1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for Objective C declarations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/Sema/Lookup.h" 16 #include "clang/Sema/ExternalSemaSource.h" 17 #include "clang/Sema/Scope.h" 18 #include "clang/Sema/ScopeInfo.h" 19 #include "clang/AST/ASTConsumer.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Sema/DeclSpec.h" 26 #include "llvm/ADT/DenseSet.h" 27 28 using namespace clang; 29 30 /// Check whether the given method, which must be in the 'init' 31 /// family, is a valid member of that family. 32 /// 33 /// \param receiverTypeIfCall - if null, check this as if declaring it; 34 /// if non-null, check this as if making a call to it with the given 35 /// receiver type 36 /// 37 /// \return true to indicate that there was an error and appropriate 38 /// actions were taken 39 bool Sema::checkInitMethod(ObjCMethodDecl *method, 40 QualType receiverTypeIfCall) { 41 if (method->isInvalidDecl()) return true; 42 43 // This castAs is safe: methods that don't return an object 44 // pointer won't be inferred as inits and will reject an explicit 45 // objc_method_family(init). 46 47 // We ignore protocols here. Should we? What about Class? 48 49 const ObjCObjectType *result = method->getResultType() 50 ->castAs<ObjCObjectPointerType>()->getObjectType(); 51 52 if (result->isObjCId()) { 53 return false; 54 } else if (result->isObjCClass()) { 55 // fall through: always an error 56 } else { 57 ObjCInterfaceDecl *resultClass = result->getInterface(); 58 assert(resultClass && "unexpected object type!"); 59 60 // It's okay for the result type to still be a forward declaration 61 // if we're checking an interface declaration. 62 if (resultClass->isForwardDecl()) { 63 if (receiverTypeIfCall.isNull() && 64 !isa<ObjCImplementationDecl>(method->getDeclContext())) 65 return false; 66 67 // Otherwise, we try to compare class types. 68 } else { 69 // If this method was declared in a protocol, we can't check 70 // anything unless we have a receiver type that's an interface. 71 const ObjCInterfaceDecl *receiverClass = 0; 72 if (isa<ObjCProtocolDecl>(method->getDeclContext())) { 73 if (receiverTypeIfCall.isNull()) 74 return false; 75 76 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() 77 ->getInterfaceDecl(); 78 79 // This can be null for calls to e.g. id<Foo>. 80 if (!receiverClass) return false; 81 } else { 82 receiverClass = method->getClassInterface(); 83 assert(receiverClass && "method not associated with a class!"); 84 } 85 86 // If either class is a subclass of the other, it's fine. 87 if (receiverClass->isSuperClassOf(resultClass) || 88 resultClass->isSuperClassOf(receiverClass)) 89 return false; 90 } 91 } 92 93 SourceLocation loc = method->getLocation(); 94 95 // If we're in a system header, and this is not a call, just make 96 // the method unusable. 97 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) { 98 method->addAttr(new (Context) UnavailableAttr(loc, Context, 99 "init method returns a type unrelated to its receiver type")); 100 return true; 101 } 102 103 // Otherwise, it's an error. 104 Diag(loc, diag::err_arc_init_method_unrelated_result_type); 105 method->setInvalidDecl(); 106 return true; 107 } 108 109 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 110 const ObjCMethodDecl *Overridden, 111 bool IsImplementation) { 112 if (Overridden->hasRelatedResultType() && 113 !NewMethod->hasRelatedResultType()) { 114 // This can only happen when the method follows a naming convention that 115 // implies a related result type, and the original (overridden) method has 116 // a suitable return type, but the new (overriding) method does not have 117 // a suitable return type. 118 QualType ResultType = NewMethod->getResultType(); 119 SourceRange ResultTypeRange; 120 if (const TypeSourceInfo *ResultTypeInfo 121 = NewMethod->getResultTypeSourceInfo()) 122 ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange(); 123 124 // Figure out which class this method is part of, if any. 125 ObjCInterfaceDecl *CurrentClass 126 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext()); 127 if (!CurrentClass) { 128 DeclContext *DC = NewMethod->getDeclContext(); 129 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC)) 130 CurrentClass = Cat->getClassInterface(); 131 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC)) 132 CurrentClass = Impl->getClassInterface(); 133 else if (ObjCCategoryImplDecl *CatImpl 134 = dyn_cast<ObjCCategoryImplDecl>(DC)) 135 CurrentClass = CatImpl->getClassInterface(); 136 } 137 138 if (CurrentClass) { 139 Diag(NewMethod->getLocation(), 140 diag::warn_related_result_type_compatibility_class) 141 << Context.getObjCInterfaceType(CurrentClass) 142 << ResultType 143 << ResultTypeRange; 144 } else { 145 Diag(NewMethod->getLocation(), 146 diag::warn_related_result_type_compatibility_protocol) 147 << ResultType 148 << ResultTypeRange; 149 } 150 151 if (ObjCMethodFamily Family = Overridden->getMethodFamily()) 152 Diag(Overridden->getLocation(), 153 diag::note_related_result_type_overridden_family) 154 << Family; 155 else 156 Diag(Overridden->getLocation(), 157 diag::note_related_result_type_overridden); 158 } 159 if (getLangOptions().ObjCAutoRefCount) { 160 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != