V->getType()->isPointerTy()) return 0;  // Not a pointer
    203   unsigned Reduction = 0;
    204   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    205     Instruction *I = cast<Instruction>(*UI);
    206     if (isa<LoadInst>(I) || isa<StoreInst>(I))
    207       Reduction += InlineConstants::InstrCost;
    208     else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
    209       // If the GEP has variable indices, we won't be able to do much with it.
    210       if (GEP->hasAllConstantIndices())
    211         Reduction += CountCodeReductionForAlloca(GEP);
    212     } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
    213       // Track pointer through bitcasts.
    214       Reduction += CountCodeReductionForAlloca(BCI);
    215     } else {
    216       // If there is some other strange instruction, we're not going to be able
    217       // to do much if we inline this.
    218       return 0;
    219     }
    220   }
    221 
    222   return Reduction;
    223 }
    224 
    225 /// analyzeFunction - Fill in the current structure with information gleaned
    226 /// from the specified function.
    227 void CodeMetrics::analyzeFunction(Function *F, const TargetData *TD) {
    228   // If this function contains a call that "returns twice" (e.g., setjmp or
    229   // _setjmp), never inline it. This is a hack because we depend on the user
    230   // marking their local variables as volatile if they are live across a setjmp
    231   // call, and they probably won't do this in callers.
    232   callsSetJmp = F->callsFunctionThatReturnsTwice();
    233 
    234   // Look at the size of the callee.
    235   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    236     analyzeBasicBlock(&*BB, TD);
    237 }
    238 
    239 /// analyzeFunction - Fill in the current structure with information gleaned
    240 /// from the specified function.
    241 void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F,
    242                                                        const TargetData *TD) {
    243   Metrics.analyzeFunction(F, TD);
    244 
    245   // A function with exactly one return has it removed during the inlining
    246   // process (see InlineFunction), so don't count it.
    247   // FIXME: This knowledge should really be encoded outside of FunctionInfo.
    248   if (Metrics.NumRets==1)
    249     --Metrics.NumInsts;
    250 
    251   // Check out all of the arguments to the function, figuring out how much
    252   // code can be eliminated if one of the arguments is a constant.
    253   ArgumentWeights.reserve(F->arg_size());
    254   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
    255     ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I),
    256                                       Metrics.CountCodeReductionForAlloca(I)));
    257 }
    258 
    259 /// NeverInline - returns true if the function should never be inlined into
    260 /// any caller
    261 bool InlineCostAnalyzer::FunctionInfo::NeverInline() {
    262   return (Metrics.callsSetJmp || Metrics.isRecursive ||
    263           Metrics.containsIndirectBr);
    264 }
    265 // getSpecializationBonus - The heuristic used to determine the per-call
    266 // performance boost for using a specialization of Callee with argument
    267 // specializedArgNo replaced by a constant.
    268 int InlineCostAnalyzer::getSpecializationBonus(Function *Callee,
    269          SmallVectorImpl<unsigned> &SpecializedArgNos)
    270 {
    271   if (Callee->mayBeOverridden())
    272     return 0;
    273 
    274   int Bonus = 0;
    275   // If this function uses the coldcc calling convention, prefer not to
    276   // specialize it.
    277   if (Callee->getCallingConv() == CallingConv::Cold)
    278     Bonus -= InlineConstants::ColdccPenalty;
    279 
    280   // Get information about the callee.
    281   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
    282 
    283   // If we haven't calculated this information yet, do so now.
    284   if (CalleeFI->Metrics.NumBlocks == 0)
    285     CalleeFI->analyzeFunction(Callee, TD);
    286 
    287   unsigned ArgNo = 0;
    288   unsigned i = 0;
    289   for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end();
    290        I != E; ++I, ++ArgNo)
    291     if (ArgNo == SpecializedArgNos[i]) {
    292       ++i;
    293       Bonus += CountBonusForConstant(I);
    294     }
    295 
    296   // Calls usually take a long time, so they make the specialization gain
    297   // smaller.
    298   Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
    299 
    300   return Bonus;
    301 }
    302 
    303 // ConstantFunctionBonus - Figure out how much of a bonus we can get for
    304 // possibly devirtualizing a function. We'll subtract the size of the function
    305 // we may wish to inline from the indirect call bonus providing a limit on
    306 // growth. Leave an upper limit of 0 for the bonus - we don't want to penalize
    307 // inlining because we decide we don't want to give a bonus for
    308 // devirtualizing.
