Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTypes.h"
     15 #include "CGCall.h"
     16 #include "CGCXXABI.h"
     17 #include "CGRecordLayout.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/DeclCXX.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "llvm/DerivedTypes.h"
     24 #include "llvm/Module.h"
     25 #include "llvm/Target/TargetData.h"
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
     30                            const llvm::TargetData &TD, const ABIInfo &Info,
     31                            CGCXXABI &CXXABI, const CodeGenOptions &CGO)
     32   : Context(Ctx), Target(Ctx.getTargetInfo()), TheModule(M), TheTargetData(TD),
     33     TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
     34   SkippedLayout = false;
     35 }
     36 
     37 CodeGenTypes::~CodeGenTypes() {
     38   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
     39          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
     40       I != E; ++I)
     41     delete I->second;
     42 
     43   for (llvm::FoldingSet<CGFunctionInfo>::iterator
     44        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
     45     delete &*I++;
     46 }
     47 
     48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
     49                                      llvm::StructType *Ty,
     50                                      StringRef suffix) {
     51   llvm::SmallString<256> TypeName;
     52   llvm::raw_svector_ostream OS(TypeName);
     53   OS << RD->getKindName() << '.';
     54 
     55   // Name the codegen type after the typedef name
     56   // if there is no tag type name available
     57   if (RD->getIdentifier()) {
     58     // FIXME: We should not have to check for a null decl context here.
     59     // Right now we do it because the implicit Obj-C decls don't have one.
     60     if (RD->getDeclContext())
     61       OS << RD->getQualifiedNameAsString();
     62     else
     63       RD->printName(OS);
     64   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
     65     // FIXME: We should not have to check for a null decl context here.
     66     // Right now we do it because the implicit Obj-C decls don't have one.
     67     if (TDD->getDeclContext())
     68       OS << TDD->getQualifiedNameAsString();
     69     else
     70       TDD->printName(OS);
     71   } else
     72     OS << "anon";
     73 
     74   if (!suffix.empty())
     75     OS << suffix;
     76 
     77   Ty->setName(OS.str());
     78 }
     79 
     80 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
     81 /// ConvertType in that it is used to convert to the memory representation for
     82 /// a type.  For example, the scalar representation for _Bool is i1, but the
     83 /// memory representation is usually i8 or i32, depending on the target.
     84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
     85   llvm::Type *R = ConvertType(T);
     86 
     87   // If this is a non-bool type, don't map it.
     88   if (!R->isIntegerTy(1))
     89     return R;
     90 
     91   // Otherwise, return an integer of the target-specified size.
     92   return llvm::IntegerType::get(getLLVMContext(),
     93                                 (unsigned)Context.getTypeSize(T));
     94 }
     95 
     96 
     97 /// isRecordLayoutComplete - Return true if the specified type is already
     98 /// completely laid out.
     99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
    100   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
    101   RecordDeclTypes.find(Ty);
    102   return I != RecordDeclTypes.end() && !I->second->isOpaque();
    103 }
    104 
    105 static bool
    106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    107                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
    108 
    109 
    110 /// isSafeToConvert - Return true if it is safe to convert the specified record
    111 /// decl to IR and lay it out, false if doing so would cause us to get into a
    112 /// recursive compilation mess.
    113 static bool
    114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
    115                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    116   // If we have already checked this type (maybe the same type is used by-value
    117   // multiple times in multiple structure fields, don't check again.
    118   if (!AlreadyChecked.insert(RD)) return true;
    119 
    120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
    121 
    122   // If this type is already laid out, converting it is a noop.
    123   if (CGT.isRecordLayoutComplete(Key)) return true;
    124 
    125   // If this type is currently being laid out, we can't recursively compile it.
    126   if (CGT.isRecordBeingLaidOut(Key))
    127     return false;
    128 
    129   // If this type would require laying out bases that are currently being laid
    130   // out, don't do it.  This includes virtual base classes which get laid out
    131   // when a class is translated, even though they aren't embedded by-value into
    132   // the class.
    133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    134     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
    135          E = CRD->bases_end(); I != E; ++I)
    136       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
    137                            CGT, AlreadyChecked))
    138         return false;
    139   }
    140 
    141   // If this type would require laying out members that are currently being laid
    142   // out, don't do it.
    143   for (RecordDecl::field_iterator I = RD->field_begin(),
    144        E = RD->field_end(); I != E; ++I)
    145     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
    146       return false;
    147 
    148   // If there are no problems, lets do it.
    149   return true;
    150 }
    151 
    152 /// isSafeToConvert - Return true if it is safe to convert this field type,
    153 /// which requires the structure elements contained by-value to all be
    154 /// recursively safe to convert.
