Home | History | Annotate | Download | only in VMCore
      1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Constant* classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Constants.h"
     15 #include "LLVMContextImpl.h"
     16 #include "ConstantFold.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/GlobalValue.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Module.h"
     21 #include "llvm/Operator.h"
     22 #include "llvm/ADT/FoldingSet.h"
     23 #include "llvm/ADT/StringExtras.h"
     24 #include "llvm/ADT/StringMap.h"
     25 #include "llvm/Support/Compiler.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Support/ManagedStatic.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Support/GetElementPtrTypeIterator.h"
     32 #include "llvm/ADT/DenseMap.h"
     33 #include "llvm/ADT/SmallVector.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include <algorithm>
     36 #include <cstdarg>
     37 using namespace llvm;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                              Constant Class
     41 //===----------------------------------------------------------------------===//
     42 
     43 bool Constant::isNegativeZeroValue() const {
     44   // Floating point values have an explicit -0.0 value.
     45   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     46     return CFP->isZero() && CFP->isNegative();
     47 
     48   // Otherwise, just use +0.0.
     49   return isNullValue();
     50 }
     51 
     52 bool Constant::isNullValue() const {
     53   // 0 is null.
     54   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     55     return CI->isZero();
     56 
     57   // +0.0 is null.
     58   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     59     return CFP->isZero() && !CFP->isNegative();
     60 
     61   // constant zero is zero for aggregates and cpnull is null for pointers.
     62   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
     63 }
     64 
     65 bool Constant::isAllOnesValue() const {
     66   // Check for -1 integers
     67   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
     68     return CI->isMinusOne();
     69 
     70   // Check for FP which are bitcasted from -1 integers
     71   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
     72     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
     73 
     74   // Check for constant vectors
     75   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
     76     return CV->isAllOnesValue();
     77 
     78   return false;
     79 }
     80 // Constructor to create a '0' constant of arbitrary type...
     81 Constant *Constant::getNullValue(Type *Ty) {
     82   switch (Ty->getTypeID()) {
     83   case Type::IntegerTyID:
     84     return ConstantInt::get(Ty, 0);
     85   case Type::FloatTyID:
     86     return ConstantFP::get(Ty->getContext(),
     87                            APFloat::getZero(APFloat::IEEEsingle));
     88   case Type::DoubleTyID:
     89     return ConstantFP::get(Ty->getContext(),
     90                            APFloat::getZero(APFloat::IEEEdouble));
     91   case Type::X86_FP80TyID:
     92     return ConstantFP::get(Ty->getContext(),
     93                            APFloat::getZero(APFloat::x87DoubleExtended));
     94   case Type::FP128TyID:
     95     return ConstantFP::get(Ty->getContext(),
     96                            APFloat::getZero(APFloat::IEEEquad));
     97   case Type::PPC_FP128TyID:
     98     return ConstantFP::get(Ty->getContext(),
     99                            APFloat(APInt::getNullValue(128)));
    100   case Type::PointerTyID:
    101     return ConstantPointerNull::get(cast<PointerType>(Ty));
    102   case Type::StructTyID:
    103   case Type::ArrayTyID:
    104   case Type::VectorTyID:
    105     return ConstantAggregateZero::get(Ty);
    106   default:
    107     // Function, Label, or Opaque type?
    108     assert(0 && "Cannot create a null constant of that type!");
    109     return 0;
    110   }
    111 }
    112 
    113 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
    114   Type *ScalarTy = Ty->getScalarType();
    115 
    116   // Create the base integer constant.
    117   Constant *C = ConstantInt::get(Ty->getContext(), V);
    118 
    119   // Convert an integer to a pointer, if necessary.
    120   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
    121     C = ConstantExpr::getIntToPtr(C, PTy);
    122 
    123   // Broadcast a scalar to a vector, if necessary.
    124   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    125     C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
    126 
    127   return C;
    128 }
    129 
    130 Constant *Constant::getAllOnesValue(Type *Ty) {
    131   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
    132     return ConstantInt::get(Ty->getContext(),
    133                             APInt::getAllOnesValue(ITy->getBitWidth()));
    134 
    135   if (Ty->isFloatingPointTy()) {
    136     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
    137                                           !Ty->isPPC_FP128Ty());
    138     return ConstantFP::get(Ty->getContext(), FL);
    139   }
    140 
    141   SmallVector<Constant*, 16> Elts;
    142   VectorType *VTy = cast<VectorType>(Ty);
    143   Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
    144   assert(Elts[0] && "Invalid AllOnes value!");
    145   return cast<ConstantVector>(ConstantVector::get(Elts));
    146 }
    147 
    148 void Constant::destroyConstantImpl() {
    149   // When a Constant is destroyed, there may be lingering
    150   // references to the constant by other constants in the constant pool.  These
    151   // constants are implicitly dependent on the module that is being deleted,
    152   // but they don't know that.  Because we only find out when the CPV is
    153   // deleted, we must now notify all of our users (that should only be
    154   // Constants) that they are, in fact, invalid now and should be deleted.
    155   //
    156   while (!use_empty()) {
    157     Value *V = use_back();
    158 #ifndef NDEBUG      // Only in -g mode...
    159     if (!isa<Constant>(V)) {
    160       dbgs() << "While deleting: " << *this
    161              << "\n\nUse still stuck around after Def is destroyed: "
    162              << *V << "\n\n";
    163     }
    164 #endif
    165     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
    166     Constant *CV = cast<Constant>(V);
    167     CV->destroyConstant();
    168 
    169     // The constant should remove itself from our use list...
    170     assert((use_empty() || use_back() != V) && "Constant not removed!");
    171   }
    172 
    173   // Value has no outstanding references it is safe to delete it now...
    174   delete this;
    175 }
    176 
    177 /// canTrap - Return true if evaluation of this constant could trap.  This is
    178 /// true for things like constant expressions that could divide by zero.
    179 bool Constant::canTrap() const {
    180   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
    181   // The only thing that could possibly trap are constant exprs.
    182   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
    183   if (!CE) return false;
    184 
    185   // ConstantExpr traps if any operands can trap.
    186   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    187     if (CE->getOperand(i)->canTrap())
    188       return true;
    189 
    190   // Otherwise, only specific operations can trap.
    191   switch (CE->getOpcode()) {
    192   default:
    193     return false;
    194   case Instruction::UDiv:
    195   case Instruction::SDiv:
    196   case Instruction::FDiv:
    197   case Instruction::URem:
    198   case Instruction::SRem:
    199   case Instruction::FRem:
    200     // Div and rem can trap if the RHS is not known to be non-zero.
    201     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
    202       return true;
    203     return false;
    204   }
    205 }
    206 
    207 /// isConstantUsed - Return true if the constant has users other than constant
    208 /// exprs and other dangling things.
    209 bool Constant::isConstantUsed() const {
    210   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
    211     const Constant *UC = dyn_cast<Constant>(*UI);
    212     if (UC == 0 || isa<GlobalValue>(UC))
    213       return true;
    214 
    215     if (UC->isConstantUsed())
    216       return true;
    217   }
    218   return false;
    219 }
    220 
    221 
    222 
    223 /// getRelocationInfo - This method classifies the entry according to
    224 /// whether or not it may generate a relocation entry.  This must be
    225 /// conservative, so if it might codegen to a relocatable entry, it should say
    226 /// so.  The return values are:
    227 ///
    228 ///  NoRelocation: This constant pool entry is guaranteed to never have a
    229 ///     relocation applied to it (because it holds a simple constant like
    230 ///     '4').
    231 ///  LocalRelocation: This entry has relocations, but the entries are
    232 ///     guaranteed to be resolvable by the static linker, so the dynamic
    233 ///     linker will never see them.
    234 ///  GlobalRelocations: This entry may have arbitrary relocations.
    235 ///
    236 /// FIXME: This really should not be in VMCore.
    237 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
    238   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
    239     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
    240       return LocalRelocation;  // Local to this file/library.
    241     return GlobalRelocations;    // Global reference.
    242   }
    243 
    244   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
    245     return BA->getFunction()->getRelocationInfo();
    246 
    247   // While raw uses of blockaddress need to be relocated, differences between
    248   // two of them don't when they are for labels in the same function.  This is a
    249   // common idiom when creating a table for the indirect goto extension, so we
    250   // handle it efficiently here.
    251   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
    252     if (CE->getOpcode() == Instruction::Sub) {
    253       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
    254       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
    255       if (LHS && RHS &&
    256           LHS->getOpcode() == Instruction::PtrToInt &&
    257           RHS->getOpcode() == Instruction::PtrToInt &&
    258           isa<BlockAddress>(LHS->getOperand(0)) &&
    259           isa<BlockAddress>(RHS->getOperand(0)) &&
    260           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
    261             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
    262         return NoRelocation;
    263     }
    264 
    265   PossibleRelocationsTy Result = NoRelocation;
    266   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
    267     Result = std::max(Result,
    268                       cast<Constant>(getOperand(i))->getRelocationInfo());
    269 
    270   return Result;
    271 }
    272 
    273 
    274 /// getVectorElements - This method, which is only valid on constant of vector
    275 /// type, returns the elements of the vector in the specified smallvector.
    276 /// This handles breaking down a vector undef into undef elements, etc.  For
    277 /// constant exprs and other cases we can't handle, we return an empty vector.
