Home | History | Annotate | Download | only in Core
      1 // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     16 
     17 using namespace clang;
     18 using namespace ento;
     19 
     20 namespace {
     21 class SimpleSValBuilder : public SValBuilder {
     22 protected:
     23   virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy);
     24   virtual SVal evalCastFromLoc(Loc val, QualType castTy);
     25 
     26 public:
     27   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
     28                     ProgramStateManager &stateMgr)
     29                     : SValBuilder(alloc, context, stateMgr) {}
     30   virtual ~SimpleSValBuilder() {}
     31 
     32   virtual SVal evalMinus(NonLoc val);
     33   virtual SVal evalComplement(NonLoc val);
     34   virtual SVal evalBinOpNN(const ProgramState *state, BinaryOperator::Opcode op,
     35                            NonLoc lhs, NonLoc rhs, QualType resultTy);
     36   virtual SVal evalBinOpLL(const ProgramState *state, BinaryOperator::Opcode op,
     37                            Loc lhs, Loc rhs, QualType resultTy);
     38   virtual SVal evalBinOpLN(const ProgramState *state, BinaryOperator::Opcode op,
     39                            Loc lhs, NonLoc rhs, QualType resultTy);
     40 
     41   /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
     42   ///  (integer) value, that value is returned. Otherwise, returns NULL.
     43   virtual const llvm::APSInt *getKnownValue(const ProgramState *state, SVal V);
     44 
     45   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
     46                      const llvm::APSInt &RHS, QualType resultTy);
     47 };
     48 } // end anonymous namespace
     49 
     50 SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
     51                                            ASTContext &context,
     52                                            ProgramStateManager &stateMgr) {
     53   return new SimpleSValBuilder(alloc, context, stateMgr);
     54 }
     55 
     56 //===----------------------------------------------------------------------===//
     57 // Transfer function for Casts.
     58 //===----------------------------------------------------------------------===//
     59 
     60 SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
     61 
     62   bool isLocType = Loc::isLocType(castTy);
     63 
     64   if (nonloc::LocAsInteger *LI = dyn_cast<nonloc::LocAsInteger>(&val)) {
     65     if (isLocType)
     66       return LI->getLoc();
     67 
     68     // FIXME: Correctly support promotions/truncations.
     69     unsigned castSize = Context.getTypeSize(castTy);
     70     if (castSize == LI->getNumBits())
     71       return val;
     72     return makeLocAsInteger(LI->getLoc(), castSize);
     73   }
     74 
     75   if (const SymExpr *se = val.getAsSymbolicExpression()) {
     76     QualType T = Context.getCanonicalType(se->getType(Context));
     77     if (T == Context.getCanonicalType(castTy))
     78       return val;
     79 
     80     // FIXME: Remove this hack when we support symbolic truncation/extension.
     81     // HACK: If both castTy and T are integers, ignore the cast.  This is
     82     // not a permanent solution.  Eventually we want to precisely handle
     83     // extension/truncation of symbolic integers.  This prevents us from losing
     84     // precision when we assign 'x = y' and 'y' is symbolic and x and y are
     85     // different integer types.
     86     if (T->isIntegerType() && castTy->isIntegerType())
     87       return val;
     88 
     89     return UnknownVal();
     90   }
     91 
     92   if (!isa<nonloc::ConcreteInt>(val))
     93     return UnknownVal();
     94 
     95   // Only handle casts from integers to integers.
     96   if (!isLocType && !castTy->isIntegerType())
     97     return UnknownVal();
     98 
     99   llvm::APSInt i = cast<nonloc::ConcreteInt>(val).getValue();
    100   i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
    101                   Loc::isLocType(castTy));
    102   i = i.extOrTrunc(Context.getTypeSize(castTy));
    103 
    104   if (isLocType)
    105     return makeIntLocVal(i);
    106   else
    107     return makeIntVal(i);
    108 }
    109 
    110 SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
    111 
    112   // Casts from pointers -> pointers, just return the lval.
    113   //
    114   // Casts from pointers -> references, just return the lval.  These
    115   //   can be introduced by the frontend for corner cases, e.g
    116   //   casting from va_list* to __builtin_va_list&.
    117   //
    118   if (Loc::isLocType(castTy) || castTy->isReferenceType())
    119     return val;
    120 
    121   // FIXME: Handle transparent unions where a value can be "transparently"
    122   //  lifted into a union type.
