Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis member access expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/Sema/SemaInternal.h"
     14 #include "clang/Sema/Lookup.h"
     15 #include "clang/Sema/Scope.h"
     16 #include "clang/AST/DeclCXX.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/Lex/Preprocessor.h"
     22 
     23 using namespace clang;
     24 using namespace sema;
     25 
     26 /// Determines if the given class is provably not derived from all of
     27 /// the prospective base classes.
     28 static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
     29                                      CXXRecordDecl *Record,
     30                             const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
     31   if (Bases.count(Record->getCanonicalDecl()))
     32     return false;
     33 
     34   RecordDecl *RD = Record->getDefinition();
     35   if (!RD) return false;
     36   Record = cast<CXXRecordDecl>(RD);
     37 
     38   for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
     39          E = Record->bases_end(); I != E; ++I) {
     40     CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
     41     CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
     42     if (!BaseRT) return false;
     43 
     44     CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
     45     if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
     46       return false;
     47   }
     48 
     49   return true;
     50 }
     51 
     52 enum IMAKind {
     53   /// The reference is definitely not an instance member access.
     54   IMA_Static,
     55 
     56   /// The reference may be an implicit instance member access.
     57   IMA_Mixed,
     58 
     59   /// The reference may be to an instance member, but it is invalid if
     60   /// so, because the context is not an instance method.
     61   IMA_Mixed_StaticContext,
     62 
     63   /// The reference may be to an instance member, but it is invalid if
     64   /// so, because the context is from an unrelated class.
     65   IMA_Mixed_Unrelated,
     66 
     67   /// The reference is definitely an implicit instance member access.
     68   IMA_Instance,
     69 
     70   /// The reference may be to an unresolved using declaration.
     71   IMA_Unresolved,
     72 
     73   /// The reference may be to an unresolved using declaration and the
     74   /// context is not an instance method.
     75   IMA_Unresolved_StaticContext,
     76 
     77   /// All possible referrents are instance members and the current
     78   /// context is not an instance method.
     79   IMA_Error_StaticContext,
     80 
     81   /// All possible referrents are instance members of an unrelated
     82   /// class.
     83   IMA_Error_Unrelated
     84 };
     85 
     86 /// The given lookup names class member(s) and is not being used for
     87 /// an address-of-member expression.  Classify the type of access
     88 /// according to whether it's possible that this reference names an
     89 /// instance member.  This is best-effort; it is okay to
     90 /// conservatively answer "yes", in which case some errors will simply
     91 /// not be caught until template-instantiation.
     92 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
     93                                             Scope *CurScope,
     94                                             const LookupResult &R) {
     95   assert(!R.empty() && (*R.begin())->isCXXClassMember());
     96 
     97   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
     98 
     99   bool isStaticContext =
    100     (!isa<CXXMethodDecl>(DC) ||
    101      cast<CXXMethodDecl>(DC)->isStatic());
    102 
    103   // C++0x [expr.prim]p4:
    104   //   Otherwise, if a member-declarator declares a non-static data member
    105   // of a class X, the expression this is a prvalue of type "pointer to X"
    106   // within the optional brace-or-equal-initializer.
    107   if (CurScope->getFlags() & Scope::ThisScope)
    108     isStaticContext = false;
    109 
    110   if (R.isUnresolvableResult())
    111     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
    112 
    113   // Collect all the declaring classes of instance members we find.
    114   bool hasNonInstance = false;
    115   bool hasField = false;
    116   llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
    117   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    118     NamedDecl *D = *I;
    119 
    120     if (D->isCXXInstanceMember()) {
    121       if (dyn_cast<FieldDecl>(D))
    122         hasField = true;
    123 
    124       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
    125       Classes.insert(R->getCanonicalDecl());
    126     }
    127     else
    128       hasNonInstance = true;
    129   }
    130 
    131   // If we didn't find any instance members, it can't be an implicit
    132   // member reference.
    133   if (Classes.empty())
    134     return IMA_Static;
    135 
    136   // If the current context is not an instance method, it can't be
    137   // an implicit member reference.
    138   if (isStaticContext) {
    139     if (hasNonInstance)
    140         return IMA_Mixed_StaticContext;
    141 
    142     if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
    143       // C++0x [expr.prim.general]p10:
    144       //   An id-expression that denotes a non-static data member or non-static
    145       //   member function of a class can only be used:
    146       //   (...)
    147       //   - if that id-expression denotes a non-static data member and it
    148       //     appears in an unevaluated operand.
    149       const Sema::ExpressionEvaluationContextRecord& record
    150         = SemaRef.ExprEvalContexts.back();
    151       bool isUnevaluatedExpression = (record.Context == Sema::Unevaluated);
    152       if (isUnevaluatedExpression)
    153         return IMA_Mixed_StaticContext;
    154     }
    155 
    156     return IMA_Error_StaticContext;
    157   }
    158 
    159   CXXRecordDecl *contextClass;
    160   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
    161     contextClass = MD->getParent()->getCanonicalDecl();
    162   else
    163     contextClass = cast<CXXRecordDecl>(DC);
    164 
    165   // [class.mfct.non-static]p3:
    166   // ...is used in the body of a non-static member function of class X,
    167   // if name lookup (3.4.1) resolves the name in the id-expression to a
    168   // non-static non-type member of some class C [...]
    169   // ...if C is not X or a base class of X, the class member access expression
    170   // is ill-formed.
    171   if (R.getNamingClass() &&
    172       contextClass != R.getNamingClass()->getCanonicalDecl() &&
    173       contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
    174     return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
    175 
    176   // If we can prove that the current context is unrelated to all the
    177   // declaring classes, it can't be an implicit member reference (in
    178   // which case it's an error if any of those members are selected).
    179   if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
    180     return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
    181 
    182   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
    183 }
    184 
    185 /// Diagnose a reference to a field with no object available.
    186 static void DiagnoseInstanceReference(Sema &SemaRef,
    187                                       const CXXScopeSpec &SS,
    188                                       NamedDecl *rep,
    189                                       const DeclarationNameInfo &nameInfo) {
    190   SourceLocation Loc = nameInfo.getLoc();
    191   SourceRange Range(Loc);
    192   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
    193 
    194   if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
    195     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
    196       if (MD->isStatic()) {
    197         // "invalid use of member 'x' in static member function"
    198         SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
    199         << Range << nameInfo.getName();
    200         return;
    201       }
    202     }
    203 
    204     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
    205     << nameInfo.getName() << Range;
    206     return;
    207   }
    208 
    209   SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
    210 }
    211 
    212 /// Builds an expression which might be an implicit member expression.
    213 ExprResult
    214 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
    215                                       LookupResult &R,
    216                                 const TemplateArgumentListInfo *TemplateArgs) {
    217   switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
    218   case IMA_Instance:
    219     return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
    220 
    221   case IMA_Mixed:
    222   case IMA_Mixed_Unrelated:
    223   case IMA_Unresolved:
    224     return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
    225 
    226   case IMA_Static:
    227   case IMA_Mixed_StaticContext:
    228   case IMA_Unresolved_StaticContext:
    229     if (TemplateArgs)
    230       return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
    231     return BuildDeclarationNameExpr(SS, R, false);
    232 
    233   case IMA_Error_StaticContext:
    234   case IMA_Error_Unrelated:
    235     DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
    236                               R.getLookupNameInfo());
    237     return ExprError();
    238   }
    239 
    240   llvm_unreachable("unexpected instance member access kind");
    241   return ExprError();
    242 }
    243 
    244 /// Determine whether input char is from rgba component set.