    278 void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
    279   assert(getType()->isVectorTy() && "Not a vector constant!");
    280 
    281   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
    282     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
    283       Elts.push_back(CV->getOperand(i));
    284     return;
    285   }
    286 
    287   VectorType *VT = cast<VectorType>(getType());
    288   if (isa<ConstantAggregateZero>(this)) {
    289     Elts.assign(VT->getNumElements(),
    290                 Constant::getNullValue(VT->getElementType()));
    291     return;
    292   }
    293 
    294   if (isa<UndefValue>(this)) {
    295     Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
    296     return;
    297   }
    298 
    299   // Unknown type, must be constant expr etc.
    300 }
    301 
    302 
    303 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
    304 /// it.  This involves recursively eliminating any dead users of the
    305 /// constantexpr.
    306 static bool removeDeadUsersOfConstant(const Constant *C) {
    307   if (isa<GlobalValue>(C)) return false; // Cannot remove this
    308 
    309   while (!C->use_empty()) {
    310     const Constant *User = dyn_cast<Constant>(C->use_back());
    311     if (!User) return false; // Non-constant usage;
    312     if (!removeDeadUsersOfConstant(User))
    313       return false; // Constant wasn't dead
    314   }
    315 
    316   const_cast<Constant*>(C)->destroyConstant();
    317   return true;
    318 }
    319 
    320 
    321 /// removeDeadConstantUsers - If there are any dead constant users dangling
    322 /// off of this constant, remove them.  This method is useful for clients
    323 /// that want to check to see if a global is unused, but don't want to deal
    324 /// with potentially dead constants hanging off of the globals.
    325 void Constant::removeDeadConstantUsers() const {
    326   Value::const_use_iterator I = use_begin(), E = use_end();
    327   Value::const_use_iterator LastNonDeadUser = E;
    328   while (I != E) {
    329     const Constant *User = dyn_cast<Constant>(*I);
    330     if (User == 0) {
    331       LastNonDeadUser = I;
    332       ++I;
    333       continue;
    334     }
    335 
    336     if (!removeDeadUsersOfConstant(User)) {
    337       // If the constant wasn't dead, remember that this was the last live use
    338       // and move on to the next constant.
    339       LastNonDeadUser = I;
    340       ++I;
    341       continue;
    342     }
    343 
    344     // If the constant was dead, then the iterator is invalidated.
    345     if (LastNonDeadUser == E) {
    346       I = use_begin();
    347       if (I == E) break;
    348     } else {
    349       I = LastNonDeadUser;
    350       ++I;
    351     }
    352   }
    353 }
    354 
    355 
    356 
    357 //===----------------------------------------------------------------------===//
    358 //                                ConstantInt
    359 //===----------------------------------------------------------------------===//
    360 
    361 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
    362   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
    363   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
    364 }
    365 
    366 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
    367   LLVMContextImpl *pImpl = Context.pImpl;
    368   if (!pImpl->TheTrueVal)
    369     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
    370   return pImpl->TheTrueVal;
    371 }
    372 
    373 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
    374   LLVMContextImpl *pImpl = Context.pImpl;
    375   if (!pImpl->TheFalseVal)
    376     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
    377   return pImpl->TheFalseVal;
    378 }
    379 
    380 Constant *ConstantInt::getTrue(Type *Ty) {
    381   VectorType *VTy = dyn_cast<VectorType>(Ty);
    382   if (!VTy) {
    383     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
    384     return ConstantInt::getTrue(Ty->getContext());
    385   }
    386   assert(VTy->getElementType()->isIntegerTy(1) &&
    387          "True must be vector of i1 or i1.");
    388   SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
    389                                    ConstantInt::getTrue(Ty->getContext()));
    390   return ConstantVector::get(Splat);
    391 }
    392 
    393 Constant *ConstantInt::getFalse(Type *Ty) {
    394   VectorType *VTy = dyn_cast<VectorType>(Ty);
    395   if (!VTy) {
    396     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
    397     return ConstantInt::getFalse(Ty->getContext());
    398   }
    399   assert(VTy->getElementType()->isIntegerTy(1) &&
    400          "False must be vector of i1 or i1.");
    401   SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
    402                                    ConstantInt::getFalse(Ty->getContext()));
    403   return ConstantVector::get(Splat);
    404 }
    405 
    406 
    407 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
    408 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
    409 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
    410 // compare APInt's of different widths, which would violate an APInt class
    411 // invariant which generates an assertion.
    412 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
    413   // Get the corresponding integer type for the bit width of the value.
    414   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
    415   // get an existing value or the insertion position
    416   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
    417   ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
    418   if (!Slot) Slot = new ConstantInt(ITy, V);
    419   return Slot;
    420 }
    421 
    422 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
    423   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
    424 
    425   // For vectors, broadcast the value.
    426   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    427     return ConstantVector::get(SmallVector<Constant*,
    428                                            16>(VTy->getNumElements(), C));
    429 
    430   return C;
    431 }
    432 
    433 ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V,
    434                               bool isSigned) {
    435   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
    436 }
    437 
    438 ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) {
    439   return get(Ty, V, true);
    440 }
    441 
    442 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
    443   return get(Ty, V, true);
    444 }
    445 
    446 Constant *ConstantInt::get(Type* Ty, const APInt& V) {
    447   ConstantInt *C = get(Ty->getContext(), V);
    448   assert(C->getType() == Ty->getScalarType() &&
    449          "ConstantInt type doesn't match the type implied by its value!");
    450 
    451   // For vectors, broadcast the value.
    452   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    453     return ConstantVector::get(
    454       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
    455 
    456   return C;
    457 }
    458 
    459 ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str,
    460                               uint8_t radix) {
    461   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
    462 }
    463 
    464 //===----------------------------------------------------------------------===//
    465 //                                ConstantFP
    466 //===----------------------------------------------------------------------===//
    467 
    468 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
    469   if (Ty->isFloatTy())
    470     return &APFloat::IEEEsingle;
    471   if (Ty->isDoubleTy())
    472     return &APFloat::IEEEdouble;
    473   if (Ty->isX86_FP80Ty())
    474     return &APFloat::x87DoubleExtended;
    475   else if (Ty->isFP128Ty())
    476     return &APFloat::IEEEquad;
    477 
    478   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
    479   return &APFloat::PPCDoubleDouble;
    480 }
    481 
    482 /// get() - This returns a constant fp for the specified value in the
    483 /// specified type.  This should only be used for simple constant values like
    484 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
    485 Constant *ConstantFP::get(Type* Ty, double V) {
    486   LLVMContext &Context = Ty->getContext();
    487 
    488   APFloat FV(V);
    489   bool ignored;
    490   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
    491              APFloat::rmNearestTiesToEven, &ignored);
    492   Constant *C = get(Context, FV);
    493 
    494   // For vectors, broadcast the value.
    495   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    496     return ConstantVector::get(
    497       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
    498 
    499   return C;
    500 }
    501 
    502 
    503 Constant *ConstantFP::get(Type* Ty, StringRef Str) {
    504   LLVMContext &Context = Ty->getContext();
    505 
    506   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
    507   Constant *C = get(Context, FV);
    508 
    509   // For vectors, broadcast the value.
    510   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    511     return ConstantVector::get(
    512       SmallVector<Constant *, 16>(VTy->getNumElements(), C));
    513 
    514   return C;
    515 }
    516 
    517 
    518 ConstantFP* ConstantFP::getNegativeZero(Type* Ty) {
    519   LLVMContext &Context = Ty->getContext();
    520   APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
    521   apf.changeSign();
    522   return get(Context, apf);
    523 }
    524 
    525 
    526 Constant *ConstantFP::getZeroValueForNegation(Type* Ty) {
    527   if (VectorType *PTy = dyn_cast<VectorType>(Ty))
    528     if (PTy->getElementType()->isFloatingPointTy()) {
    529       SmallVector<Constant*, 16> zeros(PTy->getNumElements(),
    530                            getNegativeZero(PTy->getElementType()));
    531       return ConstantVector::get(zeros);
    532     }
    533 
    534   if (Ty->isFloatingPointTy())
    535     return getNegativeZero(Ty);
    536 
    537   return Constant::getNullValue(Ty);
    538 }
    539 
    540 
    541 // ConstantFP accessors.