    123   if (castTy->isUnionType())
    124     return UnknownVal();
    125 
    126   if (castTy->isIntegerType()) {
    127     unsigned BitWidth = Context.getTypeSize(castTy);
    128 
    129     if (!isa<loc::ConcreteInt>(val))
    130       return makeLocAsInteger(val, BitWidth);
    131 
    132     llvm::APSInt i = cast<loc::ConcreteInt>(val).getValue();
    133     i.setIsUnsigned(castTy->isUnsignedIntegerOrEnumerationType() ||
    134                     Loc::isLocType(castTy));
    135     i = i.extOrTrunc(BitWidth);
    136     return makeIntVal(i);
    137   }
    138 
    139   // All other cases: return 'UnknownVal'.  This includes casting pointers
    140   // to floats, which is probably badness it itself, but this is a good
    141   // intermediate solution until we do something better.
    142   return UnknownVal();
    143 }
    144 
    145 //===----------------------------------------------------------------------===//
    146 // Transfer function for unary operators.
    147 //===----------------------------------------------------------------------===//
    148 
    149 SVal SimpleSValBuilder::evalMinus(NonLoc val) {
    150   switch (val.getSubKind()) {
    151   case nonloc::ConcreteIntKind:
    152     return cast<nonloc::ConcreteInt>(val).evalMinus(*this);
    153   default:
    154     return UnknownVal();
    155   }
    156 }
    157 
    158 SVal SimpleSValBuilder::evalComplement(NonLoc X) {
    159   switch (X.getSubKind()) {
    160   case nonloc::ConcreteIntKind:
    161     return cast<nonloc::ConcreteInt>(X).evalComplement(*this);
    162   default:
    163     return UnknownVal();
    164   }
    165 }
    166 
    167 //===----------------------------------------------------------------------===//
    168 // Transfer function for binary operators.
    169 //===----------------------------------------------------------------------===//
    170 
    171 static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
    172   switch (op) {
    173   default:
    174     llvm_unreachable("Invalid opcode.");
    175   case BO_LT: return BO_GE;
    176   case BO_GT: return BO_LE;
    177   case BO_LE: return BO_GT;
    178   case BO_GE: return BO_LT;
    179   case BO_EQ: return BO_NE;
    180   case BO_NE: return BO_EQ;
    181   }
    182 }
    183 
    184 static BinaryOperator::Opcode ReverseComparison(BinaryOperator::Opcode op) {
    185   switch (op) {
    186   default:
    187     llvm_unreachable("Invalid opcode.");
    188   case BO_LT: return BO_GT;
    189   case BO_GT: return BO_LT;
    190   case BO_LE: return BO_GE;
    191   case BO_GE: return BO_LE;
    192   case BO_EQ:
    193   case BO_NE:
    194     return op;
    195   }
    196 }
    197 
    198 SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
    199                                     BinaryOperator::Opcode op,
    200                                     const llvm::APSInt &RHS,
    201                                     QualType resultTy) {
    202   bool isIdempotent = false;
    203 
    204   // Check for a few special cases with known reductions first.
    205   switch (op) {
    206   default:
    207     // We can't reduce this case; just treat it normally.
    208     break;
    209   case BO_Mul:
    210     // a*0 and a*1
    211     if (RHS == 0)
    212       return makeIntVal(0, resultTy);
    213     else if (RHS == 1)
    214       isIdempotent = true;
    215     break;
    216   case BO_Div:
    217     // a/0 and a/1
    218     if (RHS == 0)
    219       // This is also handled elsewhere.
    220       return UndefinedVal();
    221     else if (RHS == 1)
    222       isIdempotent = true;
    223     break;
    224   case BO_Rem:
    225     // a%0 and a%1
    226     if (RHS == 0)
    227       // This is also handled elsewhere.
    228       return UndefinedVal();
    229     else if (RHS == 1)
    230       return makeIntVal(0, resultTy);
    231     break;
    232   case BO_Add:
    233   case BO_Sub:
    234   case BO_Shl:
    235   case BO_Shr:
    236   case BO_Xor:
    237     // a+0, a-0, a<<0, a>>0, a^0
    238     if (RHS == 0)
    239       isIdempotent = true;
    240     break;
    241   case BO_And:
    242     // a&0 and a&(~0)
    243     if (RHS == 0)
    244       return makeIntVal(0, resultTy);
    245     else if (RHS.isAllOnesValue())
    246       isIdempotent = true;
    247     break;
    248   case BO_Or:
    249     // a|0 and a|(~0)
    250     if (RHS == 0)
    251       isIdempotent = true;
    252     else if (RHS.isAllOnesValue()) {
    253       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
    254       return nonloc::ConcreteInt(Result);
    255     }
    256     break;
    257   }
    258 
    259   // Idempotent ops (like a*1) can still change the type of an expression.