 161 Overridden->hasAttr<NSReturnsRetainedAttr>())) { 162 Diag(NewMethod->getLocation(), 163 diag::err_nsreturns_retained_attribute_mismatch) << 1; 164 Diag(Overridden->getLocation(), diag::note_previous_decl) 165 << "method"; 166 } 167 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != 168 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { 169 Diag(NewMethod->getLocation(), 170 diag::err_nsreturns_retained_attribute_mismatch) << 0; 171 Diag(Overridden->getLocation(), diag::note_previous_decl) 172 << "method"; 173 } 174 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(); 175 for (ObjCMethodDecl::param_iterator 176 ni = NewMethod->param_begin(), ne = NewMethod->param_end(); 177 ni != ne; ++ni, ++oi) { 178 const ParmVarDecl *oldDecl = (*oi); 179 ParmVarDecl *newDecl = (*ni); 180 if (newDecl->hasAttr<NSConsumedAttr>() != 181 oldDecl->hasAttr<NSConsumedAttr>()) { 182 Diag(newDecl->getLocation(), 183 diag::err_nsconsumed_attribute_mismatch); 184 Diag(oldDecl->getLocation(), diag::note_previous_decl) 185 << "parameter"; 186 } 187 } 188 } 189 } 190 191 /// \brief Check a method declaration for compatibility with the Objective-C 192 /// ARC conventions. 193 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) { 194 ObjCMethodFamily family = method->getMethodFamily(); 195 switch (family) { 196 case OMF_None: 197 case OMF_dealloc: 198 case OMF_finalize: 199 case OMF_retain: 200 case OMF_release: 201 case OMF_autorelease: 202 case OMF_retainCount: 203 case OMF_self: 204 case OMF_performSelector: 205 return false; 206 207 case OMF_init: 208 // If the method doesn't obey the init rules, don't bother annotating it. 209 if (S.checkInitMethod(method, QualType())) 210 return true; 211 212 method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(), 213 S.Context)); 214 215 // Don't add a second copy of this attribute, but otherwise don't 216 // let it be suppressed. 217 if (method->hasAttr<NSReturnsRetainedAttr>()) 218 return false; 219 break; 220 221 case OMF_alloc: 222 case OMF_copy: 223 case OMF_mutableCopy: 224 case OMF_new: 225 if (method->hasAttr<NSReturnsRetainedAttr>() || 226 method->hasAttr<NSReturnsNotRetainedAttr>() || 227 method->hasAttr<NSReturnsAutoreleasedAttr>()) 228 return false; 229 break; 230 } 231 232 method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(), 233 S.Context)); 234 return false; 235 } 236 237 static void DiagnoseObjCImplementedDeprecations(Sema &S, 238 NamedDecl *ND, 239 SourceLocation ImplLoc, 240 int select) { 241 if (ND && ND->isDeprecated()) { 242 S.Diag(ImplLoc, diag::warn_deprecated_def) << select; 243 if (select == 0) 244 S.Diag(ND->getLocation(), diag::note_method_declared_at); 245 else 246 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class"; 247 } 248 } 249 250 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global 251 /// pool. 252 void Sema::AddAnyMethodToGlobalPool(Decl *D) { 253 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 254 255 // If we don't have a valid method decl, simply return. 256 if (!MDecl) 257 return; 258 if (MDecl->isInstanceMethod()) 259 AddInstanceMethodToGlobalPool(MDecl, true); 260 else 261 AddFactoryMethodToGlobalPool(MDecl, true); 262 } 263 264 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible 265 /// and user declared, in the method definition's AST. 266 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { 267 assert(getCurMethodDecl() == 0 && "Method parsing confused"); 268 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D); 269 270 // If we don't have a valid method decl, simply return. 271 if (!MDecl) 272 return; 273 274 // Allow all of Sema to see that we are entering a method definition. 275 PushDeclContext(FnBodyScope, MDecl); 276 PushFunctionScope(); 277 278 // Create Decl objects for each parameter, entrring them in the scope for 279 // binding to their use. 280 281 // Insert the invisible arguments, self and _cmd! 282 MDecl->createImplicitParams(Context, MDecl->getClassInterface()); 283 284 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope); 285 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope); 286 287 // Introduce all of the other parameters into this scope. 