    542 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
    543   DenseMapAPFloatKeyInfo::KeyTy Key(V);
    544 
    545   LLVMContextImpl* pImpl = Context.pImpl;
    546 
    547   ConstantFP *&Slot = pImpl->FPConstants[Key];
    548 
    549   if (!Slot) {
    550     Type *Ty;
    551     if (&V.getSemantics() == &APFloat::IEEEsingle)
    552       Ty = Type::getFloatTy(Context);
    553     else if (&V.getSemantics() == &APFloat::IEEEdouble)
    554       Ty = Type::getDoubleTy(Context);
    555     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
    556       Ty = Type::getX86_FP80Ty(Context);
    557     else if (&V.getSemantics() == &APFloat::IEEEquad)
    558       Ty = Type::getFP128Ty(Context);
    559     else {
    560       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
    561              "Unknown FP format");
    562       Ty = Type::getPPC_FP128Ty(Context);
    563     }
    564     Slot = new ConstantFP(Ty, V);
    565   }
    566 
    567   return Slot;
    568 }
    569 
    570 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
    571   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
    572   return ConstantFP::get(Ty->getContext(),
    573                          APFloat::getInf(Semantics, Negative));
    574 }
    575 
    576 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
    577   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
    578   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
    579          "FP type Mismatch");
    580 }
    581 
    582 bool ConstantFP::isExactlyValue(const APFloat &V) const {
    583   return Val.bitwiseIsEqual(V);
    584 }
    585 
    586 //===----------------------------------------------------------------------===//
    587 //                            ConstantXXX Classes
    588 //===----------------------------------------------------------------------===//
    589 
    590 
    591 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
    592   : Constant(T, ConstantArrayVal,
    593              OperandTraits<ConstantArray>::op_end(this) - V.size(),
    594              V.size()) {
    595   assert(V.size() == T->getNumElements() &&
    596          "Invalid initializer vector for constant array");
    597   for (unsigned i = 0, e = V.size(); i != e; ++i)
    598     assert(V[i]->getType() == T->getElementType() &&
    599            "Initializer for array element doesn't match array element type!");
    600   std::copy(V.begin(), V.end(), op_begin());
    601 }
    602 
    603 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
    604   for (unsigned i = 0, e = V.size(); i != e; ++i) {
    605     assert(V[i]->getType() == Ty->getElementType() &&
    606            "Wrong type in array element initializer");
    607   }
    608   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
    609   // If this is an all-zero array, return a ConstantAggregateZero object
    610   if (!V.empty()) {
    611     Constant *C = V[0];
    612     if (!C->isNullValue())
    613       return pImpl->ArrayConstants.getOrCreate(Ty, V);
    614 
    615     for (unsigned i = 1, e = V.size(); i != e; ++i)
    616       if (V[i] != C)
    617         return pImpl->ArrayConstants.getOrCreate(Ty, V);
    618   }
    619 
    620   return ConstantAggregateZero::get(Ty);
    621 }
    622 
    623 /// ConstantArray::get(const string&) - Return an array that is initialized to
    624 /// contain the specified string.  If length is zero then a null terminator is
    625 /// added to the specified string so that it may be used in a natural way.
    626 /// Otherwise, the length parameter specifies how much of the string to use
    627 /// and it won't be null terminated.
    628 ///
    629 Constant *ConstantArray::get(LLVMContext &Context, StringRef Str,
    630                              bool AddNull) {
    631   std::vector<Constant*> ElementVals;
    632   ElementVals.reserve(Str.size() + size_t(AddNull));
    633   for (unsigned i = 0; i < Str.size(); ++i)
    634     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
    635 
    636   // Add a null terminator to the string...
    637   if (AddNull) {
    638     ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
    639   }
    640 
    641   ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
    642   return get(ATy, ElementVals);
    643 }
    644 
    645 /// getTypeForElements - Return an anonymous struct type to use for a constant
    646 /// with the specified set of elements.  The list must not be empty.
    647 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
    648                                                ArrayRef<Constant*> V,
    649                                                bool Packed) {
    650   SmallVector<Type*, 16> EltTypes;
    651   for (unsigned i = 0, e = V.size(); i != e; ++i)
    652     EltTypes.push_back(V[i]->getType());
    653 
    654   return StructType::get(Context, EltTypes, Packed);
    655 }
    656 
    657 
    658 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
    659                                                bool Packed) {
    660   assert(!V.empty() &&
    661          "ConstantStruct::getTypeForElements cannot be called on empty list");
    662   return getTypeForElements(V[0]->getContext(), V, Packed);
    663 }
    664 
    665 
    666 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
    667   : Constant(T, ConstantStructVal,
    668              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
    669              V.size()) {
    670   assert(V.size() == T->getNumElements() &&
    671          "Invalid initializer vector for constant structure");
    672   for (unsigned i = 0, e = V.size(); i != e; ++i)
    673     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
    674            "Initializer for struct element doesn't match struct element type!");
    675   std::copy(V.begin(), V.end(), op_begin());
    676 }
    677 
    678 // ConstantStruct accessors.
    679 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
    680   // Create a ConstantAggregateZero value if all elements are zeros.
    681   for (unsigned i = 0, e = V.size(); i != e; ++i)
    682     if (!V[i]->isNullValue())
    683       return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
    684 
    685   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
    686          "Incorrect # elements specified to ConstantStruct::get");
    687   return ConstantAggregateZero::get(ST);
    688 }
    689 
    690 Constant *ConstantStruct::get(StructType *T, ...) {
    691   va_list ap;
    692   SmallVector<Constant*, 8> Values;
    693   va_start(ap, T);
    694   while (Constant *Val = va_arg(ap, llvm::Constant*))
    695     Values.push_back(Val);
    696   va_end(ap);
    697   return get(T, Values);
    698 }
    699 
    700 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
    701   : Constant(T, ConstantVectorVal,
    702              OperandTraits<ConstantVector>::op_end(this) - V.size(),
    703              V.size()) {
    704   for (size_t i = 0, e = V.size(); i != e; i++)
    705     assert(V[i]->getType() == T->getElementType() &&
    706            "Initializer for vector element doesn't match vector element type!");
    707   std::copy(V.begin(), V.end(), op_begin());
    708 }
    709 
    710 // ConstantVector accessors.
    711 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
    712   assert(!V.empty() && "Vectors can't be empty");
    713   VectorType *T = VectorType::get(V.front()->getType(), V.size());
    714   LLVMContextImpl *pImpl = T->getContext().pImpl;
    715 
    716   // If this is an all-undef or all-zero vector, return a
    717   // ConstantAggregateZero or UndefValue.
    718   Constant *C = V[0];
    719   bool isZero = C->isNullValue();
    720   bool isUndef = isa<UndefValue>(C);
    721 
    722   if (isZero || isUndef) {
    723     for (unsigned i = 1, e = V.size(); i != e; ++i)
    724       if (V[i] != C) {
    725         isZero = isUndef = false;
    726         break;
    727       }
    728   }
    729 
    730   if (isZero)
    731     return ConstantAggregateZero::get(T);
    732   if (isUndef)
    733     return UndefValue::get(T);
    734 
    735   return pImpl->VectorConstants.getOrCreate(T, V);
    736 }
    737 
    738 // Utility function for determining if a ConstantExpr is a CastOp or not. This
    739 // can't be inline because we don't want to #include Instruction.h into
    740 // Constant.h
    741 bool ConstantExpr::isCast() const {
    742   return Instruction::isCast(getOpcode());
    743 }
    744 
    745 bool ConstantExpr::isCompare() const {
    746   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
    747 }
    748 
    749 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
    750   if (getOpcode() != Instruction::GetElementPtr) return false;
    751 
    752   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
    753   User::const_op_iterator OI = llvm::next(this->op_begin());
    754 
    755   // Skip the first index, as it has no static limit.
    756   ++GEPI;
    757   ++OI;
    758 
    759   // The remaining indices must be compile-time known integers within the
    760   // bounds of the corresponding notional static array types.
    761   for (; GEPI != E; ++GEPI, ++OI) {
    762     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
    763     if (!CI) return false;
    764     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
    765       if (CI->getValue().getActiveBits() > 64 ||
    766           CI->getZExtValue() >= ATy->getNumElements())
    767         return false;
    768   }
    769 
    770   // All the indices checked out.
    771   return true;
    772 }
    773 
    774 bool ConstantExpr::hasIndices() const {
    775   return getOpcode() == Instruction::ExtractValue ||
    776          getOpcode() == Instruction::InsertValue;
    777 }
    778 
    779 ArrayRef<unsigned> ConstantExpr::getIndices() const {
    780   if (const ExtractValueConstantExpr *EVCE =
    781         dyn_cast<ExtractValueConstantExpr>(this))
    782     return EVCE->Indices;
    783 
    784   return cast<InsertValueConstantExpr>(this)->Indices;
    785 }
    786 
    787 unsigned ConstantExpr::getPredicate() const {
    788   assert(isCompare());
    789   return ((const CompareConstantExpr*)this)->predicate;
    790 }
    791 
    792 /// getWithOperandReplaced - Return a constant expression identical to this
    793 /// one, but with the specified operand set to the specified value.