    260   // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
    261   // dirty work.
    262   if (isIdempotent) {
    263     if (SymbolRef LHSSym = dyn_cast<SymbolData>(LHS))
    264       return evalCastFromNonLoc(nonloc::SymbolVal(LHSSym), resultTy);
    265     return evalCastFromNonLoc(nonloc::SymExprVal(LHS), resultTy);
    266   }
    267 
    268   // If we reach this point, the expression cannot be simplified.
    269   // Make a SymExprVal for the entire thing.
    270   return makeNonLoc(LHS, op, RHS, resultTy);
    271 }
    272 
    273 SVal SimpleSValBuilder::evalBinOpNN(const ProgramState *state,
    274                                   BinaryOperator::Opcode op,
    275                                   NonLoc lhs, NonLoc rhs,
    276                                   QualType resultTy)  {
    277   // Handle trivial case where left-side and right-side are the same.
    278   if (lhs == rhs)
    279     switch (op) {
    280       default:
    281         break;
    282       case BO_EQ:
    283       case BO_LE:
    284       case BO_GE:
    285         return makeTruthVal(true, resultTy);
    286       case BO_LT:
    287       case BO_GT:
    288       case BO_NE:
    289         return makeTruthVal(false, resultTy);
    290       case BO_Xor:
    291       case BO_Sub:
    292         return makeIntVal(0, resultTy);
    293       case BO_Or:
    294       case BO_And:
    295         return evalCastFromNonLoc(lhs, resultTy);
    296     }
    297 
    298   while (1) {
    299     switch (lhs.getSubKind()) {
    300     default:
    301       return UnknownVal();
    302     case nonloc::LocAsIntegerKind: {
    303       Loc lhsL = cast<nonloc::LocAsInteger>(lhs).getLoc();
    304       switch (rhs.getSubKind()) {
    305         case nonloc::LocAsIntegerKind:
    306           return evalBinOpLL(state, op, lhsL,
    307                              cast<nonloc::LocAsInteger>(rhs).getLoc(),
    308                              resultTy);
    309         case nonloc::ConcreteIntKind: {
    310           // Transform the integer into a location and compare.
    311           llvm::APSInt i = cast<nonloc::ConcreteInt>(rhs).getValue();
    312           i.setIsUnsigned(true);
    313           i = i.extOrTrunc(Context.getTypeSize(Context.VoidPtrTy));
    314           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
    315         }
    316         default:
    317           switch (op) {
    318             case BO_EQ:
    319               return makeTruthVal(false, resultTy);
    320             case BO_NE:
    321               return makeTruthVal(true, resultTy);
    322             default:
    323               // This case also handles pointer arithmetic.
    324               return UnknownVal();
    325           }
    326       }
    327     }
    328     case nonloc::SymExprValKind: {
    329       nonloc::SymExprVal *selhs = cast<nonloc::SymExprVal>(&lhs);
    330 
    331       // Only handle LHS of the form "$sym op constant", at least for now.
    332       const SymIntExpr *symIntExpr =
    333         dyn_cast<SymIntExpr>(selhs->getSymbolicExpression());
    334 
    335       if (!symIntExpr)
    336         return UnknownVal();
    337 
    338       // Is this a logical not? (!x is represented as x == 0.)
    339       if (op == BO_EQ && rhs.isZeroConstant()) {
    340         // We know how to negate certain expressions. Simplify them here.
    341 
    342         BinaryOperator::Opcode opc = symIntExpr->getOpcode();
    343         switch (opc) {
    344         default:
    345           // We don't know how to negate this operation.
    346           // Just handle it as if it were a normal comparison to 0.
    347           break;
    348         case BO_LAnd:
    349         case BO_LOr:
    350           llvm_unreachable("Logical operators handled by branching logic.");
    351         case BO_Assign:
    352         case BO_MulAssign:
    353         case BO_DivAssign:
    354         case BO_RemAssign:
    355         case BO_AddAssign:
    356         case BO_SubAssign:
    357         case BO_ShlAssign:
    358         case BO_ShrAssign:
    359         case BO_AndAssign:
    360         case BO_XorAssign:
    361         case BO_OrAssign:
    362         case BO_Comma:
    363           llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
    364         case BO_PtrMemD:
    365         case BO_PtrMemI:
    366           llvm_unreachable("Pointer arithmetic not handled here.");
    367         case BO_LT:
    368         case BO_GT:
    369         case BO_LE:
    370         case BO_GE:
    371         case BO_EQ:
    372         case BO_NE:
    373           // Negate the comparison and make a value.