    155 static bool
    156 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    157                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    158   T = T.getCanonicalType();
    159 
    160   // If this is a record, check it.
    161   if (const RecordType *RT = dyn_cast<RecordType>(T))
    162     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
    163 
    164   // If this is an array, check the elements, which are embedded inline.
    165   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    166     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
    167 
    168   // Otherwise, there is no concern about transforming this.  We only care about
    169   // things that are contained by-value in a structure that can have another
    170   // structure as a member.
    171   return true;
    172 }
    173 
    174 
    175 /// isSafeToConvert - Return true if it is safe to convert the specified record
    176 /// decl to IR and lay it out, false if doing so would cause us to get into a
    177 /// recursive compilation mess.
    178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
    179   // If no structs are being laid out, we can certainly do this one.
    180   if (CGT.noRecordsBeingLaidOut()) return true;
    181 
    182   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
    183   return isSafeToConvert(RD, CGT, AlreadyChecked);
    184 }
    185 
    186 
    187 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
    188 /// function argument or result position can be converted to an IR type at this
    189 /// point.  This boils down to being whether it is complete, as well as whether
    190 /// we've temporarily deferred expanding the type because we're in a recursive
    191 /// context.
    192 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
    193   // If this isn't a tagged type, we can convert it!
    194   const TagType *TT = Ty->getAs<TagType>();
    195   if (TT == 0) return true;
    196 
    197 
    198   // If it's a tagged type used by-value, but is just a forward decl, we can't
    199   // convert it.  Note that getDefinition()==0 is not the same as !isDefinition.
    200   if (TT->getDecl()->getDefinition() == 0)
    201     return false;
    202 
    203   // If this is an enum, then it is always safe to convert.
    204   const RecordType *RT = dyn_cast<RecordType>(TT);
    205   if (RT == 0) return true;
    206 
    207   // Otherwise, we have to be careful.  If it is a struct that we're in the
    208   // process of expanding, then we can't convert the function type.  That's ok
    209   // though because we must be in a pointer context under the struct, so we can
    210   // just convert it to a dummy type.
    211   //
    212   // We decide this by checking whether ConvertRecordDeclType returns us an
    213   // opaque type for a struct that we know is defined.
    214   return isSafeToConvert(RT->getDecl(), *this);
    215 }
    216 
    217 
    218 /// Code to verify a given function type is complete, i.e. the return type
    219 /// and all of the argument types are complete.  Also check to see if we are in
    220 /// a RS_StructPointer context, and if so whether any struct types have been
    221 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
    222 /// that cannot be converted to an IR type.
    223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
    224   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
    225     return false;
    226 
    227   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    228     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
    229       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
    230         return false;
    231 
    232   return true;
    233 }
    234 
    235 /// UpdateCompletedType - When we find the full definition for a TagDecl,
    236 /// replace the 'opaque' type we previously made for it if applicable.
    237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
    238   // If this is an enum being completed, then we flush all non-struct types from
    239   // the cache.  This allows function types and other things that may be derived
    240   // from the enum to be recomputed.
    241   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    242     // Only flush the cache if we've actually already converted this type.
    243     if (TypeCache.count(ED->getTypeForDecl())) {
    244       // Okay, we formed some types based on this.  We speculated that the enum
    245       // would be lowered to i32, so we only need to flush the cache if this
    246       // didn't happen.
    247       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
    248         TypeCache.clear();
    249     }
    250     return;
    251   }
    252 
    253   // If we completed a RecordDecl that we previously used and converted to an
    254   // anonymous type, then go ahead and complete it now.
    255   const RecordDecl *RD = cast<RecordDecl>(TD);
    256   if (RD->isDependentType()) return;
    257 
    258   // Only complete it if we converted it already.  If we haven't converted it
    259   // yet, we'll just do it lazily.
    260   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    261     ConvertRecordDeclType(RD);
    262 }
    263 
    264 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
    265                                     const llvm::fltSemantics &format) {
    266   if (&format == &llvm::APFloat::IEEEhalf)
    267     return llvm::Type::getInt16Ty(VMContext);
    268   if (&format == &llvm::APFloat::IEEEsingle)
    269     return llvm::Type::getFloatTy(VMContext);
    270   if (&format == &llvm::APFloat::IEEEdouble)
    271     return llvm::Type::getDoubleTy(VMContext);
    272   if (&format == &llvm::APFloat::IEEEquad)
    273     return llvm::Type::getFP128Ty(VMContext);
    274   if (&format == &llvm::APFloat::PPCDoubleDouble)
    275     return llvm::Type::getPPC_FP128Ty(VMContext);
    276   if (&format == &llvm::APFloat::x87DoubleExtended)
    277     return llvm::Type::getX86_FP80Ty(VMContext);
    278   llvm_unreachable("Unknown float format!");
    279 }
    280 
    281 /// ConvertType - Convert the specified type to its LLVM form.