    794 Constant *
    795 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
    796   assert(OpNo < getNumOperands() && "Operand num is out of range!");
    797   assert(Op->getType() == getOperand(OpNo)->getType() &&
    798          "Replacing operand with value of different type!");
    799   if (getOperand(OpNo) == Op)
    800     return const_cast<ConstantExpr*>(this);
    801 
    802   Constant *Op0, *Op1, *Op2;
    803   switch (getOpcode()) {
    804   case Instruction::Trunc:
    805   case Instruction::ZExt:
    806   case Instruction::SExt:
    807   case Instruction::FPTrunc:
    808   case Instruction::FPExt:
    809   case Instruction::UIToFP:
    810   case Instruction::SIToFP:
    811   case Instruction::FPToUI:
    812   case Instruction::FPToSI:
    813   case Instruction::PtrToInt:
    814   case Instruction::IntToPtr:
    815   case Instruction::BitCast:
    816     return ConstantExpr::getCast(getOpcode(), Op, getType());
    817   case Instruction::Select:
    818     Op0 = (OpNo == 0) ? Op : getOperand(0);
    819     Op1 = (OpNo == 1) ? Op : getOperand(1);
    820     Op2 = (OpNo == 2) ? Op : getOperand(2);
    821     return ConstantExpr::getSelect(Op0, Op1, Op2);
    822   case Instruction::InsertElement:
    823     Op0 = (OpNo == 0) ? Op : getOperand(0);
    824     Op1 = (OpNo == 1) ? Op : getOperand(1);
    825     Op2 = (OpNo == 2) ? Op : getOperand(2);
    826     return ConstantExpr::getInsertElement(Op0, Op1, Op2);
    827   case Instruction::ExtractElement:
    828     Op0 = (OpNo == 0) ? Op : getOperand(0);
    829     Op1 = (OpNo == 1) ? Op : getOperand(1);
    830     return ConstantExpr::getExtractElement(Op0, Op1);
    831   case Instruction::ShuffleVector:
    832     Op0 = (OpNo == 0) ? Op : getOperand(0);
    833     Op1 = (OpNo == 1) ? Op : getOperand(1);
    834     Op2 = (OpNo == 2) ? Op : getOperand(2);
    835     return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
    836   case Instruction::GetElementPtr: {
    837     SmallVector<Constant*, 8> Ops;
    838     Ops.resize(getNumOperands()-1);
    839     for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
    840       Ops[i-1] = getOperand(i);
    841     if (OpNo == 0)
    842       return
    843         ConstantExpr::getGetElementPtr(Op, Ops,
    844                                        cast<GEPOperator>(this)->isInBounds());
    845     Ops[OpNo-1] = Op;
    846     return
    847       ConstantExpr::getGetElementPtr(getOperand(0), Ops,
    848                                      cast<GEPOperator>(this)->isInBounds());
    849   }
    850   default:
    851     assert(getNumOperands() == 2 && "Must be binary operator?");
    852     Op0 = (OpNo == 0) ? Op : getOperand(0);
    853     Op1 = (OpNo == 1) ? Op : getOperand(1);
    854     return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
    855   }
    856 }
    857 
    858 /// getWithOperands - This returns the current constant expression with the
    859 /// operands replaced with the specified values.  The specified array must
    860 /// have the same number of operands as our current one.
    861 Constant *ConstantExpr::
    862 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
    863   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
    864   bool AnyChange = Ty != getType();
    865   for (unsigned i = 0; i != Ops.size(); ++i)
    866     AnyChange |= Ops[i] != getOperand(i);
    867 
    868   if (!AnyChange)  // No operands changed, return self.
    869     return const_cast<ConstantExpr*>(this);
    870 
    871   switch (getOpcode()) {
    872   case Instruction::Trunc:
    873   case Instruction::ZExt:
    874   case Instruction::SExt:
    875   case Instruction::FPTrunc:
    876   case Instruction::FPExt:
    877   case Instruction::UIToFP:
    878   case Instruction::SIToFP:
    879   case Instruction::FPToUI:
    880   case Instruction::FPToSI:
    881   case Instruction::PtrToInt:
    882   case Instruction::IntToPtr:
    883   case Instruction::BitCast:
    884     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
    885   case Instruction::Select:
    886     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
    887   case Instruction::InsertElement:
    888     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
    889   case Instruction::ExtractElement:
    890     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
    891   case Instruction::ShuffleVector:
    892     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
    893   case Instruction::GetElementPtr:
    894     return
    895       ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
    896                                      cast<GEPOperator>(this)->isInBounds());
    897   case Instruction::ICmp:
    898   case Instruction::FCmp:
    899     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
    900   default:
    901     assert(getNumOperands() == 2 && "Must be binary operator?");
    902     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
    903   }
    904 }
    905 
    906 
    907 //===----------------------------------------------------------------------===//
    908 //                      isValueValidForType implementations
    909 
    910 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
    911   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
    912   if (Ty == Type::getInt1Ty(Ty->getContext()))
    913     return Val == 0 || Val == 1;
    914   if (NumBits >= 64)
    915     return true; // always true, has to fit in largest type
    916   uint64_t Max = (1ll << NumBits) - 1;
    917   return Val <= Max;
    918 }
    919 
    920 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
    921   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
    922   if (Ty == Type::getInt1Ty(Ty->getContext()))
    923     return Val == 0 || Val == 1 || Val == -1;
    924   if (NumBits >= 64)
    925     return true; // always true, has to fit in largest type
    926   int64_t Min = -(1ll << (NumBits-1));
    927   int64_t Max = (1ll << (NumBits-1)) - 1;
    928   return (Val >= Min && Val <= Max);
    929 }
    930 
    931 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
    932   // convert modifies in place, so make a copy.
    933   APFloat Val2 = APFloat(Val);
    934   bool losesInfo;
    935   switch (Ty->getTypeID()) {
    936   default:
    937     return false;         // These can't be represented as floating point!
    938 
    939   // FIXME rounding mode needs to be more flexible
    940   case Type::FloatTyID: {
    941     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
    942       return true;
    943     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
    944     return !losesInfo;
    945   }
    946   case Type::DoubleTyID: {
    947     if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
    948         &Val2.getSemantics() == &APFloat::IEEEdouble)
    949       return true;
    950     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
    951     return !losesInfo;
    952   }
    953   case Type::X86_FP80TyID:
    954     return &Val2.getSemantics() == &APFloat::IEEEsingle ||
    955            &Val2.getSemantics() == &APFloat::IEEEdouble ||
    956            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
    957   case Type::FP128TyID:
    958     return &Val2.getSemantics() == &APFloat::IEEEsingle ||
    959            &Val2.getSemantics() == &APFloat::IEEEdouble ||
    960            &Val2.getSemantics() == &APFloat::IEEEquad;
    961   case Type::PPC_FP128TyID:
    962     return &Val2.getSemantics() == &APFloat::IEEEsingle ||
    963            &Val2.getSemantics() == &APFloat::IEEEdouble ||
    964            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
    965   }
    966 }
    967 
    968 //===----------------------------------------------------------------------===//
    969 //                      Factory Function Implementation
    970 
    971 ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) {
    972   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
    973          "Cannot create an aggregate zero of non-aggregate type!");
    974 
    975   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
    976   return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
    977 }
    978 
    979 /// destroyConstant - Remove the constant from the constant table...
    980 ///
    981 void ConstantAggregateZero::destroyConstant() {
    982   getType()->getContext().pImpl->AggZeroConstants.remove(this);
    983   destroyConstantImpl();
    984 }
    985 
    986 /// destroyConstant - Remove the constant from the constant table...
    987 ///
    988 void ConstantArray::destroyConstant() {
    989   getType()->getContext().pImpl->ArrayConstants.remove(this);
    990   destroyConstantImpl();
    991 }
    992 
    993 /// isString - This method returns true if the array is an array of i8, and
    994 /// if the elements of the array are all ConstantInt's.
    995 bool ConstantArray::isString() const {
    996   // Check the element type for i8...
    997   if (!getType()->getElementType()->isIntegerTy(8))
    998     return false;
    999   // Check the elements to make sure they are all integers, not constant
   1000   // expressions.
   1001   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1002     if (!isa<ConstantInt>(getOperand(i)))
   1003       return false;
   1004   return true;
   1005 }
   1006 
   1007 /// isCString - This method returns true if the array is a string (see
   1008 /// isString) and it ends in a null byte \\0 and does not contains any other
   1009 /// null bytes except its terminator.
   1010 bool ConstantArray::isCString() const {
   1011   // Check the element type for i8...
   1012   if (!getType()->getElementType()->isIntegerTy(8))
   1013     return false;
   1014 
   1015   // Last element must be a null.
   1016   if (!getOperand(getNumOperands()-1)->isNullValue())
   1017     return false;
   1018   // Other elements must be non-null integers.
   1019   for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
   1020     if (!isa<ConstantInt>(getOperand(i)))
   1021       return false;
   1022     if (getOperand(i)->isNullValue())
   1023       return false;
   1024   }
   1025   return true;
   1026 }
   1027 
   1028 
   1029 /// convertToString - Helper function for getAsString() and getAsCString().
   1030 static std::string convertToString(const User *U, unsigned len) {
   1031   std::string Result;
   1032   Result.reserve(len);
   1033   for (unsigned i = 0; i != len; ++i)
   1034     Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue());
   1035   return Result;
   1036 }
   1037 
   1038 /// getAsString - If this array is isString(), then this method converts the
   1039 /// array to an std::string and returns it.  Otherwise, it asserts out.
   1040 ///
   1041 std::string ConstantArray::getAsString() const {
   1042   assert(isString() && "Not a string!");
   1043   return convertToString(this, getNumOperands());
   1044 }
   1045 
   1046 
   1047 /// getAsCString - If this array is isCString(), then this method converts the
   1048 /// array (without the trailing null byte) to an std::string and returns it.
   1049 /// Otherwise, it asserts out.
   1050 ///
   1051 std::string ConstantArray::getAsCString() const {
   1052   assert(isCString() && "Not a string!");
   1053   return convertToString(this, getNumOperands() - 1);
   1054 }
   1055 
   1056 
   1057 //---- ConstantStruct::get() implementation...
   1058 //
   1059 
   1060 // destroyConstant - Remove the constant from the constant table...
   1061 //
   1062 void ConstantStruct::destroyConstant() {
   1063   getType()->getContext().pImpl->StructConstants.remove(this);
   1064   destroyConstantImpl();
   1065 }
   1066 
   1067 // destroyConstant - Remove the constant from the constant table...