    309 int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) {
    310 
    311   // This could just be NULL.
    312   if (!C) return 0;
    313 
    314   Function *F = dyn_cast<Function>(C);
    315   if (!F) return 0;
    316 
    317   int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F);
    318   return (Bonus > 0) ? 0 : Bonus;
    319 }
    320 
    321 // CountBonusForConstant - Figure out an approximation for how much per-call
    322 // performance boost we can expect if the specified value is constant.
    323 int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) {
    324   unsigned Bonus = 0;
    325   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
    326     User *U = *UI;
    327     if (CallInst *CI = dyn_cast<CallInst>(U)) {
    328       // Turning an indirect call into a direct call is a BIG win
    329       if (CI->getCalledValue() == V)
    330         Bonus += ConstantFunctionBonus(CallSite(CI), C);
    331     } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    332       // Turning an indirect call into a direct call is a BIG win
    333       if (II->getCalledValue() == V)
    334         Bonus += ConstantFunctionBonus(CallSite(II), C);
    335     }
    336     // FIXME: Eliminating conditional branches and switches should
    337     // also yield a per-call performance boost.
    338     else {
    339       // Figure out the bonuses that wll accrue due to simple constant
    340       // propagation.
    341       Instruction &Inst = cast<Instruction>(*U);
    342 
    343       // We can't constant propagate instructions which have effects or
    344       // read memory.
    345       //
    346       // FIXME: It would be nice to capture the fact that a load from a
    347       // pointer-to-constant-global is actually a *really* good thing to zap.
    348       // Unfortunately, we don't know the pointer that may get propagated here,
    349       // so we can't make this decision.
    350       if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
    351           isa<AllocaInst>(Inst))
    352         continue;
    353 
    354       bool AllOperandsConstant = true;
    355       for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
    356         if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
    357           AllOperandsConstant = false;
    358           break;
    359         }
    360 
    361       if (AllOperandsConstant)
    362         Bonus += CountBonusForConstant(&Inst);
    363     }
    364   }
    365 
    366   return Bonus;
    367 }
    368 
    369 int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) {
    370   // Get information about the callee.
    371   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
    372 
    373   // If we haven't calculated this information yet, do so now.
    374   if (CalleeFI->Metrics.NumBlocks == 0)
    375     CalleeFI->analyzeFunction(Callee, TD);
    376 
    377   // InlineCost - This value measures how good of an inline candidate this call
    378   // site is to inline.  A lower inline cost make is more likely for the call to
    379   // be inlined.  This value may go negative.
    380   //
    381   int InlineCost = 0;
    382 
    383   // Compute any size reductions we can expect due to arguments being passed into
    384   // the function.
    385   //
    386   unsigned ArgNo = 0;
    387   CallSite::arg_iterator I = CS.arg_begin();
    388   for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
    389        FI != FE; ++I, ++FI, ++ArgNo) {
    390 
    391     // If an alloca is passed in, inlining this function is likely to allow
    392     // significant future optimization possibilities (like scalar promotion, and
    393     // scalarization), so encourage the inlining of the function.
    394     //
    395     if (isa<AllocaInst>(I))
    396       InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight;
    397 
    398     // If this is a constant being passed into the function, use the argument
    399     // weights calculated for the callee to determine how much will be folded
    400     // away with this information.
    401     else if (isa<Constant>(I))
    402       InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight;
    403   }
    404 
    405   // Each argument passed in has a cost at both the caller and the callee
    406   // sides.  Measurements show that each argument costs about the same as an
    407   // instruction.
    408   InlineCost -= (CS.arg_size() * InlineConstants::InstrCost);
    409 
    410   // Now that we have considered all of the factors that make the call site more
    411   // likely to be inlined, look at factors that make us not want to inline it.
    412 
    413   // Calls usually take a long time, so they make the inlining gain smaller.
    414   InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty;
    415 
    416   // Look at the size of the callee. Each instruction counts as 5.
    417   InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost;
    418 
    419   return InlineCost;
    420 }
    421 
    422 int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) {
    423   // Get information about the callee.
    424   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
    425 
    426   // If we haven't calculated this information yet, do so now.