    282 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
    283   T = Context.getCanonicalType(T);
    284 
    285   const Type *Ty = T.getTypePtr();
    286 
    287   // RecordTypes are cached and processed specially.
    288   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    289     return ConvertRecordDeclType(RT->getDecl());
    290 
    291   // See if type is already cached.
    292   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
    293   // If type is found in map then use it. Otherwise, convert type T.
    294   if (TCI != TypeCache.end())
    295     return TCI->second;
    296 
    297   // If we don't have it in the cache, convert it now.
    298   llvm::Type *ResultType = 0;
    299   switch (Ty->getTypeClass()) {
    300   case Type::Record: // Handled above.
    301 #define TYPE(Class, Base)
    302 #define ABSTRACT_TYPE(Class, Base)
    303 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    304 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    305 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    306 #include "clang/AST/TypeNodes.def"
    307     llvm_unreachable("Non-canonical or dependent types aren't possible.");
    308     break;
    309 
    310   case Type::Builtin: {
    311     switch (cast<BuiltinType>(Ty)->getKind()) {
    312     case BuiltinType::Void:
    313     case BuiltinType::ObjCId:
    314     case BuiltinType::ObjCClass:
    315     case BuiltinType::ObjCSel:
    316       // LLVM void type can only be used as the result of a function call.  Just
    317       // map to the same as char.
    318       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    319       break;
    320 
    321     case BuiltinType::Bool:
    322       // Note that we always return bool as i1 for use as a scalar type.
    323       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
    324       break;
    325 
    326     case BuiltinType::Char_S:
    327     case BuiltinType::Char_U:
    328     case BuiltinType::SChar:
    329     case BuiltinType::UChar:
    330     case BuiltinType::Short:
    331     case BuiltinType::UShort:
    332     case BuiltinType::Int:
    333     case BuiltinType::UInt:
    334     case BuiltinType::Long:
    335     case BuiltinType::ULong:
    336     case BuiltinType::LongLong:
    337     case BuiltinType::ULongLong:
    338     case BuiltinType::WChar_S:
    339     case BuiltinType::WChar_U:
    340     case BuiltinType::Char16:
    341     case BuiltinType::Char32:
    342       ResultType = llvm::IntegerType::get(getLLVMContext(),
    343                                  static_cast<unsigned>(Context.getTypeSize(T)));
    344       break;
    345 
    346     case BuiltinType::Half:
    347       // Half is special: it might be lowered to i16 (and will be storage-only
    348       // type),. or can be represented as a set of native operations.
    349 
    350       // FIXME: Ask target which kind of half FP it prefers (storage only vs
    351       // native).
    352       ResultType = llvm::Type::getInt16Ty(getLLVMContext());
    353       break;
    354     case BuiltinType::Float:
    355     case BuiltinType::Double:
    356     case BuiltinType::LongDouble:
    357       ResultType = getTypeForFormat(getLLVMContext(),
    358                                     Context.getFloatTypeSemantics(T));
    359       break;
    360 
    361     case BuiltinType::NullPtr:
    362       // Model std::nullptr_t as i8*
    363       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
    364       break;
    365 
    366     case BuiltinType::UInt128:
    367     case BuiltinType::Int128:
    368       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
    369       break;
    370 
    371     case BuiltinType::Dependent:
    372 #define BUILTIN_TYPE(Id, SingletonId)
    373 #define PLACEHOLDER_TYPE(Id, SingletonId) \
    374     case BuiltinType::Id:
    375 #include "clang/AST/BuiltinTypes.def"
    376       llvm_unreachable("Unexpected placeholder builtin type!");
    377       break;
    378     }
    379     break;
    380   }
    381   case Type::Complex: {
    382     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    383     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
    384     break;
    385   }
    386   case Type::LValueReference:
    387   case Type::RValueReference: {
    388     const ReferenceType *RTy = cast<ReferenceType>(Ty);
    389     QualType ETy = RTy->getPointeeType();
    390     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    391     unsigned AS = Context.getTargetAddressSpace(ETy);
    392     ResultType = llvm::PointerType::get(PointeeType, AS);
    393     break;
    394   }
    395   case Type::Pointer: {
    396     const PointerType *PTy = cast<PointerType>(Ty);
    397     QualType ETy = PTy->getPointeeType();
    398     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    399     if (PointeeType->isVoidTy())
    400       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    401     unsigned AS = Context.getTargetAddressSpace(ETy);
    402     ResultType = llvm::PointerType::get(PointeeType, AS);
    403     break;
    404   }
    405 
    406   case Type::VariableArray: {
    407     const VariableArrayType *A = cast<VariableArrayType>(Ty);
    408     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    409            "FIXME: We only handle trivial array types so far!");
    410     // VLAs resolve to the innermost element type; this matches
    411     // the return of alloca, and there isn't any obviously better choice.