    245 static bool
    246 IsRGBA(char c) {
    247   switch (c) {
    248   case 'r':
    249   case 'g':
    250   case 'b':
    251   case 'a':
    252     return true;
    253   default:
    254     return false;
    255   }
    256 }
    257 
    258 /// Check an ext-vector component access expression.
    259 ///
    260 /// VK should be set in advance to the value kind of the base
    261 /// expression.
    262 static QualType
    263 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
    264                         SourceLocation OpLoc, const IdentifierInfo *CompName,
    265                         SourceLocation CompLoc) {
    266   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
    267   // see FIXME there.
    268   //
    269   // FIXME: This logic can be greatly simplified by splitting it along
    270   // halving/not halving and reworking the component checking.
    271   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
    272 
    273   // The vector accessor can't exceed the number of elements.
    274   const char *compStr = CompName->getNameStart();
    275 
    276   // This flag determines whether or not the component is one of the four
    277   // special names that indicate a subset of exactly half the elements are
    278   // to be selected.
    279   bool HalvingSwizzle = false;
    280 
    281   // This flag determines whether or not CompName has an 's' char prefix,
    282   // indicating that it is a string of hex values to be used as vector indices.
    283   bool HexSwizzle = *compStr == 's' || *compStr == 'S';
    284 
    285   bool HasRepeated = false;
    286   bool HasIndex[16] = {};
    287 
    288   int Idx;
    289 
    290   // Check that we've found one of the special components, or that the component
    291   // names must come from the same set.
    292   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
    293       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
    294     HalvingSwizzle = true;
    295   } else if (!HexSwizzle &&
    296              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
    297     bool HasRGBA = IsRGBA(*compStr);
    298     do {
    299       // If we mix/match rgba with xyzw, break to signal that we encountered
    300       // an illegal name.
    301       if (HasRGBA != IsRGBA(*compStr))
    302         break;
    303       if (HasIndex[Idx]) HasRepeated = true;
    304       HasIndex[Idx] = true;
    305       compStr++;
    306     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
    307   } else {
    308     if (HexSwizzle) compStr++;
    309     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
    310       if (HasIndex[Idx]) HasRepeated = true;
    311       HasIndex[Idx] = true;
    312       compStr++;
    313     }
    314   }
    315 
    316   if (!HalvingSwizzle && *compStr) {
    317     // We didn't get to the end of the string. This means the component names
    318     // didn't come from the same set *or* we encountered an illegal name.
    319     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
    320       << StringRef(compStr, 1) << SourceRange(CompLoc);
    321     return QualType();
    322   }
    323 
    324   // Ensure no component accessor exceeds the width of the vector type it
    325   // operates on.
    326   if (!HalvingSwizzle) {
    327     compStr = CompName->getNameStart();
    328 
    329     if (HexSwizzle)
    330       compStr++;
    331 
    332     while (*compStr) {
    333       if (!vecType->isAccessorWithinNumElements(*compStr++)) {
    334         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
    335           << baseType << SourceRange(CompLoc);
    336         return QualType();
    337       }
    338     }
    339   }
    340 
    341   // The component accessor looks fine - now we need to compute the actual type.
    342   // The vector type is implied by the component accessor. For example,
    343   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
    344   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
    345   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
    346   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
    347                                      : CompName->getLength();
    348   if (HexSwizzle)
    349     CompSize--;
    350 
    351   if (CompSize == 1)
    352     return vecType->getElementType();
    353 
    354   if (HasRepeated) VK = VK_RValue;
    355 
    356   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
    357   // Now look up the TypeDefDecl from the vector type. Without this,
    358   // diagostics look bad. We want extended vector types to appear built-in.
    359   for (Sema::ExtVectorDeclsType::iterator
    360          I = S.ExtVectorDecls.begin(S.ExternalSource),
    361          E = S.ExtVectorDecls.end();
    362        I != E; ++I) {
    363     if ((*I)->getUnderlyingType() == VT)
    364       return S.Context.getTypedefType(*I);
    365   }
    366 
    367   return VT; // should never get here (a typedef type should always be found).
    368 }
    369 
    370 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
    371                                                 IdentifierInfo *Member,
    372                                                 const Selector &Sel,
    373                                                 ASTContext &Context) {
    374   if (Member)
    375     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
    376       return PD;
    377   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
    378     return OMD;
    379 
    380   for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
    381        E = PDecl->protocol_end(); I != E; ++I) {
    382     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
    383                                                            Context))
    384       return D;
    385   }
    386   return 0;
    387 }
    388 
    389 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
    390                                       IdentifierInfo *Member,
    391                                       const Selector &Sel,
    392                                       ASTContext &Context) {
    393   // Check protocols on qualified interfaces.
    394   Decl *GDecl = 0;
    395   for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
    396        E = QIdTy->qual_end(); I != E; ++I) {
    397     if (Member)
    398       if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
    399         GDecl = PD;
    400         break;
    401       }
    402     // Also must look for a getter or setter name which uses property syntax.
    403     if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
    404       GDecl = OMD;
    405       break;
    406     }
    407   }
    408   if (!GDecl) {
    409     for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
    410          E = QIdTy->qual_end(); I != E; ++I) {
    411       // Search in the protocol-qualifier list of current protocol.
    412       GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
    413                                                        Context);
    414       if (GDecl)
    415         return GDecl;
    416     }
    417   }
    418   return GDecl;
    419 }
    420 
    421 ExprResult
    422 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
    423                                bool IsArrow, SourceLocation OpLoc,
    424                                const CXXScopeSpec &SS,
    425                                NamedDecl *FirstQualifierInScope,
    426                                const DeclarationNameInfo &NameInfo,
    427                                const TemplateArgumentListInfo *TemplateArgs) {
    428   // Even in dependent contexts, try to diagnose base expressions with
    429   // obviously wrong types, e.g.:
    430   //
    431   // T* t;
    432   // t.f;
    433   //
    434   // In Obj-C++, however, the above expression is valid, since it could be
    435   // accessing the 'f' property if T is an Obj-C interface. The extra check
    436   // allows this, while still reporting an error if T is a struct pointer.
    437   if (!IsArrow) {
    438     const PointerType *PT = BaseType->getAs<PointerType>();
    439     if (PT && (!getLangOptions().ObjC1 ||
    440                PT->getPointeeType()->isRecordType())) {
    441       assert(BaseExpr && "cannot happen with implicit member accesses");
    442       Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
    443         << BaseType << BaseExpr->getSourceRange();
    444       return ExprError();
    445     }
    446   }
    447 
    448   assert(BaseType->isDependentType() ||
    449          NameInfo.getName().isDependentName() ||
    450          isDependentScopeSpecifier(SS));
    451 
    452   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
    453   // must have pointer type, and the accessed type is the pointee.