    427   if (CalleeFI->Metrics.NumBlocks == 0)
    428     CalleeFI->analyzeFunction(Callee, TD);
    429 
    430   bool isDirectCall = CS.getCalledFunction() == Callee;
    431   Instruction *TheCall = CS.getInstruction();
    432   int Bonus = 0;
    433 
    434   // If there is only one call of the function, and it has internal linkage,
    435   // make it almost guaranteed to be inlined.
    436   //
    437   if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall)
    438     Bonus += InlineConstants::LastCallToStaticBonus;
    439 
    440   // If the instruction after the call, or if the normal destination of the
    441   // invoke is an unreachable instruction, the function is noreturn.  As such,
    442   // there is little point in inlining this.
    443   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
    444     if (isa<UnreachableInst>(II->getNormalDest()->begin()))
    445       Bonus += InlineConstants::NoreturnPenalty;
    446   } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
    447     Bonus += InlineConstants::NoreturnPenalty;
    448 
    449   // If this function uses the coldcc calling convention, prefer not to inline
    450   // it.
    451   if (Callee->getCallingConv() == CallingConv::Cold)
    452     Bonus += InlineConstants::ColdccPenalty;
    453 
    454   // Add to the inline quality for properties that make the call valuable to
    455   // inline.  This includes factors that indicate that the result of inlining
    456   // the function will be optimizable.  Currently this just looks at arguments
    457   // passed into the function.
    458   //
    459   CallSite::arg_iterator I = CS.arg_begin();
    460   for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end();
    461        FI != FE; ++I, ++FI)
    462     // Compute any constant bonus due to inlining we want to give here.
    463     if (isa<Constant>(I))
    464       Bonus += CountBonusForConstant(FI, cast<Constant>(I));
    465 
    466   return Bonus;
    467 }
    468 
    469 // getInlineCost - The heuristic used to determine if we should inline the
    470 // function call or not.
    471 //
    472 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
    473                                SmallPtrSet<const Function*, 16> &NeverInline) {
    474   return getInlineCost(CS, CS.getCalledFunction(), NeverInline);
    475 }
    476 
    477 InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
    478                                Function *Callee,
    479                                SmallPtrSet<const Function*, 16> &NeverInline) {
    480   Instruction *TheCall = CS.getInstruction();
    481   Function *Caller = TheCall->getParent()->getParent();
    482 
    483   // Don't inline functions which can be redefined at link-time to mean
    484   // something else.  Don't inline functions marked noinline or call sites
    485   // marked noinline.
    486   if (Callee->mayBeOverridden() ||
    487       Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) ||
    488       CS.isNoInline())
    489     return llvm::InlineCost::getNever();
    490 
    491   // Get information about the callee.
    492   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
    493 
    494   // If we haven't calculated this information yet, do so now.
    495   if (CalleeFI->Metrics.NumBlocks == 0)
    496     CalleeFI->analyzeFunction(Callee, TD);
    497 
    498   // If we should never inline this, return a huge cost.
    499   if (CalleeFI->NeverInline())
    500     return InlineCost::getNever();
    501 
    502   // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we
    503   // could move this up and avoid computing the FunctionInfo for
    504   // things we are going to just return always inline for. This
    505   // requires handling setjmp somewhere else, however.
    506   if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
    507     return InlineCost::getAlways();
    508 
    509   if (CalleeFI->Metrics.usesDynamicAlloca) {
    510     // Get information about the caller.
    511     FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
    512 
    513     // If we haven't calculated this information yet, do so now.
    514     if (CallerFI.Metrics.NumBlocks == 0) {
    515       CallerFI.analyzeFunction(Caller, TD);
    516 
    517       // Recompute the CalleeFI pointer, getting Caller could have invalidated
    518       // it.
    519       CalleeFI = &CachedFunctionInfo[Callee];
    520     }
    521 
    522     // Don't inline a callee with dynamic alloca into a caller without them.
    523     // Functions containing dynamic alloca's are inefficient in various ways;
    524     // don't create more inefficiency.
    525     if (!CallerFI.Metrics.usesDynamicAlloca)
    526       return InlineCost::getNever();
    527   }
    528 
    529   // InlineCost - This value measures how good of an inline candidate this call
    530   // site is to inline.  A lower inline cost make is more likely for the call to
    531   // be inlined.  This value may go negative due to the fact that bonuses
    532   // are negative numbers.