    412     ResultType = ConvertTypeForMem(A->getElementType());
    413     break;
    414   }
    415   case Type::IncompleteArray: {
    416     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    417     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    418            "FIXME: We only handle trivial array types so far!");
    419     // int X[] -> [0 x int], unless the element type is not sized.  If it is
    420     // unsized (e.g. an incomplete struct) just use [0 x i8].
    421     ResultType = ConvertTypeForMem(A->getElementType());
    422     if (!ResultType->isSized()) {
    423       SkippedLayout = true;
    424       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    425     }
    426     ResultType = llvm::ArrayType::get(ResultType, 0);
    427     break;
    428   }
    429   case Type::ConstantArray: {
    430     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    431     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    432 
    433     // Lower arrays of undefined struct type to arrays of i8 just to have a
    434     // concrete type.
    435     if (!EltTy->isSized()) {
    436       SkippedLayout = true;
    437       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
    438     }
    439 
    440     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    441     break;
    442   }
    443   case Type::ExtVector:
    444   case Type::Vector: {
    445     const VectorType *VT = cast<VectorType>(Ty);
    446     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
    447                                        VT->getNumElements());
    448     break;
    449   }
    450   case Type::FunctionNoProto:
    451   case Type::FunctionProto: {
    452     const FunctionType *FT = cast<FunctionType>(Ty);
    453     // First, check whether we can build the full function type.  If the
    454     // function type depends on an incomplete type (e.g. a struct or enum), we
    455     // cannot lower the function type.
    456     if (!isFuncTypeConvertible(FT)) {
    457       // This function's type depends on an incomplete tag type.
    458       // Return a placeholder type.
    459       ResultType = llvm::StructType::get(getLLVMContext());
    460 
    461       SkippedLayout = true;
    462       break;
    463     }
    464 
    465     // While we're converting the argument types for a function, we don't want
    466     // to recursively convert any pointed-to structs.  Converting directly-used
    467     // structs is ok though.
    468     if (!RecordsBeingLaidOut.insert(Ty)) {
    469       ResultType = llvm::StructType::get(getLLVMContext());
    470 
    471       SkippedLayout = true;
    472       break;
    473     }
    474 
    475     // The function type can be built; call the appropriate routines to
    476     // build it.
    477     const CGFunctionInfo *FI;
    478     bool isVariadic;
    479     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
    480       FI = &getFunctionInfo(
    481                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
    482       isVariadic = FPT->isVariadic();
    483     } else {
    484       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
    485       FI = &getFunctionInfo(
    486                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    487       isVariadic = true;
    488     }
    489 
    490     // If there is something higher level prodding our CGFunctionInfo, then
    491     // don't recurse into it again.
    492     if (FunctionsBeingProcessed.count(FI)) {
    493 
    494       ResultType = llvm::StructType::get(getLLVMContext());
    495       SkippedLayout = true;
    496     } else {
    497 
    498       // Otherwise, we're good to go, go ahead and convert it.
    499       ResultType = GetFunctionType(*FI, isVariadic);
    500     }
    501 
    502     RecordsBeingLaidOut.erase(Ty);
    503 
    504     if (SkippedLayout)
    505       TypeCache.clear();
    506 
    507     if (RecordsBeingLaidOut.empty())
    508       while (!DeferredRecords.empty())
    509         ConvertRecordDeclType(DeferredRecords.pop_back_val());
    510     break;
    511   }
    512 
    513   case Type::ObjCObject:
    514     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    515     break;
    516 
    517   case Type::ObjCInterface: {
    518     // Objective-C interfaces are always opaque (outside of the
    519     // runtime, which can do whatever it likes); we never refine
    520     // these.
    521     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    522     if (!T)
    523       T = llvm::StructType::create(getLLVMContext());
    524     ResultType = T;
    525     break;
    526   }
    527 
    528   case Type::ObjCObjectPointer: {
    529     // Protocol qualifications do not influence the LLVM type, we just return a
    530     // pointer to the underlying interface type. We don't need to worry about
    531     // recursive conversion.