    374           opc = NegateComparison(opc);
    375           assert(symIntExpr->getType(Context) == resultTy);
    376           return makeNonLoc(symIntExpr->getLHS(), opc,
    377                                    symIntExpr->getRHS(), resultTy);
    378         }
    379       }
    380 
    381       // For now, only handle expressions whose RHS is a constant.
    382       const nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs);
    383       if (!rhsInt)
    384         return UnknownVal();
    385 
    386       // If both the LHS and the current expression are additive,
    387       // fold their constants.
    388       if (BinaryOperator::isAdditiveOp(op)) {
    389         BinaryOperator::Opcode lop = symIntExpr->getOpcode();
    390         if (BinaryOperator::isAdditiveOp(lop)) {
    391           // resultTy may not be the best type to convert to, but it's
    392           // probably the best choice in expressions with mixed type
    393           // (such as x+1U+2LL). The rules for implicit conversions should
    394           // choose a reasonable type to preserve the expression, and will
    395           // at least match how the value is going to be used.
    396           const llvm::APSInt &first =
    397             BasicVals.Convert(resultTy, symIntExpr->getRHS());
    398           const llvm::APSInt &second =
    399             BasicVals.Convert(resultTy, rhsInt->getValue());
    400           const llvm::APSInt *newRHS;
    401           if (lop == op)
    402             newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
    403           else
    404             newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
    405           return MakeSymIntVal(symIntExpr->getLHS(), lop, *newRHS, resultTy);
    406         }
    407       }
    408 
    409       // Otherwise, make a SymExprVal out of the expression.
    410       return MakeSymIntVal(symIntExpr, op, rhsInt->getValue(), resultTy);
    411     }
    412     case nonloc::ConcreteIntKind: {
    413       const nonloc::ConcreteInt& lhsInt = cast<nonloc::ConcreteInt>(lhs);
    414 
    415       // Is the RHS a symbol we can simplify?
    416       // FIXME: This was mostly copy/pasted from the LHS-is-a-symbol case.
    417       if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
    418         SymbolRef RSym = srhs->getSymbol();
    419         if (RSym->getType(Context)->isIntegerType()) {
    420           if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
    421             // The symbol evaluates to a constant.
    422             const llvm::APSInt *rhs_I;
    423             if (BinaryOperator::isRelationalOp(op))
    424               rhs_I = &BasicVals.Convert(lhsInt.getValue(), *Constant);
    425             else
    426               rhs_I = &BasicVals.Convert(resultTy, *Constant);
    427 
    428             rhs = nonloc::ConcreteInt(*rhs_I);
    429           }
    430         }
    431       }
    432 
    433       if (isa<nonloc::ConcreteInt>(rhs)) {
    434         return lhsInt.evalBinOp(*this, op, cast<nonloc::ConcreteInt>(rhs));
    435       } else {
    436         const llvm::APSInt& lhsValue = lhsInt.getValue();
    437 
    438         // Swap the left and right sides and flip the operator if doing so
    439         // allows us to better reason about the expression (this is a form
    440         // of expression canonicalization).
    441         // While we're at it, catch some special cases for non-commutative ops.
    442         NonLoc tmp = rhs;
    443         rhs = lhs;
    444         lhs = tmp;
    445 
    446         switch (op) {
    447           case BO_LT:
    448           case BO_GT:
    449           case BO_LE:
    450           case BO_GE:
    451             op = ReverseComparison(op);
    452             continue;
    453           case BO_EQ:
    454           case BO_NE:
    455           case BO_Add:
    456           case BO_Mul:
    457           case BO_And:
    458           case BO_Xor:
    459           case BO_Or:
    460             continue;
    461           case BO_Shr:
    462             if (lhsValue.isAllOnesValue() && lhsValue.isSigned())
    463               // At this point lhs and rhs have been swapped.
    464               return rhs;
    465             // FALL-THROUGH
    466           case BO_Shl:
    467             if (lhsValue == 0)
    468               // At this point lhs and rhs have been swapped.
    469               return rhs;
    470             return UnknownVal();
    471           default:
    472             return UnknownVal();
    473         }
    474       }
    475     }
    476     case nonloc::SymbolValKind: {
    477       nonloc::SymbolVal *slhs = cast<nonloc::SymbolVal>(&lhs);
    478       SymbolRef Sym = slhs->getSymbol();
    479       QualType lhsType = Sym->getType(Context);
    480 
    481       // The conversion type is usually the result type, but not in the case
    482       // of relational expressions.
    483       QualType conversionType = resultTy;
    484       if (BinaryOperator::isRelationalOp(op))
    485         conversionType = lhsType;
    486 
    487       // Does the symbol simplify to a constant?  If so, "fold" the constant
    488       // by setting 'lhs' to a ConcreteInt and try again.