    533   //
    534   int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee);
    535   return llvm::InlineCost::get(InlineCost);
    536 }
    537 
    538 // getSpecializationCost - The heuristic used to determine the code-size
    539 // impact of creating a specialized version of Callee with argument
    540 // SpecializedArgNo replaced by a constant.
    541 InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee,
    542                                SmallVectorImpl<unsigned> &SpecializedArgNos)
    543 {
    544   // Don't specialize functions which can be redefined at link-time to mean
    545   // something else.
    546   if (Callee->mayBeOverridden())
    547     return llvm::InlineCost::getNever();
    548 
    549   // Get information about the callee.
    550   FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee];
    551 
    552   // If we haven't calculated this information yet, do so now.
    553   if (CalleeFI->Metrics.NumBlocks == 0)
    554     CalleeFI->analyzeFunction(Callee, TD);
    555 
    556   int Cost = 0;
    557 
    558   // Look at the original size of the callee.  Each instruction counts as 5.
    559   Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost;
    560 
    561   // Offset that with the amount of code that can be constant-folded
    562   // away with the given arguments replaced by constants.
    563   for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(),
    564        ae = SpecializedArgNos.end(); an != ae; ++an)
    565     Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight;
    566 
    567   return llvm::InlineCost::get(Cost);
    568 }
    569 
    570 // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
    571 // higher threshold to determine if the function call should be inlined.
    572 float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
    573   Function *Callee = CS.getCalledFunction();
    574 
    575   // Get information about the callee.
    576   FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
    577 
    578   // If we haven't calculated this information yet, do so now.
    579   if (CalleeFI.Metrics.NumBlocks == 0)
    580     CalleeFI.analyzeFunction(Callee, TD);
    581 
    582   float Factor = 1.0f;
    583   // Single BB functions are often written to be inlined.
    584   if (CalleeFI.Metrics.NumBlocks == 1)
    585     Factor += 0.5f;
    586 
    587   // Be more aggressive if the function contains a good chunk (if it mades up
    588   // at least 10% of the instructions) of vector instructions.
    589   if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
    590     Factor += 2.0f;
    591   else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
    592     Factor += 1.5f;
    593   return Factor;
    594 }
    595 
    596 /// growCachedCostInfo - update the cached cost info for Caller after Callee has
    597 /// been inlined.
    598 void
    599 InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) {
    600   CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics;
    601 
    602   // For small functions we prefer to recalculate the cost for better accuracy.
    603   if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) {
    604     resetCachedCostInfo(Caller);
    605     return;
    606   }
    607 
    608   // For large functions, we can save a lot of computation time by skipping
    609   // recalculations.
    610   if (CallerMetrics.NumCalls > 0)
    611     --CallerMetrics.NumCalls;
    612 
    613   if (Callee == 0) return;
    614 
    615   CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics;
    616 
    617   // If we don't have metrics for the callee, don't recalculate them just to
    618   // update an approximation in the caller.  Instead, just recalculate the
    619   // caller info from scratch.
    620   if (CalleeMetrics.NumBlocks == 0) {
    621     resetCachedCostInfo(Caller);
    622     return;
    623   }
    624 
    625   // Since CalleeMetrics were already calculated, we know that the CallerMetrics
    626   // reference isn't invalidated: both were in the DenseMap.
    627   CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca;
    628 
    629   // FIXME: If any of these three are true for the callee, the callee was
    630   // not inlined into the caller, so I think they're redundant here.
    631   CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp;
    632   CallerMetrics.isRecursive |= CalleeMetrics.isRecursive;
    633   CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr;
    634 
    635   CallerMetrics.NumInsts += CalleeMetrics.NumInsts;
    636   CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks;
    637   CallerMetrics.NumCalls += CalleeMetrics.NumCalls;
    638   CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts;
    639   CallerMetrics.NumRets += CalleeMetrics.NumRets;
    640 
    641   // analyzeBasicBlock counts each function argument as an inst.
    642   if (CallerMetrics.NumInsts >= Callee->arg_size())
    643     CallerMetrics.NumInsts -= Callee->arg_size();
    644   else
    645     CallerMetrics.NumInsts = 0;
    646 
    647   // We are not updating the argument weights. We have already determined that
    648   // Caller is a fairly large function, so we accept the loss of precision.
    649 }
    650 
    651 /// clear - empty the cache of inline costs
    652 void InlineCostAnalyzer::clear() {
    653   CachedFunctionInfo.clear();
    654 }
    655