    454   return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
    455                                                    IsArrow, OpLoc,
    456                                                SS.getWithLocInContext(Context),
    457                                                    FirstQualifierInScope,
    458                                                    NameInfo, TemplateArgs));
    459 }
    460 
    461 /// We know that the given qualified member reference points only to
    462 /// declarations which do not belong to the static type of the base
    463 /// expression.  Diagnose the problem.
    464 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
    465                                              Expr *BaseExpr,
    466                                              QualType BaseType,
    467                                              const CXXScopeSpec &SS,
    468                                              NamedDecl *rep,
    469                                        const DeclarationNameInfo &nameInfo) {
    470   // If this is an implicit member access, use a different set of
    471   // diagnostics.
    472   if (!BaseExpr)
    473     return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
    474 
    475   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
    476     << SS.getRange() << rep << BaseType;
    477 }
    478 
    479 // Check whether the declarations we found through a nested-name
    480 // specifier in a member expression are actually members of the base
    481 // type.  The restriction here is:
    482 //
    483 //   C++ [expr.ref]p2:
    484 //     ... In these cases, the id-expression shall name a
    485 //     member of the class or of one of its base classes.
    486 //
    487 // So it's perfectly legitimate for the nested-name specifier to name
    488 // an unrelated class, and for us to find an overload set including
    489 // decls from classes which are not superclasses, as long as the decl
    490 // we actually pick through overload resolution is from a superclass.
    491 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
    492                                          QualType BaseType,
    493                                          const CXXScopeSpec &SS,
    494                                          const LookupResult &R) {
    495   const RecordType *BaseRT = BaseType->getAs<RecordType>();
    496   if (!BaseRT) {
    497     // We can't check this yet because the base type is still
    498     // dependent.
    499     assert(BaseType->isDependentType());
    500     return false;
    501   }
    502   CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
    503 
    504   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    505     // If this is an implicit member reference and we find a
    506     // non-instance member, it's not an error.
    507     if (!BaseExpr && !(*I)->isCXXInstanceMember())
    508       return false;
    509 
    510     // Note that we use the DC of the decl, not the underlying decl.
    511     DeclContext *DC = (*I)->getDeclContext();
    512     while (DC->isTransparentContext())
    513       DC = DC->getParent();
    514 
    515     if (!DC->isRecord())
    516       continue;
    517 
    518     llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
    519     MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
    520 
    521     if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
    522       return false;
    523   }
    524 
    525   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
    526                                    R.getRepresentativeDecl(),
    527                                    R.getLookupNameInfo());
    528   return true;
    529 }
    530 
    531 static bool
    532 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
    533                          SourceRange BaseRange, const RecordType *RTy,
    534                          SourceLocation OpLoc, CXXScopeSpec &SS,
    535                          bool HasTemplateArgs) {
    536   RecordDecl *RDecl = RTy->getDecl();
    537   if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
    538                               SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
    539                                     << BaseRange))
    540     return true;
    541 
    542   if (HasTemplateArgs) {
    543     // LookupTemplateName doesn't expect these both to exist simultaneously.
    544     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
    545 
    546     bool MOUS;
    547     SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
    548     return false;
    549   }
    550 
    551   DeclContext *DC = RDecl;
    552   if (SS.isSet()) {
    553     // If the member name was a qualified-id, look into the
    554     // nested-name-specifier.
    555     DC = SemaRef.computeDeclContext(SS, false);
    556 
    557     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
    558       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
    559         << SS.getRange() << DC;
    560       return true;
    561     }
    562 
    563     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
    564 
    565     if (!isa<TypeDecl>(DC)) {
    566       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
    567         << DC << SS.getRange();
    568       return true;
    569     }
    570   }
    571 
    572   // The record definition is complete, now look up the member.
    573   SemaRef.LookupQualifiedName(R, DC);
    574 
    575   if (!R.empty())
    576     return false;
    577 
    578   // We didn't find anything with the given name, so try to correct
    579   // for typos.
    580   DeclarationName Name = R.getLookupName();
    581   TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
    582                                                  R.getLookupKind(), NULL,
    583                                                  &SS, DC, false,
    584                                                  Sema::CTC_MemberLookup);
    585   NamedDecl *ND = Corrected.getCorrectionDecl();
    586   R.clear();
    587   if (ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))) {
    588     std::string CorrectedStr(
    589         Corrected.getAsString(SemaRef.getLangOptions()));
    590     std::string CorrectedQuotedStr(
    591         Corrected.getQuoted(SemaRef.getLangOptions()));
    592     R.setLookupName(Corrected.getCorrection());
    593     R.addDecl(ND);
    594     SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
    595       << Name << DC << CorrectedQuotedStr << SS.getRange()
    596       << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
    597     SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
    598       << ND->getDeclName();
    599   }
    600 
    601   return false;
    602 }
    603 
    604 ExprResult
    605 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
    606                                SourceLocation OpLoc, bool IsArrow,
    607                                CXXScopeSpec &SS,
    608                                NamedDecl *FirstQualifierInScope,
    609                                const DeclarationNameInfo &NameInfo,
    610                                const TemplateArgumentListInfo *TemplateArgs) {
    611   if (BaseType->isDependentType() ||
    612       (SS.isSet() && isDependentScopeSpecifier(SS)))
    613     return ActOnDependentMemberExpr(Base, BaseType,
    614                                     IsArrow, OpLoc,
    615                                     SS, FirstQualifierInScope,
    616                                     NameInfo, TemplateArgs);
    617 
    618   LookupResult R(*this, NameInfo, LookupMemberName);
    619 
    620   // Implicit member accesses.
    621   if (!Base) {
    622     QualType RecordTy = BaseType;
    623     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
    624     if (LookupMemberExprInRecord(*this, R, SourceRange(),
    625                                  RecordTy->getAs<RecordType>(),
    626                                  OpLoc, SS, TemplateArgs != 0))
    627       return ExprError();
    628 
    629   // Explicit member accesses.
    630   } else {
    631     ExprResult BaseResult = Owned(Base);
    632     ExprResult Result =
    633       LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
    634                        SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
    635 
    636     if (BaseResult.isInvalid())
    637       return ExprError();
    638     Base = BaseResult.take();
    639 
    640     if (Result.isInvalid()) {
    641       Owned(Base);
    642       return ExprError();
    643     }
    644 
    645     if (Result.get())
    646       return move(Result);
    647 
    648     // LookupMemberExpr can modify Base, and thus change BaseType
    649     BaseType = Base->getType();
    650   }
    651 
    652   return BuildMemberReferenceExpr(Base, BaseType,
    653                                   OpLoc, IsArrow, SS, FirstQualifierInScope,
    654                                   R, TemplateArgs);
    655 }
    656 
    657 static ExprResult
    658 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
    659                         const CXXScopeSpec &SS, FieldDecl *Field,
    660                         DeclAccessPair FoundDecl,
    661                         const DeclarationNameInfo &MemberNameInfo);
    662 
    663 ExprResult
    664 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
    665                                                SourceLocation loc,
    666                                                IndirectFieldDecl *indirectField,
    667                                                Expr *baseObjectExpr,
    668                                                SourceLocation opLoc) {
    669   // First, build the expression that refers to the base object.