    489       if (lhsType->isIntegerType())
    490         if (const llvm::APSInt *Constant = state->getSymVal(Sym)) {
    491           // The symbol evaluates to a constant. If necessary, promote the
    492           // folded constant (LHS) to the result type.
    493           const llvm::APSInt &lhs_I = BasicVals.Convert(conversionType,
    494                                                         *Constant);
    495           lhs = nonloc::ConcreteInt(lhs_I);
    496 
    497           // Also promote the RHS (if necessary).
    498 
    499           // For shifts, it is not necessary to promote the RHS.
    500           if (BinaryOperator::isShiftOp(op))
    501             continue;
    502 
    503           // Other operators: do an implicit conversion.  This shouldn't be
    504           // necessary once we support truncation/extension of symbolic values.
    505           if (nonloc::ConcreteInt *rhs_I = dyn_cast<nonloc::ConcreteInt>(&rhs)){
    506             rhs = nonloc::ConcreteInt(BasicVals.Convert(conversionType,
    507                                                         rhs_I->getValue()));
    508           }
    509 
    510           continue;
    511         }
    512 
    513       // Is the RHS a symbol we can simplify?
    514       if (const nonloc::SymbolVal *srhs = dyn_cast<nonloc::SymbolVal>(&rhs)) {
    515         SymbolRef RSym = srhs->getSymbol();
    516         if (RSym->getType(Context)->isIntegerType()) {
    517           if (const llvm::APSInt *Constant = state->getSymVal(RSym)) {
    518             // The symbol evaluates to a constant.
    519             const llvm::APSInt &rhs_I = BasicVals.Convert(conversionType,
    520                                                           *Constant);
    521             rhs = nonloc::ConcreteInt(rhs_I);
    522           }
    523         }
    524       }
    525 
    526       if (isa<nonloc::ConcreteInt>(rhs)) {
    527         return MakeSymIntVal(slhs->getSymbol(), op,
    528                              cast<nonloc::ConcreteInt>(rhs).getValue(),
    529                              resultTy);
    530       }
    531 
    532       return UnknownVal();
    533     }
    534     }
    535   }
    536 }
    537 
    538 // FIXME: all this logic will change if/when we have MemRegion::getLocation().
    539 SVal SimpleSValBuilder::evalBinOpLL(const ProgramState *state,
    540                                   BinaryOperator::Opcode op,
    541                                   Loc lhs, Loc rhs,
    542                                   QualType resultTy) {
    543   // Only comparisons and subtractions are valid operations on two pointers.
    544   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
    545   // However, if a pointer is casted to an integer, evalBinOpNN may end up
    546   // calling this function with another operation (PR7527). We don't attempt to
    547   // model this for now, but it could be useful, particularly when the
    548   // "location" is actually an integer value that's been passed through a void*.
    549   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
    550     return UnknownVal();
    551 
    552   // Special cases for when both sides are identical.
    553   if (lhs == rhs) {
    554     switch (op) {
    555     default:
    556       llvm_unreachable("Unimplemented operation for two identical values");
    557     case BO_Sub:
    558       return makeZeroVal(resultTy);
    559     case BO_EQ:
    560     case BO_LE:
    561     case BO_GE:
    562       return makeTruthVal(true, resultTy);
    563     case BO_NE:
    564     case BO_LT:
    565     case BO_GT:
    566       return makeTruthVal(false, resultTy);
    567     }
    568   }
    569 
    570   switch (lhs.getSubKind()) {
    571   default:
    572     llvm_unreachable("Ordering not implemented for this Loc.");
    573 
    574   case loc::GotoLabelKind:
    575     // The only thing we know about labels is that they're non-null.
    576     if (rhs.isZeroConstant()) {
    577       switch (op) {
    578       default:
    579         break;
    580       case BO_Sub:
    581         return evalCastFromLoc(lhs, resultTy);
    582       case BO_EQ:
    583       case BO_LE:
    584       case BO_LT:
    585         return makeTruthVal(false, resultTy);
    586       case BO_NE:
    587       case BO_GT:
    588       case BO_GE:
    589         return makeTruthVal(true, resultTy);
    590       }
    591     }
    592     // There may be two labels for the same location, and a function region may
    593     // have the same address as a label at the start of the function (depending
    594     // on the ABI).
    595     // FIXME: we can probably do a comparison against other MemRegions, though.
    596     // FIXME: is there a way to tell if two labels refer to the same location?