    532     llvm::Type *T =
    533       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    534     ResultType = T->getPointerTo();
    535     break;
    536   }
    537 
    538   case Type::Enum: {
    539     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    540     if (ED->isCompleteDefinition() || ED->isFixed())
    541       return ConvertType(ED->getIntegerType());
    542     // Return a placeholder 'i32' type.  This can be changed later when the
    543     // type is defined (see UpdateCompletedType), but is likely to be the
    544     // "right" answer.
    545     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    546     break;
    547   }
    548 
    549   case Type::BlockPointer: {
    550     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    551     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    552     unsigned AS = Context.getTargetAddressSpace(FTy);
    553     ResultType = llvm::PointerType::get(PointeeType, AS);
    554     break;
    555   }
    556 
    557   case Type::MemberPointer: {
    558     ResultType =
    559       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    560     break;
    561   }
    562 
    563   case Type::Atomic: {
    564     ResultType = ConvertTypeForMem(cast<AtomicType>(Ty)->getValueType());
    565     break;
    566   }
    567   }
    568 
    569   assert(ResultType && "Didn't convert a type?");
    570 
    571   TypeCache[Ty] = ResultType;
    572   return ResultType;
    573 }
    574 
    575 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    576 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
    577   // TagDecl's are not necessarily unique, instead use the (clang)
    578   // type connected to the decl.
    579   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    580 
    581   llvm::StructType *&Entry = RecordDeclTypes[Key];
    582 
    583   // If we don't have a StructType at all yet, create the forward declaration.
    584   if (Entry == 0) {
    585     Entry = llvm::StructType::create(getLLVMContext());
    586     addRecordTypeName(RD, Entry, "");
    587   }
    588   llvm::StructType *Ty = Entry;
    589 
    590   // If this is still a forward declaration, or the LLVM type is already
    591   // complete, there's nothing more to do.
    592   RD = RD->getDefinition();
    593   if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
    594     return Ty;
    595 
    596   // If converting this type would cause us to infinitely loop, don't do it!
    597   if (!isSafeToConvert(RD, *this)) {
    598     DeferredRecords.push_back(RD);
    599     return Ty;
    600   }
    601 
    602   // Okay, this is a definition of a type.  Compile the implementation now.
    603   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
    604   assert(InsertResult && "Recursively compiling a struct?");
    605 
    606   // Force conversion of non-virtual base classes recursively.
    607   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    608     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
    609          e = CRD->bases_end(); i != e; ++i) {
    610       if (i->isVirtual()) continue;
    611 
    612       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
    613     }
    614   }
    615 
    616   // Layout fields.
    617   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
    618   CGRecordLayouts[Key] = Layout;
    619 
    620   // We're done laying out this struct.
    621   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
    622   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
    623 
    624   // If this struct blocked a FunctionType conversion, then recompute whatever
    625   // was derived from that.
    626   // FIXME: This is hugely overconservative.
    627   if (SkippedLayout)
    628     TypeCache.clear();
    629 
    630   // If we're done converting the outer-most record, then convert any deferred
    631   // structs as well.
    632   if (RecordsBeingLaidOut.empty())
    633     while (!DeferredRecords.empty())
    634       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    635 
    636   return Ty;
    637 }
    638 
    639 /// getCGRecordLayout - Return record layout info for the given record decl.
    640 const CGRecordLayout &
    641 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
    642   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    643 
    644   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
    645   if (!Layout) {
    646     // Compute the type information.
    647     ConvertRecordDeclType(RD);
    648 
    649     // Now try again.
    650     Layout = CGRecordLayouts.lookup(Key);
    651   }
    652 
    653   assert(Layout && "Unable to find record layout information for type");
    654   return *Layout;
    655 }
    656 
    657 bool CodeGenTypes::isZeroInitializable(QualType T) {
    658   // No need to check for member pointers when not compiling C++.
    659   if (!Context.getLangOptions().CPlusPlus)
    660     return true;
    661 
    662   T = Context.getBaseElementType(T);
    663 
    664   // Records are non-zero-initializable if they contain any
    665   // non-zero-initializable subobjects.
    666   if (const RecordType *RT = T->getAs<RecordType>()) {
    667     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    668     return isZeroInitializable(RD);
    669   }
    670 
    671   // We have to ask the ABI about member pointers.
    672   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    673     return getCXXABI().isZeroInitializable(MPT);
    674 
    675   // Everything else is okay.
    676   return true;
    677 }
    678 
    679 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
    680   return getCGRecordLayout(RD).isZeroInitializable();
    681 }
    682