   1068 //
   1069 void ConstantVector::destroyConstant() {
   1070   getType()->getContext().pImpl->VectorConstants.remove(this);
   1071   destroyConstantImpl();
   1072 }
   1073 
   1074 /// This function will return true iff every element in this vector constant
   1075 /// is set to all ones.
   1076 /// @returns true iff this constant's elements are all set to all ones.
   1077 /// @brief Determine if the value is all ones.
   1078 bool ConstantVector::isAllOnesValue() const {
   1079   // Check out first element.
   1080   const Constant *Elt = getOperand(0);
   1081   const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
   1082   const ConstantFP *CF = dyn_cast<ConstantFP>(Elt);
   1083 
   1084   // Then make sure all remaining elements point to the same value.
   1085   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1086     if (getOperand(I) != Elt)
   1087       return false;
   1088 
   1089   // First value is all-ones.
   1090   return (CI && CI->isAllOnesValue()) ||
   1091          (CF && CF->isAllOnesValue());
   1092 }
   1093 
   1094 /// getSplatValue - If this is a splat constant, where all of the
   1095 /// elements have the same value, return that value. Otherwise return null.
   1096 Constant *ConstantVector::getSplatValue() const {
   1097   // Check out first element.
   1098   Constant *Elt = getOperand(0);
   1099   // Then make sure all remaining elements point to the same value.
   1100   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
   1101     if (getOperand(I) != Elt)
   1102       return 0;
   1103   return Elt;
   1104 }
   1105 
   1106 //---- ConstantPointerNull::get() implementation.
   1107 //
   1108 
   1109 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
   1110   return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
   1111 }
   1112 
   1113 // destroyConstant - Remove the constant from the constant table...
   1114 //
   1115 void ConstantPointerNull::destroyConstant() {
   1116   getType()->getContext().pImpl->NullPtrConstants.remove(this);
   1117   destroyConstantImpl();
   1118 }
   1119 
   1120 
   1121 //---- UndefValue::get() implementation.
   1122 //
   1123 
   1124 UndefValue *UndefValue::get(Type *Ty) {
   1125   return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
   1126 }
   1127 
   1128 // destroyConstant - Remove the constant from the constant table.
   1129 //
   1130 void UndefValue::destroyConstant() {
   1131   getType()->getContext().pImpl->UndefValueConstants.remove(this);
   1132   destroyConstantImpl();
   1133 }
   1134 
   1135 //---- BlockAddress::get() implementation.
   1136 //
   1137 
   1138 BlockAddress *BlockAddress::get(BasicBlock *BB) {
   1139   assert(BB->getParent() != 0 && "Block must have a parent");
   1140   return get(BB->getParent(), BB);
   1141 }
   1142 
   1143 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
   1144   BlockAddress *&BA =
   1145     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
   1146   if (BA == 0)
   1147     BA = new BlockAddress(F, BB);
   1148 
   1149   assert(BA->getFunction() == F && "Basic block moved between functions");
   1150   return BA;
   1151 }
   1152 
   1153 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
   1154 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
   1155            &Op<0>(), 2) {
   1156   setOperand(0, F);
   1157   setOperand(1, BB);
   1158   BB->AdjustBlockAddressRefCount(1);
   1159 }
   1160 
   1161 
   1162 // destroyConstant - Remove the constant from the constant table.
   1163 //
   1164 void BlockAddress::destroyConstant() {
   1165   getFunction()->getType()->getContext().pImpl
   1166     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
   1167   getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1168   destroyConstantImpl();
   1169 }
   1170 
   1171 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
   1172   // This could be replacing either the Basic Block or the Function.  In either
   1173   // case, we have to remove the map entry.
   1174   Function *NewF = getFunction();
   1175   BasicBlock *NewBB = getBasicBlock();
   1176 
   1177   if (U == &Op<0>())
   1178     NewF = cast<Function>(To);
   1179   else
   1180     NewBB = cast<BasicBlock>(To);
   1181 
   1182   // See if the 'new' entry already exists, if not, just update this in place
   1183   // and return early.
   1184   BlockAddress *&NewBA =
   1185     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
   1186   if (NewBA == 0) {
   1187     getBasicBlock()->AdjustBlockAddressRefCount(-1);
   1188 
   1189     // Remove the old entry, this can't cause the map to rehash (just a
   1190     // tombstone will get added).
   1191     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
   1192                                                             getBasicBlock()));
   1193     NewBA = this;
   1194     setOperand(0, NewF);
   1195     setOperand(1, NewBB);
   1196     getBasicBlock()->AdjustBlockAddressRefCount(1);
   1197     return;
   1198   }
   1199 
   1200   // Otherwise, I do need to replace this with an existing value.
   1201   assert(NewBA != this && "I didn't contain From!");
   1202 
   1203   // Everyone using this now uses the replacement.
   1204   replaceAllUsesWith(NewBA);
   1205 
   1206   destroyConstant();
   1207 }
   1208 
   1209 //---- ConstantExpr::get() implementations.
   1210 //
   1211 
   1212 /// This is a utility function to handle folding of casts and lookup of the
   1213 /// cast in the ExprConstants map. It is used by the various get* methods below.
   1214 static inline Constant *getFoldedCast(
   1215   Instruction::CastOps opc, Constant *C, Type *Ty) {
   1216   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
   1217   // Fold a few common cases
   1218   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
   1219     return FC;
   1220 
   1221   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
   1222 
   1223   // Look up the constant in the table first to ensure uniqueness
   1224   std::vector<Constant*> argVec(1, C);
   1225   ExprMapKeyType Key(opc, argVec);
   1226 
   1227   return pImpl->ExprConstants.getOrCreate(Ty, Key);
   1228 }
   1229 
   1230 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
   1231   Instruction::CastOps opc = Instruction::CastOps(oc);
   1232   assert(Instruction::isCast(opc) && "opcode out of range");
   1233   assert(C && Ty && "Null arguments to getCast");
   1234   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
   1235 
   1236   switch (opc) {
   1237   default:
   1238     llvm_unreachable("Invalid cast opcode");
   1239     break;
   1240   case Instruction::Trunc:    return getTrunc(C, Ty);
   1241   case Instruction::ZExt:     return getZExt(C, Ty);
   1242   case Instruction::SExt:     return getSExt(C, Ty);
   1243   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
   1244   case Instruction::FPExt:    return getFPExtend(C, Ty);
   1245   case Instruction::UIToFP:   return getUIToFP(C, Ty);
   1246   case Instruction::SIToFP:   return getSIToFP(C, Ty);
   1247   case Instruction::FPToUI:   return getFPToUI(C, Ty);
   1248   case Instruction::FPToSI:   return getFPToSI(C, Ty);
   1249   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
   1250   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
   1251   case Instruction::BitCast:  return getBitCast(C, Ty);
   1252   }
   1253   return 0;
   1254 }
   1255 
   1256 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
   1257   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1258     return getBitCast(C, Ty);
   1259   return getZExt(C, Ty);
   1260 }
   1261 
   1262 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
   1263   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1264     return getBitCast(C, Ty);
   1265   return getSExt(C, Ty);
   1266 }
   1267 
   1268 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
   1269   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
   1270     return getBitCast(C, Ty);
   1271   return getTrunc(C, Ty);
   1272 }
   1273 
   1274 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
   1275   assert(S->getType()->isPointerTy() && "Invalid cast");
   1276   assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
   1277 
   1278   if (Ty->isIntegerTy())
   1279     return getPtrToInt(S, Ty);
   1280   return getBitCast(S, Ty);
   1281 }
   1282 
   1283 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
   1284                                        bool isSigned) {
   1285   assert(C->getType()->isIntOrIntVectorTy() &&
   1286          Ty->isIntOrIntVectorTy() && "Invalid cast");
   1287   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1288   unsigned DstBits = Ty->getScalarSizeInBits();
   1289   Instruction::CastOps opcode =
   1290     (SrcBits == DstBits ? Instruction::BitCast :
   1291      (SrcBits > DstBits ? Instruction::Trunc :
   1292       (isSigned ? Instruction::SExt : Instruction::ZExt)));
   1293   return getCast(opcode, C, Ty);
   1294 }
   1295 
   1296 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
   1297   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1298          "Invalid cast");
   1299   unsigned SrcBits = C->getType()->getScalarSizeInBits();
   1300   unsigned DstBits = Ty->getScalarSizeInBits();
   1301   if (SrcBits == DstBits)
   1302     return C; // Avoid a useless cast
   1303   Instruction::CastOps opcode =
   1304     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
   1305   return getCast(opcode, C, Ty);
   1306 }
   1307 
   1308 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
   1309 #ifndef NDEBUG
   1310   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1311   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1312 #endif
   1313   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1314   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
   1315   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
   1316   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1317          "SrcTy must be larger than DestTy for Trunc!");
   1318 
   1319   return getFoldedCast(Instruction::Trunc, C, Ty);
   1320 }
   1321 
   1322 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
   1323 #ifndef NDEBUG
   1324   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1325   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1326 #endif
   1327   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1328   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
   1329   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
   1330   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1331          "SrcTy must be smaller than DestTy for SExt!");
   1332 
   1333   return getFoldedCast(Instruction::SExt, C, Ty);
   1334 }
   1335 
   1336 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
   1337 #ifndef NDEBUG
   1338   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1339   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1340 #endif
   1341   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1342   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
   1343   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
   1344   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1345          "SrcTy must be smaller than DestTy for ZExt!");
   1346 
   1347   return getFoldedCast(Instruction::ZExt, C, Ty);
   1348 }
   1349 
   1350 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
   1351 #ifndef NDEBUG
   1352   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1353   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1354 #endif
   1355   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1356   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1357          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
   1358          "This is an illegal floating point truncation!");
   1359   return getFoldedCast(Instruction::FPTrunc, C, Ty);
   1360 }
   1361 
   1362 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
   1363 #ifndef NDEBUG
   1364   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1365   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1366 #endif
   1367   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1368   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
   1369          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
   1370          "This is an illegal floating point extension!");
   1371   return getFoldedCast(Instruction::FPExt, C, Ty);
   1372 }
   1373 
   1374 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
   1375 #ifndef NDEBUG
   1376   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1377   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1378 #endif
   1379   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1380   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1381          "This is an illegal uint to floating point cast!");
   1382   return getFoldedCast(Instruction::UIToFP, C, Ty);
   1383 }
   1384 
   1385 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
   1386 #ifndef NDEBUG
   1387   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1388   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1389 #endif
   1390   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1391   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
   1392          "This is an illegal sint to floating point cast!");
   1393   return getFoldedCast(Instruction::SIToFP, C, Ty);
   1394 }
   1395 
   1396 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
   1397 #ifndef NDEBUG
   1398   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1399   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1400 #endif
   1401   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1402   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1403          "This is an illegal floating point to uint cast!");
   1404   return getFoldedCast(Instruction::FPToUI, C, Ty);
   1405 }
   1406 
   1407 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
   1408 #ifndef NDEBUG
   1409   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
   1410   bool toVec = Ty->getTypeID() == Type::VectorTyID;
   1411 #endif
   1412   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
   1413   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
   1414          "This is an illegal floating point to sint cast!");
   1415   return getFoldedCast(Instruction::FPToSI, C, Ty);
   1416 }
   1417 
   1418 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
   1419   assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
   1420   assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
   1421   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
   1422 }
   1423 
   1424 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
   1425   assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
   1426   assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
   1427   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
   1428 }
   1429 
   1430 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
   1431   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
   1432          "Invalid constantexpr bitcast!");
   1433 
   1434   // It is common to ask for a bitcast of a value to its own type, handle this
   1435   // speedily.