    597     return UnknownVal();
    598 
    599   case loc::ConcreteIntKind: {
    600     // If one of the operands is a symbol and the other is a constant,
    601     // build an expression for use by the constraint manager.
    602     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
    603       // We can only build expressions with symbols on the left,
    604       // so we need a reversible operator.
    605       if (!BinaryOperator::isComparisonOp(op))
    606         return UnknownVal();
    607 
    608       const llvm::APSInt &lVal = cast<loc::ConcreteInt>(lhs).getValue();
    609       return makeNonLoc(rSym, ReverseComparison(op), lVal, resultTy);
    610     }
    611 
    612     // If both operands are constants, just perform the operation.
    613     if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
    614       SVal ResultVal = cast<loc::ConcreteInt>(lhs).evalBinOp(BasicVals, op,
    615                                                              *rInt);
    616       if (Loc *Result = dyn_cast<Loc>(&ResultVal))
    617         return evalCastFromLoc(*Result, resultTy);
    618       else
    619         return UnknownVal();
    620     }
    621 
    622     // Special case comparisons against NULL.
    623     // This must come after the test if the RHS is a symbol, which is used to
    624     // build constraints. The address of any non-symbolic region is guaranteed
    625     // to be non-NULL, as is any label.
    626     assert(isa<loc::MemRegionVal>(rhs) || isa<loc::GotoLabel>(rhs));
    627     if (lhs.isZeroConstant()) {
    628       switch (op) {
    629       default:
    630         break;
    631       case BO_EQ:
    632       case BO_GT:
    633       case BO_GE:
    634         return makeTruthVal(false, resultTy);
    635       case BO_NE:
    636       case BO_LT:
    637       case BO_LE:
    638         return makeTruthVal(true, resultTy);
    639       }
    640     }
    641 
    642     // Comparing an arbitrary integer to a region or label address is
    643     // completely unknowable.
    644     return UnknownVal();
    645   }
    646   case loc::MemRegionKind: {
    647     if (loc::ConcreteInt *rInt = dyn_cast<loc::ConcreteInt>(&rhs)) {
    648       // If one of the operands is a symbol and the other is a constant,
    649       // build an expression for use by the constraint manager.
    650       if (SymbolRef lSym = lhs.getAsLocSymbol())
    651         return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
    652 
    653       // Special case comparisons to NULL.
    654       // This must come after the test if the LHS is a symbol, which is used to
    655       // build constraints. The address of any non-symbolic region is guaranteed
    656       // to be non-NULL.
    657       if (rInt->isZeroConstant()) {
    658         switch (op) {
    659         default:
    660           break;
    661         case BO_Sub:
    662           return evalCastFromLoc(lhs, resultTy);
    663         case BO_EQ:
    664         case BO_LT:
    665         case BO_LE:
    666           return makeTruthVal(false, resultTy);
    667         case BO_NE:
    668         case BO_GT:
    669         case BO_GE:
    670           return makeTruthVal(true, resultTy);
    671         }
    672       }
    673 
    674       // Comparing a region to an arbitrary integer is completely unknowable.
    675       return UnknownVal();
    676     }
    677 
    678     // Get both values as regions, if possible.
    679     const MemRegion *LeftMR = lhs.getAsRegion();
    680     assert(LeftMR && "MemRegionKind SVal doesn't have a region!");
    681 
    682     const MemRegion *RightMR = rhs.getAsRegion();
    683     if (!RightMR)
    684       // The RHS is probably a label, which in theory could address a region.
    685       // FIXME: we can probably make a more useful statement about non-code
    686       // regions, though.
    687       return UnknownVal();
    688 
    689     // If both values wrap regions, see if they're from different base regions.
    690     const MemRegion *LeftBase = LeftMR->getBaseRegion();
    691     const MemRegion *RightBase = RightMR->getBaseRegion();
    692     if (LeftBase != RightBase &&
    693         !isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) {
    694       switch (op) {
    695       default:
    696         return UnknownVal();
    697       case BO_EQ:
    698         return makeTruthVal(false, resultTy);
    699       case BO_NE:
    700         return makeTruthVal(true, resultTy);
    701       }
    702     }
    703 
    704     // The two regions are from the same base region. See if they're both a
    705     // type of region we know how to compare.
    706 
    707     // FIXME: If/when there is a getAsRawOffset() for FieldRegions, this
    708     // ElementRegion path and the FieldRegion path below should be unified.
    709     if (const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR)) {
    710       // First see if the right region is also an ElementRegion.
    711       const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
    712       if (!RightER)
    713         return UnknownVal();
    714 
    715       // Next, see if the two ERs have the same super-region and matching types.