288 for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(), 289 E = MDecl->param_end(); PI != E; ++PI) { 290 ParmVarDecl *Param = (*PI); 291 if (!Param->isInvalidDecl() && 292 RequireCompleteType(Param->getLocation(), Param->getType(), 293 diag::err_typecheck_decl_incomplete_type)) 294 Param->setInvalidDecl(); 295 if ((*PI)->getIdentifier()) 296 PushOnScopeChains(*PI, FnBodyScope); 297 } 298 299 // In ARC, disallow definition of retain/release/autorelease/retainCount 300 if (getLangOptions().ObjCAutoRefCount) { 301 switch (MDecl->getMethodFamily()) { 302 case OMF_retain: 303 case OMF_retainCount: 304 case OMF_release: 305 case OMF_autorelease: 306 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def) 307 << MDecl->getSelector(); 308 break; 309 310 case OMF_None: 311 case OMF_dealloc: 312 case OMF_finalize: 313 case OMF_alloc: 314 case OMF_init: 315 case OMF_mutableCopy: 316 case OMF_copy: 317 case OMF_new: 318 case OMF_self: 319 case OMF_performSelector: 320 break; 321 } 322 } 323 324 // Warn on deprecated methods under -Wdeprecated-implementations, 325 // and prepare for warning on missing super calls. 326 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { 327 if (ObjCMethodDecl *IMD = 328 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod())) 329 DiagnoseObjCImplementedDeprecations(*this, 330 dyn_cast<NamedDecl>(IMD), 331 MDecl->getLocation(), 0); 332 333 // If this is "dealloc" or "finalize", set some bit here. 334 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. 335 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. 336 // Only do this if the current class actually has a superclass. 337 if (IC->getSuperClass()) { 338 ObjCShouldCallSuperDealloc = 339 !(Context.getLangOptions().ObjCAutoRefCount || 340 Context.getLangOptions().getGC() == LangOptions::GCOnly) && 341 MDecl->getMethodFamily() == OMF_dealloc; 342 ObjCShouldCallSuperFinalize = 343 Context.getLangOptions().getGC() != LangOptions::NonGC && 344 MDecl->getMethodFamily() == OMF_finalize; 345 } 346 } 347 } 348 349 Decl *Sema:: 350 ActOnStartClassInterface(SourceLocation AtInterfaceLoc, 351 IdentifierInfo *ClassName, SourceLocation ClassLoc, 352 IdentifierInfo *SuperName, SourceLocation SuperLoc, 353 Decl * const *ProtoRefs, unsigned NumProtoRefs, 354 const SourceLocation *ProtoLocs, 355 SourceLocation EndProtoLoc, AttributeList *AttrList) { 356 assert(ClassName && "Missing class identifier"); 357 358 // Check for another declaration kind with the same name. 359 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc, 360 LookupOrdinaryName, ForRedeclaration); 361 362 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 363 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 364 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 365 } 366 367 ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 368 if (IDecl) { 369 // Class already seen. Is it a forward declaration? 370 if (!IDecl->isForwardDecl()) { 371 IDecl->setInvalidDecl(); 372 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName(); 373 Diag(IDecl->getLocation(), diag::note_previous_definition); 374 375 // Return the previous class interface. 376 // FIXME: don't leak the objects passed in! 377 return ActOnObjCContainerStartDefinition(IDecl); 378 } else { 379 IDecl->setLocation(ClassLoc); 380 IDecl->setForwardDecl(false); 381 IDecl->setAtStartLoc(AtInterfaceLoc); 382 // If the forward decl was in a PCH, we need to write it again in a 383 // dependent AST file. 384 IDecl->setChangedSinceDeserialization(true); 385 386 // Since this ObjCInterfaceDecl was created by a forward declaration, 387 // we now add it to the DeclContext since it wasn't added before 388 // (see ActOnForwardClassDeclaration). 389 IDecl->setLexicalDeclContext(CurContext); 390 CurContext->addDecl(IDecl); 391 392 if (AttrList) 393 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 394 } 395 } else { 396 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, 397 ClassName, ClassLoc); 398 if (AttrList) 399 ProcessDeclAttributeList(TUScope, IDecl, AttrList); 400 401 PushOnScopeChains(IDecl, TUScope); 402 } 403 404 if (SuperName) { 405 // Check if a different kind of symbol declared in this scope. 406 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc, 407 LookupOrdinaryName); 408 409 if (!PrevDecl) { 410 // Try to correct for a typo in the superclass name. 411 TypoCorrection Corrected = CorrectTypo( 412 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope, 413 NULL, NULL, false, CTC_NoKeywords); 414 if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 415 Diag(SuperLoc, diag::err_undef_superclass_suggest) 416 << SuperName << ClassName << PrevDecl->getDeclName(); 417 Diag(PrevDecl->getLocation(), diag::note_previous_decl) 418 << PrevDecl->getDeclName(); 419 } 420 } 421 422 if (PrevDecl == IDecl) { 423 Diag(SuperLoc, diag::err_recursive_superclass) 424 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 425 IDecl->setLocEnd(ClassLoc); 426 } else { 427 ObjCInterfaceDecl *SuperClassDecl = 428 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 429 430 // Diagnose classes that inherit from deprecated classes. 