   1436   if (C->getType() == DstTy) return C;
   1437 
   1438   return getFoldedCast(Instruction::BitCast, C, DstTy);
   1439 }
   1440 
   1441 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
   1442                             unsigned Flags) {
   1443   // Check the operands for consistency first.
   1444   assert(Opcode >= Instruction::BinaryOpsBegin &&
   1445          Opcode <  Instruction::BinaryOpsEnd   &&
   1446          "Invalid opcode in binary constant expression");
   1447   assert(C1->getType() == C2->getType() &&
   1448          "Operand types in binary constant expression should match");
   1449 
   1450 #ifndef NDEBUG
   1451   switch (Opcode) {
   1452   case Instruction::Add:
   1453   case Instruction::Sub:
   1454   case Instruction::Mul:
   1455     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1456     assert(C1->getType()->isIntOrIntVectorTy() &&
   1457            "Tried to create an integer operation on a non-integer type!");
   1458     break;
   1459   case Instruction::FAdd:
   1460   case Instruction::FSub:
   1461   case Instruction::FMul:
   1462     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1463     assert(C1->getType()->isFPOrFPVectorTy() &&
   1464            "Tried to create a floating-point operation on a "
   1465            "non-floating-point type!");
   1466     break;
   1467   case Instruction::UDiv:
   1468   case Instruction::SDiv:
   1469     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1470     assert(C1->getType()->isIntOrIntVectorTy() &&
   1471            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1472     break;
   1473   case Instruction::FDiv:
   1474     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1475     assert(C1->getType()->isFPOrFPVectorTy() &&
   1476            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1477     break;
   1478   case Instruction::URem:
   1479   case Instruction::SRem:
   1480     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1481     assert(C1->getType()->isIntOrIntVectorTy() &&
   1482            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1483     break;
   1484   case Instruction::FRem:
   1485     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1486     assert(C1->getType()->isFPOrFPVectorTy() &&
   1487            "Tried to create an arithmetic operation on a non-arithmetic type!");
   1488     break;
   1489   case Instruction::And:
   1490   case Instruction::Or:
   1491   case Instruction::Xor:
   1492     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1493     assert(C1->getType()->isIntOrIntVectorTy() &&
   1494            "Tried to create a logical operation on a non-integral type!");
   1495     break;
   1496   case Instruction::Shl:
   1497   case Instruction::LShr:
   1498   case Instruction::AShr:
   1499     assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1500     assert(C1->getType()->isIntOrIntVectorTy() &&
   1501            "Tried to create a shift operation on a non-integer type!");
   1502     break;
   1503   default:
   1504     break;
   1505   }
   1506 #endif
   1507 
   1508   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
   1509     return FC;          // Fold a few common cases.
   1510 
   1511   std::vector<Constant*> argVec(1, C1);
   1512   argVec.push_back(C2);
   1513   ExprMapKeyType Key(Opcode, argVec, 0, Flags);
   1514 
   1515   LLVMContextImpl *pImpl = C1->getContext().pImpl;
   1516   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
   1517 }
   1518 
   1519 Constant *ConstantExpr::getSizeOf(Type* Ty) {
   1520   // sizeof is implemented as: (i64) gep (Ty*)null, 1
   1521   // Note that a non-inbounds gep is used, as null isn't within any object.
   1522   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1523   Constant *GEP = getGetElementPtr(
   1524                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1525   return getPtrToInt(GEP,
   1526                      Type::getInt64Ty(Ty->getContext()));
   1527 }
   1528 
   1529 Constant *ConstantExpr::getAlignOf(Type* Ty) {
   1530   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
   1531   // Note that a non-inbounds gep is used, as null isn't within any object.
   1532   Type *AligningTy =
   1533     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
   1534   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
   1535   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
   1536   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
   1537   Constant *Indices[2] = { Zero, One };
   1538   Constant *GEP = getGetElementPtr(NullPtr, Indices);
   1539   return getPtrToInt(GEP,
   1540                      Type::getInt64Ty(Ty->getContext()));
   1541 }
   1542 
   1543 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
   1544   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
   1545                                            FieldNo));
   1546 }
   1547 
   1548 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
   1549   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
   1550   // Note that a non-inbounds gep is used, as null isn't within any object.
   1551   Constant *GEPIdx[] = {
   1552     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
   1553     FieldNo
   1554   };
   1555   Constant *GEP = getGetElementPtr(
   1556                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
   1557   return getPtrToInt(GEP,
   1558                      Type::getInt64Ty(Ty->getContext()));
   1559 }
   1560 
   1561 Constant *ConstantExpr::getCompare(unsigned short Predicate,
   1562                                    Constant *C1, Constant *C2) {
   1563   assert(C1->getType() == C2->getType() && "Op types should be identical!");
   1564 
   1565   switch (Predicate) {
   1566   default: llvm_unreachable("Invalid CmpInst predicate");
   1567   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
   1568   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
   1569   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
   1570   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
   1571   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
   1572   case CmpInst::FCMP_TRUE:
   1573     return getFCmp(Predicate, C1, C2);
   1574 
   1575   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
   1576   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
   1577   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
   1578   case CmpInst::ICMP_SLE:
   1579     return getICmp(Predicate, C1, C2);
   1580   }
   1581 }
   1582 
   1583 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
   1584   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
   1585 
   1586   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
   1587     return SC;        // Fold common cases
   1588 
   1589   std::vector<Constant*> argVec(3, C);
   1590   argVec[1] = V1;
   1591   argVec[2] = V2;
   1592   ExprMapKeyType Key(Instruction::Select, argVec);
   1593 
   1594   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1595   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
   1596 }
   1597 
   1598 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
   1599                                          bool InBounds) {
   1600   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
   1601     return FC;          // Fold a few common cases.
   1602 
   1603   // Get the result type of the getelementptr!
   1604   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
   1605   assert(Ty && "GEP indices invalid!");
   1606   unsigned AS = cast<PointerType>(C->getType())->getAddressSpace();
   1607   Type *ReqTy = Ty->getPointerTo(AS);
   1608 
   1609   assert(C->getType()->isPointerTy() &&
   1610          "Non-pointer type for constant GetElementPtr expression");
   1611   // Look up the constant in the table first to ensure uniqueness
   1612   std::vector<Constant*> ArgVec;
   1613   ArgVec.reserve(1 + Idxs.size());
   1614   ArgVec.push_back(C);
   1615   for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
   1616     ArgVec.push_back(cast<Constant>(Idxs[i]));
   1617   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
   1618                            InBounds ? GEPOperator::IsInBounds : 0);
   1619 
   1620   LLVMContextImpl *pImpl = C->getContext().pImpl;
   1621   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1622 }
   1623 
   1624 Constant *
   1625 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1626   assert(LHS->getType() == RHS->getType());
   1627   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
   1628          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
   1629 
   1630   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1631     return FC;          // Fold a few common cases...