    716       // FIXME: This should do something useful even if the types don't match,
    717       // though if both indexes are constant the RegionRawOffset path will
    718       // give the correct answer.
    719       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
    720           LeftER->getElementType() == RightER->getElementType()) {
    721         // Get the left index and cast it to the correct type.
    722         // If the index is unknown or undefined, bail out here.
    723         SVal LeftIndexVal = LeftER->getIndex();
    724         NonLoc *LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
    725         if (!LeftIndex)
    726           return UnknownVal();
    727         LeftIndexVal = evalCastFromNonLoc(*LeftIndex, resultTy);
    728         LeftIndex = dyn_cast<NonLoc>(&LeftIndexVal);
    729         if (!LeftIndex)
    730           return UnknownVal();
    731 
    732         // Do the same for the right index.
    733         SVal RightIndexVal = RightER->getIndex();
    734         NonLoc *RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
    735         if (!RightIndex)
    736           return UnknownVal();
    737         RightIndexVal = evalCastFromNonLoc(*RightIndex, resultTy);
    738         RightIndex = dyn_cast<NonLoc>(&RightIndexVal);
    739         if (!RightIndex)
    740           return UnknownVal();
    741 
    742         // Actually perform the operation.
    743         // evalBinOpNN expects the two indexes to already be the right type.
    744         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
    745       }
    746 
    747       // If the element indexes aren't comparable, see if the raw offsets are.
    748       RegionRawOffset LeftOffset = LeftER->getAsArrayOffset();
    749       RegionRawOffset RightOffset = RightER->getAsArrayOffset();
    750 
    751       if (LeftOffset.getRegion() != NULL &&
    752           LeftOffset.getRegion() == RightOffset.getRegion()) {
    753         CharUnits left = LeftOffset.getOffset();
    754         CharUnits right = RightOffset.getOffset();
    755 
    756         switch (op) {
    757         default:
    758           return UnknownVal();
    759         case BO_LT:
    760           return makeTruthVal(left < right, resultTy);
    761         case BO_GT:
    762           return makeTruthVal(left > right, resultTy);
    763         case BO_LE:
    764           return makeTruthVal(left <= right, resultTy);
    765         case BO_GE:
    766           return makeTruthVal(left >= right, resultTy);
    767         case BO_EQ:
    768           return makeTruthVal(left == right, resultTy);
    769         case BO_NE:
    770           return makeTruthVal(left != right, resultTy);
    771         }
    772       }
    773 
    774       // If we get here, we have no way of comparing the ElementRegions.
    775       return UnknownVal();
    776     }
    777 
    778     // See if both regions are fields of the same structure.
    779     // FIXME: This doesn't handle nesting, inheritance, or Objective-C ivars.
    780     if (const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR)) {
    781       // Only comparisons are meaningful here!
    782       if (!BinaryOperator::isComparisonOp(op))
    783         return UnknownVal();
    784 
    785       // First see if the right region is also a FieldRegion.
    786       const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
    787       if (!RightFR)
    788         return UnknownVal();
    789 
    790       // Next, see if the two FRs have the same super-region.
    791       // FIXME: This doesn't handle casts yet, and simply stripping the casts
    792       // doesn't help.
    793       if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
    794         return UnknownVal();
    795 
    796       const FieldDecl *LeftFD = LeftFR->getDecl();
    797       const FieldDecl *RightFD = RightFR->getDecl();
    798       const RecordDecl *RD = LeftFD->getParent();
    799 
    800       // Make sure the two FRs are from the same kind of record. Just in case!
    801       // FIXME: This is probably where inheritance would be a problem.
    802       if (RD != RightFD->getParent())
    803         return UnknownVal();
    804 
    805       // We know for sure that the two fields are not the same, since that
    806       // would have given us the same SVal.
    807       if (op == BO_EQ)
    808         return makeTruthVal(false, resultTy);
    809       if (op == BO_NE)
    810         return makeTruthVal(true, resultTy);
    811 
    812       // Iterate through the fields and see which one comes first.
    813       // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
    814       // members and the units in which bit-fields reside have addresses that
    815       // increase in the order in which they are declared."
    816       bool leftFirst = (op == BO_LT || op == BO_LE);
    817       for (RecordDecl::field_iterator I = RD->field_begin(),
    818            E = RD->field_end(); I!=E; ++I) {
    819         if (*I == LeftFD)
    820           return makeTruthVal(leftFirst, resultTy);
    821         if (*I == RightFD)
    822           return makeTruthVal(!leftFirst, resultTy);
    823       }
    824 
    825       llvm_unreachable("Fields not found in parent record's definition");
    826     }
    827 
    828     // If we get here, we have no way of comparing the regions.