    670 
    671   bool baseObjectIsPointer = false;
    672   Qualifiers baseQuals;
    673 
    674   // Case 1:  the base of the indirect field is not a field.
    675   VarDecl *baseVariable = indirectField->getVarDecl();
    676   CXXScopeSpec EmptySS;
    677   if (baseVariable) {
    678     assert(baseVariable->getType()->isRecordType());
    679 
    680     // In principle we could have a member access expression that
    681     // accesses an anonymous struct/union that's a static member of
    682     // the base object's class.  However, under the current standard,
    683     // static data members cannot be anonymous structs or unions.
    684     // Supporting this is as easy as building a MemberExpr here.
    685     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
    686 
    687     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
    688 
    689     ExprResult result
    690       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
    691     if (result.isInvalid()) return ExprError();
    692 
    693     baseObjectExpr = result.take();
    694     baseObjectIsPointer = false;
    695     baseQuals = baseObjectExpr->getType().getQualifiers();
    696 
    697     // Case 2: the base of the indirect field is a field and the user
    698     // wrote a member expression.
    699   } else if (baseObjectExpr) {
    700     // The caller provided the base object expression. Determine
    701     // whether its a pointer and whether it adds any qualifiers to the
    702     // anonymous struct/union fields we're looking into.
    703     QualType objectType = baseObjectExpr->getType();
    704 
    705     if (const PointerType *ptr = objectType->getAs<PointerType>()) {
    706       baseObjectIsPointer = true;
    707       objectType = ptr->getPointeeType();
    708     } else {
    709       baseObjectIsPointer = false;
    710     }
    711     baseQuals = objectType.getQualifiers();
    712 
    713     // Case 3: the base of the indirect field is a field and we should
    714     // build an implicit member access.
    715   } else {
    716     // We've found a member of an anonymous struct/union that is
    717     // inside a non-anonymous struct/union, so in a well-formed
    718     // program our base object expression is "this".
    719     QualType ThisTy = getCurrentThisType();
    720     if (ThisTy.isNull()) {
    721       Diag(loc, diag::err_invalid_member_use_in_static_method)
    722         << indirectField->getDeclName();
    723       return ExprError();
    724     }
    725 
    726     // Our base object expression is "this".
    727     baseObjectExpr
    728       = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
    729     baseObjectIsPointer = true;
    730     baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
    731   }
    732 
    733   // Build the implicit member references to the field of the
    734   // anonymous struct/union.
    735   Expr *result = baseObjectExpr;
    736   IndirectFieldDecl::chain_iterator
    737   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
    738 
    739   // Build the first member access in the chain with full information.
    740   if (!baseVariable) {
    741     FieldDecl *field = cast<FieldDecl>(*FI);
    742 
    743     // FIXME: use the real found-decl info!
    744     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
    745 
    746     // Make a nameInfo that properly uses the anonymous name.
    747     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    748 
    749     result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
    750                                      EmptySS, field, foundDecl,
    751                                      memberNameInfo).take();
    752     baseObjectIsPointer = false;
    753 
    754     // FIXME: check qualified member access
    755   }
    756 
    757   // In all cases, we should now skip the first declaration in the chain.
    758   ++FI;
    759 
    760   while (FI != FEnd) {
    761     FieldDecl *field = cast<FieldDecl>(*FI++);
    762 
    763     // FIXME: these are somewhat meaningless
    764     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    765     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
    766 
    767     result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
    768                                      (FI == FEnd? SS : EmptySS), field,
    769                                      foundDecl, memberNameInfo).take();
    770   }
    771 
    772   return Owned(result);
    773 }
    774 
    775 /// \brief Build a MemberExpr AST node.
    776 static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
    777                                    const CXXScopeSpec &SS, ValueDecl *Member,
    778                                    DeclAccessPair FoundDecl,
    779                                    const DeclarationNameInfo &MemberNameInfo,
    780                                    QualType Ty,
    781                                    ExprValueKind VK, ExprObjectKind OK,
    782                                    const TemplateArgumentListInfo *TemplateArgs = 0) {
    783   return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
    784                             Member, FoundDecl, MemberNameInfo,
    785                             TemplateArgs, Ty, VK, OK);
    786 }
    787 
    788 ExprResult
    789 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
    790                                SourceLocation OpLoc, bool IsArrow,
    791                                const CXXScopeSpec &SS,
    792                                NamedDecl *FirstQualifierInScope,
    793                                LookupResult &R,
    794                          const TemplateArgumentListInfo *TemplateArgs,
    795                                bool SuppressQualifierCheck) {
    796   QualType BaseType = BaseExprType;
    797   if (IsArrow) {
    798     assert(BaseType->isPointerType());
    799     BaseType = BaseType->getAs<PointerType>()->getPointeeType();
    800   }
    801   R.setBaseObjectType(BaseType);
    802 
    803   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
    804   DeclarationName MemberName = MemberNameInfo.getName();
    805   SourceLocation MemberLoc = MemberNameInfo.getLoc();
    806 
    807   if (R.isAmbiguous())
    808     return ExprError();
    809 
    810   if (R.empty()) {
    811     // Rederive where we looked up.
    812     DeclContext *DC = (SS.isSet()
    813                        ? computeDeclContext(SS, false)
    814                        : BaseType->getAs<RecordType>()->getDecl());
    815 
    816     Diag(R.getNameLoc(), diag::err_no_member)
    817       << MemberName << DC
    818       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
    819     return ExprError();
    820   }
    821 
    822   // Diagnose lookups that find only declarations from a non-base
    823   // type.  This is possible for either qualified lookups (which may
    824   // have been qualified with an unrelated type) or implicit member
    825   // expressions (which were found with unqualified lookup and thus
    826   // may have come from an enclosing scope).  Note that it's okay for
    827   // lookup to find declarations from a non-base type as long as those
    828   // aren't the ones picked by overload resolution.
    829   if ((SS.isSet() || !BaseExpr ||
    830        (isa<CXXThisExpr>(BaseExpr) &&
    831         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
    832       !SuppressQualifierCheck &&
    833       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
    834     return ExprError();
    835 
    836   // Perform a property load on the base regardless of whether we
    837   // actually need it for the declaration.
    838   if (BaseExpr && BaseExpr->getObjectKind() == OK_ObjCProperty) {
    839     ExprResult Result = ConvertPropertyForRValue(BaseExpr);
    840     if (Result.isInvalid())
    841       return ExprError();
    842     BaseExpr = Result.take();
    843   }
    844 
    845   // Construct an unresolved result if we in fact got an unresolved
    846   // result.
    847   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
    848     // Suppress any lookup-related diagnostics; we'll do these when we
    849     // pick a member.
    850     R.suppressDiagnostics();
    851 
    852     UnresolvedMemberExpr *MemExpr
    853       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
    854                                      BaseExpr, BaseExprType,
    855                                      IsArrow, OpLoc,
    856                                      SS.getWithLocInContext(Context),
    857                                      MemberNameInfo,
    858                                      TemplateArgs, R.begin(), R.end());
    859 
    860     return Owned(MemExpr);
    861   }
    862 
    863   assert(R.isSingleResult());
    864   DeclAccessPair FoundDecl = R.begin().getPair();
    865   NamedDecl *MemberDecl = R.getFoundDecl();
    866 
    867   // FIXME: diagnose the presence of template arguments now.