   1632 
   1633   // Look up the constant in the table first to ensure uniqueness
   1634   std::vector<Constant*> ArgVec;
   1635   ArgVec.push_back(LHS);
   1636   ArgVec.push_back(RHS);
   1637   // Get the key type with both the opcode and predicate
   1638   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
   1639 
   1640   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1641   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1642     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1643 
   1644   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1645   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1646 }
   1647 
   1648 Constant *
   1649 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
   1650   assert(LHS->getType() == RHS->getType());
   1651   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
   1652 
   1653   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
   1654     return FC;          // Fold a few common cases...
   1655 
   1656   // Look up the constant in the table first to ensure uniqueness
   1657   std::vector<Constant*> ArgVec;
   1658   ArgVec.push_back(LHS);
   1659   ArgVec.push_back(RHS);
   1660   // Get the key type with both the opcode and predicate
   1661   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
   1662 
   1663   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
   1664   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
   1665     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
   1666 
   1667   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
   1668   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
   1669 }
   1670 
   1671 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
   1672   assert(Val->getType()->isVectorTy() &&
   1673          "Tried to create extractelement operation on non-vector type!");
   1674   assert(Idx->getType()->isIntegerTy(32) &&
   1675          "Extractelement index must be i32 type!");
   1676 
   1677   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
   1678     return FC;          // Fold a few common cases.
   1679 
   1680   // Look up the constant in the table first to ensure uniqueness
   1681   std::vector<Constant*> ArgVec(1, Val);
   1682   ArgVec.push_back(Idx);
   1683   const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
   1684 
   1685   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   1686   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
   1687   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
   1688 }
   1689 
   1690 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
   1691                                          Constant *Idx) {
   1692   assert(Val->getType()->isVectorTy() &&
   1693          "Tried to create insertelement operation on non-vector type!");
   1694   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
   1695          && "Insertelement types must match!");
   1696   assert(Idx->getType()->isIntegerTy(32) &&
   1697          "Insertelement index must be i32 type!");
   1698 
   1699   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
   1700     return FC;          // Fold a few common cases.
   1701   // Look up the constant in the table first to ensure uniqueness
   1702   std::vector<Constant*> ArgVec(1, Val);
   1703   ArgVec.push_back(Elt);
   1704   ArgVec.push_back(Idx);
   1705   const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
   1706 
   1707   LLVMContextImpl *pImpl = Val->getContext().pImpl;
   1708   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
   1709 }
   1710 
   1711 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
   1712                                          Constant *Mask) {
   1713   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
   1714          "Invalid shuffle vector constant expr operands!");
   1715 
   1716   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
   1717     return FC;          // Fold a few common cases.
   1718 
   1719   unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
   1720   Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
   1721   Type *ShufTy = VectorType::get(EltTy, NElts);
   1722 
   1723   // Look up the constant in the table first to ensure uniqueness
   1724   std::vector<Constant*> ArgVec(1, V1);
   1725   ArgVec.push_back(V2);
   1726   ArgVec.push_back(Mask);
   1727   const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
   1728 
   1729   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
   1730   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
   1731 }
   1732 
   1733 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
   1734                                        ArrayRef<unsigned> Idxs) {
   1735   assert(ExtractValueInst::getIndexedType(Agg->getType(),
   1736                                           Idxs) == Val->getType() &&
   1737          "insertvalue indices invalid!");
   1738   assert(Agg->getType()->isFirstClassType() &&
   1739          "Non-first-class type for constant insertvalue expression");
   1740   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
   1741   assert(FC && "insertvalue constant expr couldn't be folded!");
   1742   return FC;
   1743 }
   1744 
   1745 Constant *ConstantExpr::getExtractValue(Constant *Agg,
   1746                                         ArrayRef<unsigned> Idxs) {
   1747   assert(Agg->getType()->isFirstClassType() &&
   1748          "Tried to create extractelement operation on non-first-class type!");
   1749 
   1750   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
   1751   (void)ReqTy;
   1752   assert(ReqTy && "extractvalue indices invalid!");
   1753 
   1754   assert(Agg->getType()->isFirstClassType() &&
   1755          "Non-first-class type for constant extractvalue expression");
   1756   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
   1757   assert(FC && "ExtractValue constant expr couldn't be folded!");
   1758   return FC;
   1759 }
   1760 
   1761 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
   1762   assert(C->getType()->isIntOrIntVectorTy() &&
   1763          "Cannot NEG a nonintegral value!");
   1764   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
   1765                 C, HasNUW, HasNSW);
   1766 }
   1767 
   1768 Constant *ConstantExpr::getFNeg(Constant *C) {
   1769   assert(C->getType()->isFPOrFPVectorTy() &&
   1770          "Cannot FNEG a non-floating-point value!");
   1771   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
   1772 }
   1773 
   1774 Constant *ConstantExpr::getNot(Constant *C) {
   1775   assert(C->getType()->isIntOrIntVectorTy() &&
   1776          "Cannot NOT a nonintegral value!");
   1777   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
   1778 }
   1779 
   1780 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
   1781                                bool HasNUW, bool HasNSW) {
   1782   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1783                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1784   return get(Instruction::Add, C1, C2, Flags);
   1785 }
   1786 
   1787 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
   1788   return get(Instruction::FAdd, C1, C2);
   1789 }
   1790 
   1791 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
   1792                                bool HasNUW, bool HasNSW) {
   1793   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1794                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1795   return get(Instruction::Sub, C1, C2, Flags);
   1796 }
   1797 
   1798 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
   1799   return get(Instruction::FSub, C1, C2);
   1800 }
   1801 
   1802 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
   1803                                bool HasNUW, bool HasNSW) {
   1804   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1805                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1806   return get(Instruction::Mul, C1, C2, Flags);
   1807 }
   1808 
   1809 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
   1810   return get(Instruction::FMul, C1, C2);
   1811 }
   1812 
   1813 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
   1814   return get(Instruction::UDiv, C1, C2,
   1815              isExact ? PossiblyExactOperator::IsExact : 0);
   1816 }
   1817 
   1818 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
   1819   return get(Instruction::SDiv, C1, C2,
   1820              isExact ? PossiblyExactOperator::IsExact : 0);
   1821 }
   1822 
   1823 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
   1824   return get(Instruction::FDiv, C1, C2);
   1825 }
   1826 
   1827 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
   1828   return get(Instruction::URem, C1, C2);
   1829 }
   1830 
   1831 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
   1832   return get(Instruction::SRem, C1, C2);
   1833 }
   1834 
   1835 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
   1836   return get(Instruction::FRem, C1, C2);
   1837 }
   1838 
   1839 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
   1840   return get(Instruction::And, C1, C2);
   1841 }
   1842 
   1843 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
   1844   return get(Instruction::Or, C1, C2);
   1845 }
   1846 
   1847 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
   1848   return get(Instruction::Xor, C1, C2);
   1849 }
   1850 
   1851 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
   1852                                bool HasNUW, bool HasNSW) {
   1853   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
   1854                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
   1855   return get(Instruction::Shl, C1, C2, Flags);
   1856 }
   1857 
   1858 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
   1859   return get(Instruction::LShr, C1, C2,
   1860              isExact ? PossiblyExactOperator::IsExact : 0);
   1861 }
   1862 
   1863 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
   1864   return get(Instruction::AShr, C1, C2,
   1865              isExact ? PossiblyExactOperator::IsExact : 0);
   1866 }
   1867 
   1868 // destroyConstant - Remove the constant from the constant table...
   1869 //
   1870 void ConstantExpr::destroyConstant() {
   1871   getType()->getContext().pImpl->ExprConstants.remove(this);
   1872   destroyConstantImpl();
   1873 }
   1874 
   1875 const char *ConstantExpr::getOpcodeName() const {
   1876   return Instruction::getOpcodeName(getOpcode());
   1877 }
   1878 
   1879 
   1880 
   1881 GetElementPtrConstantExpr::
   1882 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
   1883                           Type *DestTy)
   1884   : ConstantExpr(DestTy, Instruction::GetElementPtr,
   1885                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
   1886                  - (IdxList.size()+1), IdxList.size()+1) {
   1887   OperandList[0] = C;
   1888   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
   1889     OperandList[i+1] = IdxList[i];
   1890 }
   1891 
   1892 
   1893 //===----------------------------------------------------------------------===//
   1894 //                replaceUsesOfWithOnConstant implementations
   1895 
   1896 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
   1897 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
   1898 /// etc.
   1899 ///
   1900 /// Note that we intentionally replace all uses of From with To here.  Consider
   1901 /// a large array that uses 'From' 1000 times.  By handling this case all here,
   1902 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
   1903 /// single invocation handles all 1000 uses.  Handling them one at a time would
   1904 /// work, but would be really slow because it would have to unique each updated
   1905 /// array instance.
   1906 ///
   1907 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
   1908                                                 Use *U) {
   1909   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   1910   Constant *ToC = cast<Constant>(To);
   1911 
   1912   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
   1913 
   1914   std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
   1915   Lookup.first.first = cast<ArrayType>(getType());
   1916   Lookup.second = this;
   1917 
   1918   std::vector<Constant*> &Values = Lookup.first.second;
   1919   Values.reserve(getNumOperands());  // Build replacement array.
   1920 
   1921   // Fill values with the modified operands of the constant array.  Also,
   1922   // compute whether this turns into an all-zeros array.