431 if (SuperClassDecl) 432 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc); 433 434 if (PrevDecl && SuperClassDecl == 0) { 435 // The previous declaration was not a class decl. Check if we have a 436 // typedef. If we do, get the underlying class type. 437 if (const TypedefNameDecl *TDecl = 438 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 439 QualType T = TDecl->getUnderlyingType(); 440 if (T->isObjCObjectType()) { 441 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) 442 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl); 443 } 444 } 445 446 // This handles the following case: 447 // 448 // typedef int SuperClass; 449 // @interface MyClass : SuperClass {} @end 450 // 451 if (!SuperClassDecl) { 452 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName; 453 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 454 } 455 } 456 457 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) { 458 if (!SuperClassDecl) 459 Diag(SuperLoc, diag::err_undef_superclass) 460 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); 461 else if (SuperClassDecl->isForwardDecl()) { 462 Diag(SuperLoc, diag::err_forward_superclass) 463 << SuperClassDecl->getDeclName() << ClassName 464 << SourceRange(AtInterfaceLoc, ClassLoc); 465 Diag(SuperClassDecl->getLocation(), diag::note_forward_class); 466 SuperClassDecl = 0; 467 } 468 } 469 IDecl->setSuperClass(SuperClassDecl); 470 IDecl->setSuperClassLoc(SuperLoc); 471 IDecl->setLocEnd(SuperLoc); 472 } 473 } else { // we have a root class. 474 IDecl->setLocEnd(ClassLoc); 475 } 476 477 // Check then save referenced protocols. 478 if (NumProtoRefs) { 479 IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 480 ProtoLocs, Context); 481 IDecl->setLocEnd(EndProtoLoc); 482 } 483 484 CheckObjCDeclScope(IDecl); 485 return ActOnObjCContainerStartDefinition(IDecl); 486 } 487 488 /// ActOnCompatiblityAlias - this action is called after complete parsing of 489 /// @compatibility_alias declaration. It sets up the alias relationships. 490 Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc, 491 IdentifierInfo *AliasName, 492 SourceLocation AliasLocation, 493 IdentifierInfo *ClassName, 494 SourceLocation ClassLocation) { 495 // Look for previous declaration of alias name 496 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation, 497 LookupOrdinaryName, ForRedeclaration); 498 if (ADecl) { 499 if (isa<ObjCCompatibleAliasDecl>(ADecl)) 500 Diag(AliasLocation, diag::warn_previous_alias_decl); 501 else 502 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName; 503 Diag(ADecl->getLocation(), diag::note_previous_declaration); 504 return 0; 505 } 506 // Check for class declaration 507 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 508 LookupOrdinaryName, ForRedeclaration); 509 if (const TypedefNameDecl *TDecl = 510 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) { 511 QualType T = TDecl->getUnderlyingType(); 512 if (T->isObjCObjectType()) { 513 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) { 514 ClassName = IDecl->getIdentifier(); 515 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation, 516 LookupOrdinaryName, ForRedeclaration); 517 } 518 } 519 } 520 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU); 521 if (CDecl == 0) { 522 Diag(ClassLocation, diag::warn_undef_interface) << ClassName; 523 if (CDeclU) 524 Diag(CDeclU->getLocation(), diag::note_previous_declaration); 525 return 0; 526 } 527 528 // Everything checked out, instantiate a new alias declaration AST. 529 ObjCCompatibleAliasDecl *AliasDecl = 530 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl); 531 532 if (!CheckObjCDeclScope(AliasDecl)) 533 PushOnScopeChains(AliasDecl, TUScope); 534 535 return AliasDecl; 536 } 537 538 bool Sema::CheckForwardProtocolDeclarationForCircularDependency( 539 IdentifierInfo *PName, 540 SourceLocation &Ploc, SourceLocation PrevLoc, 541 const ObjCList<ObjCProtocolDecl> &PList) { 542 543 bool res = false; 544 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), 545 E = PList.end(); I != E; ++I) { 546 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(), 547 Ploc)) { 548 if (PDecl->getIdentifier() == PName) { 549 Diag(Ploc, diag::err_protocol_has_circular_dependency); 550 Diag(PrevLoc, diag::note_previous_definition); 551 res = true; 552 } 553 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, 554 PDecl->getLocation(), PDecl->getReferencedProtocols())) 555 res = true; 556 } 557 } 558 return res; 559 } 560 561 Decl * 562 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc, 563 IdentifierInfo *ProtocolName, 564 SourceLocation ProtocolLoc, 565 Decl * const *ProtoRefs, 566 unsigned NumProtoRefs, 567 const SourceLocation *ProtoLocs, 568 SourceLocation EndProtoLoc, 569 AttributeList *AttrList) { 570 bool err = false; 571 // FIXME: Deal with AttrList. 