    868 
    869   // If the decl being referenced had an error, return an error for this
    870   // sub-expr without emitting another error, in order to avoid cascading
    871   // error cases.
    872   if (MemberDecl->isInvalidDecl())
    873     return ExprError();
    874 
    875   // Handle the implicit-member-access case.
    876   if (!BaseExpr) {
    877     // If this is not an instance member, convert to a non-member access.
    878     if (!MemberDecl->isCXXInstanceMember())
    879       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
    880 
    881     SourceLocation Loc = R.getNameLoc();
    882     if (SS.getRange().isValid())
    883       Loc = SS.getRange().getBegin();
    884     BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
    885   }
    886 
    887   bool ShouldCheckUse = true;
    888   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    889     // Don't diagnose the use of a virtual member function unless it's
    890     // explicitly qualified.
    891     if (MD->isVirtual() && !SS.isSet())
    892       ShouldCheckUse = false;
    893   }
    894 
    895   // Check the use of this member.
    896   if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
    897     Owned(BaseExpr);
    898     return ExprError();
    899   }
    900 
    901   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
    902     return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
    903                                    SS, FD, FoundDecl, MemberNameInfo);
    904 
    905   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
    906     // We may have found a field within an anonymous union or struct
    907     // (C++ [class.union]).
    908     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
    909                                                     BaseExpr, OpLoc);
    910 
    911   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
    912     MarkDeclarationReferenced(MemberLoc, Var);
    913     return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
    914                                  Var, FoundDecl, MemberNameInfo,
    915                                  Var->getType().getNonReferenceType(),
    916                                  VK_LValue, OK_Ordinary));
    917   }
    918 
    919   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    920     ExprValueKind valueKind;
    921     QualType type;
    922     if (MemberFn->isInstance()) {
    923       valueKind = VK_RValue;
    924       type = Context.BoundMemberTy;
    925     } else {
    926       valueKind = VK_LValue;
    927       type = MemberFn->getType();
    928     }
    929 
    930     MarkDeclarationReferenced(MemberLoc, MemberDecl);
    931     return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
    932                                  MemberFn, FoundDecl, MemberNameInfo,
    933                                  type, valueKind, OK_Ordinary));
    934   }
    935   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
    936 
    937   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
    938     MarkDeclarationReferenced(MemberLoc, MemberDecl);
    939     return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
    940                                  Enum, FoundDecl, MemberNameInfo,
    941                                  Enum->getType(), VK_RValue, OK_Ordinary));
    942   }
    943 
    944   Owned(BaseExpr);
    945 
    946   // We found something that we didn't expect. Complain.
    947   if (isa<TypeDecl>(MemberDecl))
    948     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
    949       << MemberName << BaseType << int(IsArrow);
    950   else
    951     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
    952       << MemberName << BaseType << int(IsArrow);
    953 
    954   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
    955     << MemberName;
    956   R.suppressDiagnostics();
    957   return ExprError();
    958 }
    959 
    960 /// Given that normal member access failed on the given expression,
    961 /// and given that the expression's type involves builtin-id or
    962 /// builtin-Class, decide whether substituting in the redefinition
    963 /// types would be profitable.  The redefinition type is whatever
    964 /// this translation unit tried to typedef to id/Class;  we store
    965 /// it to the side and then re-use it in places like this.
    966 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
    967   const ObjCObjectPointerType *opty
    968     = base.get()->getType()->getAs<ObjCObjectPointerType>();
    969   if (!opty) return false;
    970 
    971   const ObjCObjectType *ty = opty->getObjectType();
    972 
    973   QualType redef;
    974   if (ty->isObjCId()) {
    975     redef = S.Context.getObjCIdRedefinitionType();
    976   } else if (ty->isObjCClass()) {
    977     redef = S.Context.getObjCClassRedefinitionType();
    978   } else {
    979     return false;
    980   }
    981 
    982   // Do the substitution as long as the redefinition type isn't just a
    983   // possibly-qualified pointer to builtin-id or builtin-Class again.
    984   opty = redef->getAs<ObjCObjectPointerType>();
    985   if (opty && !opty->getObjectType()->getInterface() != 0)
    986     return false;
    987 
    988   base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
    989   return true;
    990 }
    991 
    992 static bool isRecordType(QualType T) {
    993   return T->isRecordType();
    994 }
    995 static bool isPointerToRecordType(QualType T) {
    996   if (const PointerType *PT = T->getAs<PointerType>())
    997     return PT->getPointeeType()->isRecordType();
    998   return false;
    999 }
   1000 
   1001 /// Look up the given member of the given non-type-dependent
   1002 /// expression.  This can return in one of two ways:
   1003 ///  * If it returns a sentinel null-but-valid result, the caller will
   1004 ///    assume that lookup was performed and the results written into
   1005 ///    the provided structure.  It will take over from there.
   1006 ///  * Otherwise, the returned expression will be produced in place of
   1007 ///    an ordinary member expression.
   1008 ///
   1009 /// The ObjCImpDecl bit is a gross hack that will need to be properly
   1010 /// fixed for ObjC++.
   1011 ExprResult
   1012 Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
   1013                        bool &IsArrow, SourceLocation OpLoc,
   1014                        CXXScopeSpec &SS,
   1015                        Decl *ObjCImpDecl, bool HasTemplateArgs) {
   1016   assert(BaseExpr.get() && "no base expression");
   1017 
   1018   // Perform default conversions.
   1019   BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
   1020   if (BaseExpr.isInvalid())
   1021     return ExprError();
   1022 
   1023   if (IsArrow) {
   1024     BaseExpr = DefaultLvalueConversion(BaseExpr.take());
   1025     if (BaseExpr.isInvalid())
   1026       return ExprError();
   1027   }
   1028 
   1029   QualType BaseType = BaseExpr.get()->getType();
   1030   assert(!BaseType->isDependentType());
   1031 
   1032   DeclarationName MemberName = R.getLookupName();
   1033   SourceLocation MemberLoc = R.getNameLoc();
   1034 
   1035   // For later type-checking purposes, turn arrow accesses into dot
   1036   // accesses.  The only access type we support that doesn't follow
   1037   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
   1038   // and those never use arrows, so this is unaffected.
   1039   if (IsArrow) {
   1040     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   1041       BaseType = Ptr->getPointeeType();
   1042     else if (const ObjCObjectPointerType *Ptr
   1043                = BaseType->getAs<ObjCObjectPointerType>())
   1044       BaseType = Ptr->getPointeeType();
   1045     else if (BaseType->isRecordType()) {
   1046       // Recover from arrow accesses to records, e.g.:
   1047       //   struct MyRecord foo;
   1048       //   foo->bar
   1049       // This is actually well-formed in C++ if MyRecord has an
   1050       // overloaded operator->, but that should have been dealt with
   1051       // by now.