   1923   bool isAllZeros = false;
   1924   unsigned NumUpdated = 0;
   1925   if (!ToC->isNullValue()) {
   1926     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   1927       Constant *Val = cast<Constant>(O->get());
   1928       if (Val == From) {
   1929         Val = ToC;
   1930         ++NumUpdated;
   1931       }
   1932       Values.push_back(Val);
   1933     }
   1934   } else {
   1935     isAllZeros = true;
   1936     for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
   1937       Constant *Val = cast<Constant>(O->get());
   1938       if (Val == From) {
   1939         Val = ToC;
   1940         ++NumUpdated;
   1941       }
   1942       Values.push_back(Val);
   1943       if (isAllZeros) isAllZeros = Val->isNullValue();
   1944     }
   1945   }
   1946 
   1947   Constant *Replacement = 0;
   1948   if (isAllZeros) {
   1949     Replacement = ConstantAggregateZero::get(getType());
   1950   } else {
   1951     // Check to see if we have this array type already.
   1952     bool Exists;
   1953     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
   1954       pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
   1955 
   1956     if (Exists) {
   1957       Replacement = I->second;
   1958     } else {
   1959       // Okay, the new shape doesn't exist in the system yet.  Instead of
   1960       // creating a new constant array, inserting it, replaceallusesof'ing the
   1961       // old with the new, then deleting the old... just update the current one
   1962       // in place!
   1963       pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
   1964 
   1965       // Update to the new value.  Optimize for the case when we have a single
   1966       // operand that we're changing, but handle bulk updates efficiently.
   1967       if (NumUpdated == 1) {
   1968         unsigned OperandToUpdate = U - OperandList;
   1969         assert(getOperand(OperandToUpdate) == From &&
   1970                "ReplaceAllUsesWith broken!");
   1971         setOperand(OperandToUpdate, ToC);
   1972       } else {
   1973         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
   1974           if (getOperand(i) == From)
   1975             setOperand(i, ToC);
   1976       }
   1977       return;
   1978     }
   1979   }
   1980 
   1981   // Otherwise, I do need to replace this with an existing value.
   1982   assert(Replacement != this && "I didn't contain From!");
   1983 
   1984   // Everyone using this now uses the replacement.
   1985   replaceAllUsesWith(Replacement);
   1986 
   1987   // Delete the old constant!
   1988   destroyConstant();
   1989 }
   1990 
   1991 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
   1992                                                  Use *U) {
   1993   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   1994   Constant *ToC = cast<Constant>(To);
   1995 
   1996   unsigned OperandToUpdate = U-OperandList;
   1997   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
   1998 
   1999   std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
   2000   Lookup.first.first = cast<StructType>(getType());
   2001   Lookup.second = this;
   2002   std::vector<Constant*> &Values = Lookup.first.second;
   2003   Values.reserve(getNumOperands());  // Build replacement struct.
   2004 
   2005 
   2006   // Fill values with the modified operands of the constant struct.  Also,
   2007   // compute whether this turns into an all-zeros struct.
   2008   bool isAllZeros = false;
   2009   if (!ToC->isNullValue()) {
   2010     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
   2011       Values.push_back(cast<Constant>(O->get()));
   2012   } else {
   2013     isAllZeros = true;
   2014     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
   2015       Constant *Val = cast<Constant>(O->get());
   2016       Values.push_back(Val);
   2017       if (isAllZeros) isAllZeros = Val->isNullValue();
   2018     }
   2019   }
   2020   Values[OperandToUpdate] = ToC;
   2021 
   2022   LLVMContextImpl *pImpl = getContext().pImpl;
   2023 
   2024   Constant *Replacement = 0;
   2025   if (isAllZeros) {
   2026     Replacement = ConstantAggregateZero::get(getType());
   2027   } else {
   2028     // Check to see if we have this struct type already.
   2029     bool Exists;
   2030     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
   2031       pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
   2032 
   2033     if (Exists) {
   2034       Replacement = I->second;
   2035     } else {
   2036       // Okay, the new shape doesn't exist in the system yet.  Instead of
   2037       // creating a new constant struct, inserting it, replaceallusesof'ing the
   2038       // old with the new, then deleting the old... just update the current one
   2039       // in place!
   2040       pImpl->StructConstants.MoveConstantToNewSlot(this, I);
   2041 
   2042       // Update to the new value.
   2043       setOperand(OperandToUpdate, ToC);
   2044       return;
   2045     }
   2046   }
   2047 
   2048   assert(Replacement != this && "I didn't contain From!");
   2049 
   2050   // Everyone using this now uses the replacement.
   2051   replaceAllUsesWith(Replacement);
   2052 
   2053   // Delete the old constant!
   2054   destroyConstant();
   2055 }
   2056 
   2057 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
   2058                                                  Use *U) {
   2059   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
   2060 
   2061   std::vector<Constant*> Values;
   2062   Values.reserve(getNumOperands());  // Build replacement array...
   2063   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
   2064     Constant *Val = getOperand(i);
   2065     if (Val == From) Val = cast<Constant>(To);
   2066     Values.push_back(Val);
   2067   }
   2068 
   2069   Constant *Replacement = get(Values);
   2070   assert(Replacement != this && "I didn't contain From!");
   2071 
   2072   // Everyone using this now uses the replacement.
   2073   replaceAllUsesWith(Replacement);
   2074 
   2075   // Delete the old constant!
   2076   destroyConstant();
   2077 }
   2078 
   2079 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
   2080                                                Use *U) {
   2081   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
   2082   Constant *To = cast<Constant>(ToV);
   2083 
   2084   Constant *Replacement = 0;
   2085   if (getOpcode() == Instruction::GetElementPtr) {
   2086     SmallVector<Constant*, 8> Indices;
   2087     Constant *Pointer = getOperand(0);
   2088     Indices.reserve(getNumOperands()-1);
   2089     if (Pointer == From) Pointer = To;
   2090 
   2091     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
   2092       Constant *Val = getOperand(i);
   2093       if (Val == From) Val = To;
   2094       Indices.push_back(Val);
   2095     }
   2096     Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices,
   2097                                          cast<GEPOperator>(this)->isInBounds());
   2098   } else if (getOpcode() == Instruction::ExtractValue) {
   2099     Constant *Agg = getOperand(0);
   2100     if (Agg == From) Agg = To;
   2101 
   2102     ArrayRef<unsigned> Indices = getIndices();
   2103     Replacement = ConstantExpr::getExtractValue(Agg, Indices);
   2104   } else if (getOpcode() == Instruction::InsertValue) {
   2105     Constant *Agg = getOperand(0);
   2106     Constant *Val = getOperand(1);
   2107     if (Agg == From) Agg = To;
   2108     if (Val == From) Val = To;
   2109 
   2110     ArrayRef<unsigned> Indices = getIndices();
   2111     Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices);
   2112   } else if (isCast()) {
   2113     assert(getOperand(0) == From && "Cast only has one use!");
   2114     Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
   2115   } else if (getOpcode() == Instruction::Select) {
   2116     Constant *C1 = getOperand(0);
   2117     Constant *C2 = getOperand(1);
   2118     Constant *C3 = getOperand(2);
   2119     if (C1 == From) C1 = To;
   2120     if (C2 == From) C2 = To;
   2121     if (C3 == From) C3 = To;
   2122     Replacement = ConstantExpr::getSelect(C1, C2, C3);
   2123   } else if (getOpcode() == Instruction::ExtractElement) {
   2124     Constant *C1 = getOperand(0);
   2125     Constant *C2 = getOperand(1);
   2126     if (C1 == From) C1 = To;
   2127     if (C2 == From) C2 = To;
   2128     Replacement = ConstantExpr::getExtractElement(C1, C2);
   2129   } else if (getOpcode() == Instruction::InsertElement) {
   2130     Constant *C1 = getOperand(0);
   2131     Constant *C2 = getOperand(1);
   2132     Constant *C3 = getOperand(1);
   2133     if (C1 == From) C1 = To;
   2134     if (C2 == From) C2 = To;
   2135     if (C3 == From) C3 = To;
   2136     Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
   2137   } else if (getOpcode() == Instruction::ShuffleVector) {
   2138     Constant *C1 = getOperand(0);
   2139     Constant *C2 = getOperand(1);
   2140     Constant *C3 = getOperand(2);
   2141     if (C1 == From) C1 = To;
   2142     if (C2 == From) C2 = To;
   2143     if (C3 == From) C3 = To;
   2144     Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
   2145   } else if (isCompare()) {
   2146     Constant *C1 = getOperand(0);
   2147     Constant *C2 = getOperand(1);
   2148     if (C1 == From) C1 = To;
   2149     if (C2 == From) C2 = To;
   2150     if (getOpcode() == Instruction::ICmp)
   2151       Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
   2152     else {
   2153       assert(getOpcode() == Instruction::FCmp);
   2154       Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
   2155     }
   2156   } else if (getNumOperands() == 2) {
   2157     Constant *C1 = getOperand(0);
   2158     Constant *C2 = getOperand(1);
   2159     if (C1 == From) C1 = To;
   2160     if (C2 == From) C2 = To;
   2161     Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
   2162   } else {
   2163     llvm_unreachable("Unknown ConstantExpr type!");
   2164     return;
   2165   }
   2166 
   2167   assert(Replacement != this && "I didn't contain From!");
   2168 
   2169   // Everyone using this now uses the replacement.
   2170   replaceAllUsesWith(Replacement);
   2171 
   2172   // Delete the old constant!
   2173   destroyConstant();
   2174 }
   2175