572 assert(ProtocolName && "Missing protocol identifier"); 573 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc); 574 if (PDecl) { 575 // Protocol already seen. Better be a forward protocol declaration 576 if (!PDecl->isForwardDecl()) { 577 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName; 578 Diag(PDecl->getLocation(), diag::note_previous_definition); 579 // Just return the protocol we already had. 580 // FIXME: don't leak the objects passed in! 581 return ActOnObjCContainerStartDefinition(PDecl); 582 } 583 ObjCList<ObjCProtocolDecl> PList; 584 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context); 585 err = CheckForwardProtocolDeclarationForCircularDependency( 586 ProtocolName, ProtocolLoc, PDecl->getLocation(), PList); 587 588 // Make sure the cached decl gets a valid start location. 589 PDecl->setAtStartLoc(AtProtoInterfaceLoc); 590 PDecl->setLocation(ProtocolLoc); 591 PDecl->setForwardDecl(false); 592 // Since this ObjCProtocolDecl was created by a forward declaration, 593 // we now add it to the DeclContext since it wasn't added before 594 PDecl->setLexicalDeclContext(CurContext); 595 CurContext->addDecl(PDecl); 596 // Repeat in dependent AST files. 597 PDecl->setChangedSinceDeserialization(true); 598 } else { 599 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName, 600 ProtocolLoc, AtProtoInterfaceLoc, 601 /*isForwardDecl=*/false); 602 PushOnScopeChains(PDecl, TUScope); 603 PDecl->setForwardDecl(false); 604 } 605 if (AttrList) 606 ProcessDeclAttributeList(TUScope, PDecl, AttrList); 607 if (!err && NumProtoRefs ) { 608 /// Check then save referenced protocols. 609 PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 610 ProtoLocs, Context); 611 PDecl->setLocEnd(EndProtoLoc); 612 } 613 614 CheckObjCDeclScope(PDecl); 615 return ActOnObjCContainerStartDefinition(PDecl); 616 } 617 618 /// FindProtocolDeclaration - This routine looks up protocols and 619 /// issues an error if they are not declared. It returns list of 620 /// protocol declarations in its 'Protocols' argument. 621 void 622 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, 623 const IdentifierLocPair *ProtocolId, 624 unsigned NumProtocols, 625 SmallVectorImpl<Decl *> &Protocols) { 626 for (unsigned i = 0; i != NumProtocols; ++i) { 627 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first, 628 ProtocolId[i].second); 629 if (!PDecl) { 630 TypoCorrection Corrected = CorrectTypo( 631 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second), 632 LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords); 633 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) { 634 Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest) 635 << ProtocolId[i].first << Corrected.getCorrection(); 636 Diag(PDecl->getLocation(), diag::note_previous_decl) 637 << PDecl->getDeclName(); 638 } 639 } 640 641 if (!PDecl) { 642 Diag(ProtocolId[i].second, diag::err_undeclared_protocol) 643 << ProtocolId[i].first; 644 continue; 645 } 646 647 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second); 648 649 // If this is a forward declaration and we are supposed to warn in this 650 // case, do it. 651 if (WarnOnDeclarations && PDecl->isForwardDecl()) 652 Diag(ProtocolId[i].second, diag::warn_undef_protocolref) 653 << ProtocolId[i].first; 654 Protocols.push_back(PDecl); 655 } 656 } 657 658 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of 659 /// a class method in its extension. 660 /// 661 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, 662 ObjCInterfaceDecl *ID) { 663 if (!ID) 664 return; // Possibly due to previous error 665 666 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; 667 for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(), 668 e = ID->meth_end(); i != e; ++i) { 669 ObjCMethodDecl *MD = *i; 670 MethodMap[MD->getSelector()] = MD; 671 } 672 673 if (MethodMap.empty()) 674 return; 675 for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(), 676 e = CAT->meth_end(); i != e; ++i) { 677 ObjCMethodDecl *Method = *i; 678 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; 679 if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) { 680 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 681 << Method->getDeclName(); 682 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 683 } 684 } 685 } 686 687 /// ActOnForwardProtocolDeclaration - Handle @protocol foo; 688 Decl * 689 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc, 690 const IdentifierLocPair *IdentList, 