    829     return UnknownVal();
    830   }
    831   }
    832 }
    833 
    834 SVal SimpleSValBuilder::evalBinOpLN(const ProgramState *state,
    835                                   BinaryOperator::Opcode op,
    836                                   Loc lhs, NonLoc rhs, QualType resultTy) {
    837 
    838   // Special case: rhs is a zero constant.
    839   if (rhs.isZeroConstant())
    840     return lhs;
    841 
    842   // Special case: 'rhs' is an integer that has the same width as a pointer and
    843   // we are using the integer location in a comparison.  Normally this cannot be
    844   // triggered, but transfer functions like those for OSCommpareAndSwapBarrier32
    845   // can generate comparisons that trigger this code.
    846   // FIXME: Are all locations guaranteed to have pointer width?
    847   if (BinaryOperator::isComparisonOp(op)) {
    848     if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
    849       const llvm::APSInt *x = &rhsInt->getValue();
    850       ASTContext &ctx = Context;
    851       if (ctx.getTypeSize(ctx.VoidPtrTy) == x->getBitWidth()) {
    852         // Convert the signedness of the integer (if necessary).
    853         if (x->isSigned())
    854           x = &getBasicValueFactory().getValue(*x, true);
    855 
    856         return evalBinOpLL(state, op, lhs, loc::ConcreteInt(*x), resultTy);
    857       }
    858     }
    859   }
    860 
    861   // We are dealing with pointer arithmetic.
    862 
    863   // Handle pointer arithmetic on constant values.
    864   if (nonloc::ConcreteInt *rhsInt = dyn_cast<nonloc::ConcreteInt>(&rhs)) {
    865     if (loc::ConcreteInt *lhsInt = dyn_cast<loc::ConcreteInt>(&lhs)) {
    866       const llvm::APSInt &leftI = lhsInt->getValue();
    867       assert(leftI.isUnsigned());
    868       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
    869 
    870       // Convert the bitwidth of rightI.  This should deal with overflow
    871       // since we are dealing with concrete values.
    872       rightI = rightI.extOrTrunc(leftI.getBitWidth());
    873 
    874       // Offset the increment by the pointer size.
    875       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
    876       rightI *= Multiplicand;
    877 
    878       // Compute the adjusted pointer.
    879       switch (op) {
    880         case BO_Add:
    881           rightI = leftI + rightI;
    882           break;
    883         case BO_Sub:
    884           rightI = leftI - rightI;
    885           break;
    886         default:
    887           llvm_unreachable("Invalid pointer arithmetic operation");
    888       }
    889       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
    890     }
    891   }
    892 
    893   // Handle cases where 'lhs' is a region.
    894   if (const MemRegion *region = lhs.getAsRegion()) {
    895     rhs = cast<NonLoc>(convertToArrayIndex(rhs));
    896     SVal index = UnknownVal();
    897     const MemRegion *superR = 0;
    898     QualType elementType;
    899 
    900     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
    901       assert(op == BO_Add || op == BO_Sub);
    902       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
    903                           getArrayIndexType());
    904       superR = elemReg->getSuperRegion();
    905       elementType = elemReg->getElementType();
    906     }
    907     else if (isa<SubRegion>(region)) {
    908       superR = region;
    909       index = rhs;
    910       if (const PointerType *PT = resultTy->getAs<PointerType>()) {
    911         elementType = PT->getPointeeType();
    912       }
    913       else {
    914         const ObjCObjectPointerType *OT =
    915           resultTy->getAs<ObjCObjectPointerType>();
    916         elementType = OT->getPointeeType();
    917       }
    918     }
    919 
    920     if (NonLoc *indexV = dyn_cast<NonLoc>(&index)) {
    921       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
    922                                                        superR, getContext()));
    923     }
    924   }
    925   return UnknownVal();
    926 }
    927 
    928 const llvm::APSInt *SimpleSValBuilder::getKnownValue(const ProgramState *state,
    929                                                    SVal V) {
    930   if (V.isUnknownOrUndef())
    931     return NULL;
    932 
    933   if (loc::ConcreteInt* X = dyn_cast<loc::ConcreteInt>(&V))
    934     return &X->getValue();
    935 
    936   if (nonloc::ConcreteInt* X = dyn_cast<nonloc::ConcreteInt>(&V))
    937     return &X->getValue();
    938 
    939   if (SymbolRef Sym = V.getAsSymbol())
    940     return state->getSymVal(Sym);
    941 
    942   // FIXME: Add support for SymExprs.
    943   return NULL;
    944 }
    945