   1052       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   1053         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
   1054         << FixItHint::CreateReplacement(OpLoc, ".");
   1055       IsArrow = false;
   1056     } else if (BaseType == Context.BoundMemberTy) {
   1057       goto fail;
   1058     } else {
   1059       Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
   1060         << BaseType << BaseExpr.get()->getSourceRange();
   1061       return ExprError();
   1062     }
   1063   }
   1064 
   1065   // Handle field access to simple records.
   1066   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
   1067     if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
   1068                                  RTy, OpLoc, SS, HasTemplateArgs))
   1069       return ExprError();
   1070 
   1071     // Returning valid-but-null is how we indicate to the caller that
   1072     // the lookup result was filled in.
   1073     return Owned((Expr*) 0);
   1074   }
   1075 
   1076   // Handle ivar access to Objective-C objects.
   1077   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
   1078     if (!SS.isEmpty() && !SS.isInvalid()) {
   1079       Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
   1080         << 1 << SS.getScopeRep()
   1081         << FixItHint::CreateRemoval(SS.getRange());
   1082       SS.clear();
   1083     }
   1084 
   1085     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1086 
   1087     // There are three cases for the base type:
   1088     //   - builtin id (qualified or unqualified)
   1089     //   - builtin Class (qualified or unqualified)
   1090     //   - an interface
   1091     ObjCInterfaceDecl *IDecl = OTy->getInterface();
   1092     if (!IDecl) {
   1093       if (getLangOptions().ObjCAutoRefCount &&
   1094           (OTy->isObjCId() || OTy->isObjCClass()))
   1095         goto fail;
   1096       // There's an implicit 'isa' ivar on all objects.
   1097       // But we only actually find it this way on objects of type 'id',
   1098       // apparently.
   1099       if (OTy->isObjCId() && Member->isStr("isa"))
   1100         return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
   1101                                                Context.getObjCClassType()));
   1102 
   1103       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1104         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1105                                 ObjCImpDecl, HasTemplateArgs);
   1106       goto fail;
   1107     }
   1108 
   1109     ObjCInterfaceDecl *ClassDeclared;
   1110     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
   1111 
   1112     if (!IV) {
   1113       // Attempt to correct for typos in ivar names.
   1114       LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
   1115                        LookupMemberName);
   1116       TypoCorrection Corrected = CorrectTypo(
   1117           R.getLookupNameInfo(), LookupMemberName, NULL, NULL, IDecl, false,
   1118           IsArrow ? CTC_ObjCIvarLookup : CTC_ObjCPropertyLookup);
   1119       if ((IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>())) {
   1120         Diag(R.getNameLoc(),
   1121              diag::err_typecheck_member_reference_ivar_suggest)
   1122           << IDecl->getDeclName() << MemberName << IV->getDeclName()
   1123           << FixItHint::CreateReplacement(R.getNameLoc(),
   1124                                           IV->getNameAsString());
   1125         Diag(IV->getLocation(), diag::note_previous_decl)
   1126           << IV->getDeclName();
   1127       } else {
   1128         if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
   1129           Diag(MemberLoc,
   1130           diag::err_property_found_suggest)
   1131           << Member << BaseExpr.get()->getType()
   1132           << FixItHint::CreateReplacement(OpLoc, ".");
   1133           return ExprError();
   1134         }
   1135         Res.clear();
   1136         Res.setLookupName(Member);
   1137 
   1138         Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
   1139           << IDecl->getDeclName() << MemberName
   1140           << BaseExpr.get()->getSourceRange();
   1141         return ExprError();
   1142       }
   1143     }
   1144 
   1145     // If the decl being referenced had an error, return an error for this
   1146     // sub-expr without emitting another error, in order to avoid cascading
   1147     // error cases.
   1148     if (IV->isInvalidDecl())
   1149       return ExprError();
   1150 
   1151     // Check whether we can reference this field.
   1152     if (DiagnoseUseOfDecl(IV, MemberLoc))
   1153       return ExprError();
   1154     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
   1155         IV->getAccessControl() != ObjCIvarDecl::Package) {
   1156       ObjCInterfaceDecl *ClassOfMethodDecl = 0;
   1157       if (ObjCMethodDecl *MD = getCurMethodDecl())
   1158         ClassOfMethodDecl =  MD->getClassInterface();
   1159       else if (ObjCImpDecl && getCurFunctionDecl()) {
   1160         // Case of a c-function declared inside an objc implementation.
   1161         // FIXME: For a c-style function nested inside an objc implementation
   1162         // class, there is no implementation context available, so we pass
   1163         // down the context as argument to this routine. Ideally, this context
   1164         // need be passed down in the AST node and somehow calculated from the
   1165         // AST for a function decl.
   1166         if (ObjCImplementationDecl *IMPD =
   1167               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
   1168           ClassOfMethodDecl = IMPD->getClassInterface();
   1169         else if (ObjCCategoryImplDecl* CatImplClass =
   1170                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
   1171           ClassOfMethodDecl = CatImplClass->getClassInterface();
   1172       }
   1173 
   1174       if (IV->getAccessControl() == ObjCIvarDecl::Private) {
   1175         if (ClassDeclared != IDecl ||
   1176             ClassOfMethodDecl != ClassDeclared)
   1177           Diag(MemberLoc, diag::error_private_ivar_access)
   1178             << IV->getDeclName();
   1179       } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
   1180         // @protected
   1181         Diag(MemberLoc, diag::error_protected_ivar_access)
   1182           << IV->getDeclName();
   1183     }
   1184     if (getLangOptions().ObjCAutoRefCount) {
   1185       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
   1186       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
   1187         if (UO->getOpcode() == UO_Deref)
   1188           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
   1189 
   1190       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
   1191         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
   1192           Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
   1193     }
   1194 
   1195     return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
   1196                                                MemberLoc, BaseExpr.take(),
   1197                                                IsArrow));
   1198   }
   1199 
   1200   // Objective-C property access.
   1201   const ObjCObjectPointerType *OPT;
   1202   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
   1203     if (!SS.isEmpty() && !SS.isInvalid()) {
   1204       Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
   1205         << 0 << SS.getScopeRep()
   1206         << FixItHint::CreateRemoval(SS.getRange());
   1207       SS.clear();
   1208     }
   1209 
   1210     // This actually uses the base as an r-value.
   1211     BaseExpr = DefaultLvalueConversion(BaseExpr.take());
   1212     if (BaseExpr.isInvalid())
   1213       return ExprError();
   1214 
   1215     assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
   1216 
   1217     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1218 
   1219     const ObjCObjectType *OT = OPT->getObjectType();
   1220 
   1221     // id, with and without qualifiers.
   1222     if (OT->isObjCId()) {
   1223       // Check protocols on qualified interfaces.
   1224       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
   1225       if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
   1226         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
   1227           // Check the use of this declaration
   1228           if (DiagnoseUseOfDecl(PD, MemberLoc))
   1229             return ExprError();
   1230 
   1231           QualType T = PD->getType();
   1232           if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
   1233             T = getMessageSendResultType(BaseType, Getter, false, false);
   1234 
   1235           return Owned(new (Context) ObjCPropertyRefExpr(PD, T,
   1236                                                          VK_LValue,
   1237                                                          OK_ObjCProperty,
   1238                                                          MemberLoc,
   1239                                                          BaseExpr.take()));
   1240         }
   1241 
   1242         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
   1243           // Check the use of this method.