691 unsigned NumElts, 692 AttributeList *attrList) { 693 SmallVector<ObjCProtocolDecl*, 32> Protocols; 694 SmallVector<SourceLocation, 8> ProtoLocs; 695 696 for (unsigned i = 0; i != NumElts; ++i) { 697 IdentifierInfo *Ident = IdentList[i].first; 698 ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second); 699 bool isNew = false; 700 if (PDecl == 0) { // Not already seen? 701 PDecl = ObjCProtocolDecl::Create(Context, CurContext, Ident, 702 IdentList[i].second, AtProtocolLoc, 703 /*isForwardDecl=*/true); 704 PushOnScopeChains(PDecl, TUScope, false); 705 isNew = true; 706 } 707 if (attrList) { 708 ProcessDeclAttributeList(TUScope, PDecl, attrList); 709 if (!isNew) 710 PDecl->setChangedSinceDeserialization(true); 711 } 712 Protocols.push_back(PDecl); 713 ProtoLocs.push_back(IdentList[i].second); 714 } 715 716 ObjCForwardProtocolDecl *PDecl = 717 ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc, 718 Protocols.data(), Protocols.size(), 719 ProtoLocs.data()); 720 CurContext->addDecl(PDecl); 721 CheckObjCDeclScope(PDecl); 722 return PDecl; 723 } 724 725 Decl *Sema:: 726 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, 727 IdentifierInfo *ClassName, SourceLocation ClassLoc, 728 IdentifierInfo *CategoryName, 729 SourceLocation CategoryLoc, 730 Decl * const *ProtoRefs, 731 unsigned NumProtoRefs, 732 const SourceLocation *ProtoLocs, 733 SourceLocation EndProtoLoc) { 734 ObjCCategoryDecl *CDecl; 735 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 736 737 /// Check that class of this category is already completely declared. 738 if (!IDecl || IDecl->isForwardDecl()) { 739 // Create an invalid ObjCCategoryDecl to serve as context for 740 // the enclosing method declarations. We mark the decl invalid 741 // to make it clear that this isn't a valid AST. 742 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 743 ClassLoc, CategoryLoc, CategoryName,IDecl); 744 CDecl->setInvalidDecl(); 745 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 746 return ActOnObjCContainerStartDefinition(CDecl); 747 } 748 749 if (!CategoryName && IDecl->getImplementation()) { 750 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName; 751 Diag(IDecl->getImplementation()->getLocation(), 752 diag::note_implementation_declared); 753 } 754 755 if (CategoryName) { 756 /// Check for duplicate interface declaration for this category 757 ObjCCategoryDecl *CDeclChain; 758 for (CDeclChain = IDecl->getCategoryList(); CDeclChain; 759 CDeclChain = CDeclChain->getNextClassCategory()) { 760 if (CDeclChain->getIdentifier() == CategoryName) { 761 // Class extensions can be declared multiple times. 762 Diag(CategoryLoc, diag::warn_dup_category_def) 763 << ClassName << CategoryName; 764 Diag(CDeclChain->getLocation(), diag::note_previous_definition); 765 break; 766 } 767 } 768 } 769 770 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc, 771 ClassLoc, CategoryLoc, CategoryName, IDecl); 772 // FIXME: PushOnScopeChains? 773 CurContext->addDecl(CDecl); 774 775 if (NumProtoRefs) { 776 CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs, 777 ProtoLocs, Context); 778 // Protocols in the class extension belong to the class. 779 if (CDecl->IsClassExtension()) 780 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs, 781 NumProtoRefs, Context); 782 } 783 784 CheckObjCDeclScope(CDecl); 785 return ActOnObjCContainerStartDefinition(CDecl); 786 } 787 788 /// ActOnStartCategoryImplementation - Perform semantic checks on the 789 /// category implementation declaration and build an ObjCCategoryImplDecl 790 /// object. 791 Decl *Sema::ActOnStartCategoryImplementation( 792 SourceLocation AtCatImplLoc, 793 IdentifierInfo *ClassName, SourceLocation ClassLoc, 794 IdentifierInfo *CatName, SourceLocation CatLoc) { 795 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true); 796 ObjCCategoryDecl *CatIDecl = 0; 797 if (IDecl) { 798 CatIDecl = IDecl->FindCategoryDeclaration(CatName); 799 if (!CatIDecl) { 800 // Category @implementation with no corresponding @interface. 801 // Create and install one. 802 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(), 803 SourceLocation(), SourceLocation(), 804 CatName, IDecl); 805 } 806 } 807 808 ObjCCategoryImplDecl *CDecl = 809 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl, 810 ClassLoc, AtCatImplLoc); 811 /// Check that class of this category is already completely declared. 812 if (!IDecl || IDecl->isForwardDecl()) { 813 Diag(ClassLoc, diag::err_undef_interface) << ClassName; 814 CDecl->setInvalidDecl(); 815 } 816 817 // FIXME: PushOnScopeChains? 818 CurContext->addDecl(CDecl); 819 820 // If the interface is deprecated/unavailable, warn/error about it. 821 if (IDecl) 822 DiagnoseUseOfDecl(IDecl, ClassLoc); 823 824 /// Check that CatName, category name, is not used in another implementation. 825 if (CatIDecl) { 826 if (CatIDecl->getImplementation()) { 827 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName 828 << CatName; 829 Diag(CatIDecl->getImplementation()->getLocation(), 830 diag::note_previous_definition); 831 } else { 832 CatIDecl->setImplementation(CDecl); 833 // Warn on implementating category of deprecated class under 834 // -Wdeprecated-implementations flag. 835 DiagnoseObjCImplementedDeprecations(*this, 836 dyn_cast<NamedDecl>(IDecl), 837 CDecl->getLocation(), 2); 838 } 839 } 840 841 CheckObjCDeclScope(CDecl); 842 return ActOnObjCContainerStartDefinition(CDecl); 843 } 844 845 Decl *Sema::ActOnStartClassImplementation( 846 SourceLocation AtClassImplLoc, 847 IdentifierInfo *ClassName, SourceLocation ClassLoc, 848 IdentifierInfo *SuperClassname, 849 SourceLocation SuperClassLoc) { 850 ObjCInterfaceDecl* IDecl = 0; 851 // Check for another declaration kind with the same name. 852 NamedDecl *PrevDecl 853 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName, 854 ForRedeclaration); 855 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 856 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName; 857 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 858 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) { 859 // If this is a forward declaration of an interface, warn. 860 if (IDecl->isForwardDecl()) { 861 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 862 IDecl = 0; 863 } 864 } else { 865 // We did not find anything with the name ClassName; try to correct for 866 // typos in the class name. 867 TypoCorrection Corrected = CorrectTypo( 868 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope, 869 NULL, NULL, false, CTC_NoKeywords); 870 if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) { 871 // Suggest the (potentially) correct interface name. However, put the 872 // fix-it hint itself in a separate note, since changing the name in 873 // the warning would make the fix-it change semantics.However, don't 874 // provide a code-modification hint or use the typo name for recovery, 875 // because this is just a warning. The program may actually be correct. 876 DeclarationName CorrectedName = Corrected.getCorrection(); 877 Diag(ClassLoc, diag::warn_undef_interface_suggest) 878 << ClassName << CorrectedName; 879 Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName 880 << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString()); 881 IDecl = 0; 882 } else { 883 Diag(ClassLoc, diag::warn_undef_interface) << ClassName; 884 } 885 } 886 887 // Check that super class name is valid class name 888 ObjCInterfaceDecl* SDecl = 0; 889 if (SuperClassname) { 890 // Check if a different kind of symbol declared in this scope. 891 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc, 892 LookupOrdinaryName); 893 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 894 Diag(SuperClassLoc, diag::err_redefinition_different_kind) 895 << SuperClassname; 896 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 897 } else { 898 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 899 if (!SDecl) 900 Diag(SuperClassLoc, diag::err_undef_superclass) 901 << SuperClassname << ClassName; 902 else if (IDecl && IDecl->getSuperClass() != SDecl) { 903 // This implementation and its interface do not have the same 904 // super class. 905 Diag(SuperClassLoc, diag::err_conflicting_super_class) 906 << SDecl->getDeclName(); 907 Diag(SDecl->getLocation(), diag::note_previous_definition); 908 } 909 } 910 } 911 912 if (!IDecl) { 913 // Legacy case of @implementation with no corresponding @interface. 914 // Build, chain & install the interface decl into the identifier. 915 916 // FIXME: Do we support attributes on the @implementation? If so we should 917 // copy them over. 918 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc, 919 ClassName, ClassLoc, false, true); 920 IDecl->setSuperClass(SDecl); 921 IDecl->setLocEnd(ClassLoc); 922 923 PushOnScopeChains(IDecl, TUScope); 924 } else { 925 // Mark the interface as being completed, even if it was just as 926 // @class ....; 927 // declaration; the user cannot reopen it. 928 IDecl->setForwardDecl(false); 929 } 930 931 ObjCImplementationDecl* IMPDecl = 932 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl, 933 ClassLoc, AtClassImplLoc); 934 935 if (CheckObjCDeclScope(IMPDecl)) 936 return ActOnObjCContainerStartDefinition(IMPDecl); 937 938 // Check that there is no duplicate implementation of this class. 939 if (IDecl->getImplementation()) { 940 // FIXME: Don't leak everything! 