   1244           if (DiagnoseUseOfDecl(OMD, MemberLoc))
   1245             return ExprError();
   1246           Selector SetterSel =
   1247             SelectorTable::constructSetterName(PP.getIdentifierTable(),
   1248                                                PP.getSelectorTable(), Member);
   1249           ObjCMethodDecl *SMD = 0;
   1250           if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
   1251                                                      SetterSel, Context))
   1252             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
   1253           QualType PType = getMessageSendResultType(BaseType, OMD, false,
   1254                                                     false);
   1255 
   1256           ExprValueKind VK = VK_LValue;
   1257           if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
   1258             VK = VK_RValue;
   1259           ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
   1260 
   1261           return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
   1262                                                          VK, OK,
   1263                                                          MemberLoc, BaseExpr.take()));
   1264         }
   1265       }
   1266       // Use of id.member can only be for a property reference. Do not
   1267       // use the 'id' redefinition in this case.
   1268       if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1269         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1270                                 ObjCImpDecl, HasTemplateArgs);
   1271 
   1272       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
   1273                          << MemberName << BaseType);
   1274     }
   1275 
   1276     // 'Class', unqualified only.
   1277     if (OT->isObjCClass()) {
   1278       // Only works in a method declaration (??!).
   1279       ObjCMethodDecl *MD = getCurMethodDecl();
   1280       if (!MD) {
   1281         if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1282           return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1283                                   ObjCImpDecl, HasTemplateArgs);
   1284 
   1285         goto fail;
   1286       }
   1287 
   1288       // Also must look for a getter name which uses property syntax.
   1289       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
   1290       ObjCInterfaceDecl *IFace = MD->getClassInterface();
   1291       ObjCMethodDecl *Getter;
   1292       if ((Getter = IFace->lookupClassMethod(Sel))) {
   1293         // Check the use of this method.
   1294         if (DiagnoseUseOfDecl(Getter, MemberLoc))
   1295           return ExprError();
   1296       } else
   1297         Getter = IFace->lookupPrivateMethod(Sel, false);
   1298       // If we found a getter then this may be a valid dot-reference, we
   1299       // will look for the matching setter, in case it is needed.
   1300       Selector SetterSel =
   1301         SelectorTable::constructSetterName(PP.getIdentifierTable(),
   1302                                            PP.getSelectorTable(), Member);
   1303       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
   1304       if (!Setter) {
   1305         // If this reference is in an @implementation, also check for 'private'
   1306         // methods.
   1307         Setter = IFace->lookupPrivateMethod(SetterSel, false);
   1308       }
   1309       // Look through local category implementations associated with the class.
   1310       if (!Setter)
   1311         Setter = IFace->getCategoryClassMethod(SetterSel);
   1312 
   1313       if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
   1314         return ExprError();
   1315 
   1316       if (Getter || Setter) {
   1317         QualType PType;
   1318 
   1319         ExprValueKind VK = VK_LValue;
   1320         if (Getter) {
   1321           PType = getMessageSendResultType(QualType(OT, 0), Getter, true,
   1322                                            false);
   1323           if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
   1324             VK = VK_RValue;
   1325         } else {
   1326           // Get the expression type from Setter's incoming parameter.
   1327           PType = (*(Setter->param_end() -1))->getType();
   1328         }
   1329         ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
   1330 
   1331         // FIXME: we must check that the setter has property type.
   1332         return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
   1333                                                        PType, VK, OK,
   1334                                                        MemberLoc, BaseExpr.take()));
   1335       }
   1336 
   1337       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1338         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1339                                 ObjCImpDecl, HasTemplateArgs);
   1340 
   1341       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
   1342                          << MemberName << BaseType);
   1343     }
   1344 
   1345     // Normal property access.
   1346     return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
   1347                                      MemberName, MemberLoc,
   1348                                      SourceLocation(), QualType(), false);
   1349   }
   1350 
   1351   // Handle 'field access' to vectors, such as 'V.xx'.
   1352   if (BaseType->isExtVectorType()) {
   1353     // FIXME: this expr should store IsArrow.
   1354     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1355     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
   1356     QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
   1357                                            Member, MemberLoc);
   1358     if (ret.isNull())
   1359       return ExprError();
   1360 
   1361     return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
   1362                                                     *Member, MemberLoc));
   1363   }
   1364 
   1365   // Adjust builtin-sel to the appropriate redefinition type if that's
   1366   // not just a pointer to builtin-sel again.
   1367   if (IsArrow &&
   1368       BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
   1369       !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
   1370     BaseExpr = ImpCastExprToType(BaseExpr.take(),
   1371                                  Context.getObjCSelRedefinitionType(),
   1372                                  CK_BitCast);
   1373     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1374                             ObjCImpDecl, HasTemplateArgs);
   1375   }
   1376 
   1377   // Failure cases.
   1378  fail:
   1379 
   1380   // Recover from dot accesses to pointers, e.g.:
   1381   //   type *foo;
   1382   //   foo.bar
   1383   // This is actually well-formed in two cases:
   1384   //   - 'type' is an Objective C type
   1385   //   - 'bar' is a pseudo-destructor name which happens to refer to
   1386   //     the appropriate pointer type
   1387   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
   1388     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
   1389         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
   1390       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   1391         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
   1392           << FixItHint::CreateReplacement(OpLoc, "->");
   1393 
   1394       // Recurse as an -> access.
   1395       IsArrow = true;
   1396       return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1397                               ObjCImpDecl, HasTemplateArgs);
   1398     }
   1399   }
   1400 
   1401   // If the user is trying to apply -> or . to a function name, it's probably
   1402   // because they forgot parentheses to call that function.
   1403   if (tryToRecoverWithCall(BaseExpr,
   1404                            PDiag(diag::err_member_reference_needs_call),
   1405                            /*complain*/ false,
   1406                            IsArrow ? &isRecordType : &isPointerToRecordType)) {
   1407     if (BaseExpr.isInvalid())
   1408       return ExprError();
   1409     BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
   1410     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1411                             ObjCImpDecl, HasTemplateArgs);
   1412   }
   1413 
   1414   Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
   1415     << BaseType << BaseExpr.get()->getSourceRange();
   1416 
   1417   return ExprError();
   1418 }
   1419 
   1420 /// The main callback when the parser finds something like
   1421 ///   expression . [nested-name-specifier] identifier
   1422 ///   expression -> [nested-name-specifier] identifier
   1423 /// where 'identifier' encompasses a fairly broad spectrum of
   1424 /// possibilities, including destructor and operator references.
   1425 ///
   1426 /// \param OpKind either tok::arrow or tok::period
   1427 /// \param HasTrailingLParen whether the next token is '(', which
   1428 ///   is used to diagnose mis-uses of special members that can
   1429 ///   only be called
   1430 /// \param ObjCImpDecl the current ObjC @implementation decl;
   1431 ///   this is an ugly hack around the fact that ObjC @implementations
   1432 ///   aren't properly put in the context chain
   1433 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
   1434                                        SourceLocation OpLoc,
   1435                                        tok::TokenKind OpKind,
   1436                                        CXXScopeSpec &SS,
   1437                                        UnqualifiedId &Id,
   1438                                        Decl *ObjCImpDecl,
   1439                                        bool HasTrailingLParen) {
   1440   if (SS.isSet() && SS.isInvalid())
   1441     return ExprError();
   1442 
   1443   // Warn about the explicit constructor calls Microsoft extension.
   1444   if (getLangOptions().MicrosoftExt &&
   1445       Id.getKind() == UnqualifiedId::IK_ConstructorName)
   1446     Diag(Id.getSourceRange().getBegin(),
   1447          diag::ext_ms_explicit_constructor_call);
   1448 
   1449   TemplateArgumentListInfo TemplateArgsBuffer;
   1450 
   1451   // Decompose the name into its component parts.
   1452   DeclarationNameInfo NameInfo;
   1453   const TemplateArgumentListInfo *TemplateArgs;
   1454   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
   1455                          NameInfo, TemplateArgs);
   1456 
   1457   DeclarationName Name = NameInfo.getName();
   1458   bool IsArrow = (OpKind == tok::arrow);
   1459 
   1460   NamedDecl *FirstQualifierInScope
   1461     = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
   1462                        static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
   1463 
   1464   // This is a postfix expression, so get rid of ParenListExprs.
   1465   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   1466   if (Result.isInvalid()) return ExprError();
   1467   Base = Result.take();
   1468 
   1469   if (Base->getType()->isDependentType() || Name.isDependentName() ||
   1470       isDependentScopeSpecifier(SS)) {
   1471     Result = ActOnDependentMemberExpr(Base, Base->getType(),
   1472                                       IsArrow, OpLoc,
   1473                                       SS, FirstQualifierInScope,
   1474                                       NameInfo, TemplateArgs);
   1475   } else {
   1476     LookupResult R(*this, NameInfo, LookupMemberName);
   1477     ExprResult BaseResult = Owned(Base);
   1478     Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
   1479                               SS, ObjCImpDecl, TemplateArgs != 0);
   1480     if (BaseResult.isInvalid())
   1481       return ExprError();
   1482     Base = BaseResult.take();
   1483 
   1484     if (Result.isInvalid()) {
   1485       Owned(Base);
   1486       return ExprError();
   1487     }
   1488 
   1489     if (Result.get()) {
   1490       // The only way a reference to a destructor can be used is to
   1491       // immediately call it, which falls into this case.  If the
   1492       // next token is not a '(', produce a diagnostic and build the
   1493       // call now.
   1494       if (!HasTrailingLParen &&
   1495           Id.getKind() == UnqualifiedId::IK_DestructorName)
   1496         return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
   1497 
   1498       return move(Result);
   1499     }
   1500 
   1501     Result = BuildMemberReferenceExpr(Base, Base->getType(),
   1502                                       OpLoc, IsArrow, SS, FirstQualifierInScope,
   1503                                       R, TemplateArgs);
   1504   }
   1505 
   1506   return move(Result);
   1507 }
   1508 
   1509 static ExprResult
   1510 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
   1511                         const CXXScopeSpec &SS, FieldDecl *Field,
   1512                         DeclAccessPair FoundDecl,
   1513                         const DeclarationNameInfo &MemberNameInfo) {
   1514   // x.a is an l-value if 'a' has a reference type. Otherwise:
   1515   // x.a is an l-value/x-value/pr-value if the base is (and note
   1516   //   that *x is always an l-value), except that if the base isn't
   1517   //   an ordinary object then we must have an rvalue.
   1518   ExprValueKind VK = VK_LValue;
   1519   ExprObjectKind OK = OK_Ordinary;
   1520   if (!IsArrow) {
   1521     if (BaseExpr->getObjectKind() == OK_Ordinary)
   1522       VK = BaseExpr->getValueKind();
   1523     else
   1524       VK = VK_RValue;
   1525   }
   1526   if (VK != VK_RValue && Field->isBitField())
   1527     OK = OK_BitField;
   1528 
   1529   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
   1530   QualType MemberType = Field->getType();
   1531   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
   1532     MemberType = Ref->getPointeeType();
   1533     VK = VK_LValue;
   1534   } else {
   1535     QualType BaseType = BaseExpr->getType();
   1536     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
   1537 
   1538     Qualifiers BaseQuals = BaseType.getQualifiers();
   1539 
   1540     // GC attributes are never picked up by members.
   1541     BaseQuals.removeObjCGCAttr();
   1542 
   1543     // CVR attributes from the base are picked up by members,
   1544     // except that 'mutable' members don't pick up 'const'.
   1545     if (Field->isMutable()) BaseQuals.removeConst();
   1546 
   1547     Qualifiers MemberQuals
   1548     = S.Context.getCanonicalType(MemberType).getQualifiers();
   1549 
   1550     // TR 18037 does not allow fields to be declared with address spaces.
   1551     assert(!MemberQuals.hasAddressSpace());
   1552 
   1553     Qualifiers Combined = BaseQuals + MemberQuals;
   1554     if (Combined != MemberQuals)
   1555       MemberType = S.Context.getQualifiedType(MemberType, Combined);
   1556   }
   1557 
   1558   S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
   1559   ExprResult Base =
   1560   S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
   1561                                   FoundDecl, Field);
   1562   if (Base.isInvalid())
   1563     return ExprError();
   1564   return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS,
   1565                                  Field, FoundDecl, MemberNameInfo,
   1566                                  MemberType, VK, OK));
   1567 }
   1568 
   1569 /// Builds an implicit member access expression.  The current context
   1570 /// is known to be an instance method, and the given unqualified lookup
   1571 /// set is known to contain only instance members, at least one of which
   1572 /// is from an appropriate type.
   1573 ExprResult
   1574 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
   1575                               LookupResult &R,
   1576                               const TemplateArgumentListInfo *TemplateArgs,
   1577                               bool IsKnownInstance) {
   1578   assert(!R.empty() && !R.isAmbiguous());
   1579 
   1580   SourceLocation loc = R.getNameLoc();
   1581 
   1582   // We may have found a field within an anonymous union or struct
   1583   // (C++ [class.union]).
   1584   // FIXME: template-ids inside anonymous structs?
   1585   if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
   1586     return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
   1587 
   1588   // If this is known to be an instance access, go ahead and build an
   1589   // implicit 'this' expression now.
   1590   // 'this' expression now.
   1591   QualType ThisTy = getCurrentThisType();
   1592   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
   1593 
   1594   Expr *baseExpr = 0; // null signifies implicit access
   1595   if (IsKnownInstance) {
   1596     SourceLocation Loc = R.getNameLoc();
   1597     if (SS.getRange().isValid())
   1598       Loc = SS.getRange().getBegin();
   1599     baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
   1600   }
   1601 
   1602   return BuildMemberReferenceExpr(baseExpr, ThisTy,
   1603                                   /*OpLoc*/ SourceLocation(),
   1604                                   /*IsArrow*/ true,
   1605                                   SS,
   1606                                   /*FirstQualifierInScope*/ 0,
   1607                                   R, TemplateArgs);
   1608 }
   1609