941 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName; 942 Diag(IDecl->getImplementation()->getLocation(), 943 diag::note_previous_definition); 944 } else { // add it to the list. 945 IDecl->setImplementation(IMPDecl); 946 PushOnScopeChains(IMPDecl, TUScope); 947 // Warn on implementating deprecated class under 948 // -Wdeprecated-implementations flag. 949 DiagnoseObjCImplementedDeprecations(*this, 950 dyn_cast<NamedDecl>(IDecl), 951 IMPDecl->getLocation(), 1); 952 } 953 return ActOnObjCContainerStartDefinition(IMPDecl); 954 } 955 956 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, 957 ObjCIvarDecl **ivars, unsigned numIvars, 958 SourceLocation RBrace) { 959 assert(ImpDecl && "missing implementation decl"); 960 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); 961 if (!IDecl) 962 return; 963 /// Check case of non-existing @interface decl. 964 /// (legacy objective-c @implementation decl without an @interface decl). 965 /// Add implementations's ivar to the synthesize class's ivar list. 966 if (IDecl->isImplicitInterfaceDecl()) { 967 IDecl->setLocEnd(RBrace); 968 // Add ivar's to class's DeclContext. 969 for (unsigned i = 0, e = numIvars; i != e; ++i) { 970 ivars[i]->setLexicalDeclContext(ImpDecl); 971 IDecl->makeDeclVisibleInContext(ivars[i], false); 972 ImpDecl->addDecl(ivars[i]); 973 } 974 975 return; 976 } 977 // If implementation has empty ivar list, just return. 978 if (numIvars == 0) 979 return; 980 981 assert(ivars && "missing @implementation ivars"); 982 if (LangOpts.ObjCNonFragileABI2) { 983 if (ImpDecl->getSuperClass()) 984 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use); 985 for (unsigned i = 0; i < numIvars; i++) { 986 ObjCIvarDecl* ImplIvar = ivars[i]; 987 if (const ObjCIvarDecl *ClsIvar = 988 IDecl->getIvarDecl(ImplIvar->getIdentifier())) { 989 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 990 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 991 continue; 992 } 993 // Instance ivar to Implementation's DeclContext. 994 ImplIvar->setLexicalDeclContext(ImpDecl); 995 IDecl->makeDeclVisibleInContext(ImplIvar, false); 996 ImpDecl->addDecl(ImplIvar); 997 } 998 return; 999 } 1000 // Check interface's Ivar list against those in the implementation. 1001 // names and types must match. 1002 // 1003 unsigned j = 0; 1004 ObjCInterfaceDecl::ivar_iterator 1005 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); 1006 for (; numIvars > 0 && IVI != IVE; ++IVI) { 1007 ObjCIvarDecl* ImplIvar = ivars[j++]; 1008 ObjCIvarDecl* ClsIvar = *IVI; 1009 assert (ImplIvar && "missing implementation ivar"); 1010 assert (ClsIvar && "missing class ivar"); 1011 1012 // First, make sure the types match. 1013 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) { 1014 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type) 1015 << ImplIvar->getIdentifier() 1016 << ImplIvar->getType() << ClsIvar->getType(); 1017 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1018 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && 1019 ImplIvar->getBitWidthValue(Context) != 1020 ClsIvar->getBitWidthValue(Context)) { 1021 Diag(ImplIvar->getBitWidth()->getLocStart(), 1022 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier(); 1023 Diag(ClsIvar->getBitWidth()->getLocStart(), 1024 diag::note_previous_definition); 1025 } 1026 // Make sure the names are identical. 1027 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { 1028 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name) 1029 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); 1030 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 1031 } 1032 --numIvars; 1033 } 1034 1035 if (numIvars > 0) 1036 Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count); 1037 else if (IVI != IVE) 1038 Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count); 1039 } 1040 1041 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method, 1042 bool &IncompleteImpl, unsigned DiagID) { 1043 // No point warning no definition of method which is 'unavailable'. 1044 if (method->hasAttr<UnavailableAttr>()) 1045 return; 1046 if (!IncompleteImpl) { 1047 Diag(ImpLoc, diag::warn_incomplete_impl); 1048 IncompleteImpl = true; 1049 } 1050 if (DiagID == diag::warn_unimplemented_protocol_method) 1051 Diag(ImpLoc, DiagID) << method->getDeclName(); 1052 else 1053 Diag(method->getLocation(), DiagID) << method->getDeclName(); 1054 } 1055 1056 /// Determines if type B can be substituted for type A. Returns true if we can 1057 /// guarantee that anything that the user will do to an object of type A can 1058 /// also be done to an object of type B. This is trivially true if the two 1059 /// types are the same, or if B is a subclass of A. It becomes more complex 1060 /// in cases where protocols are involved. 1061 /// 1062 /// Object types in Objective-C describe the minimum requirements for an 1063 /// object, rather than providing a complete description of a type. For 1064 /// example, if A is a subclass of B, then B* may refer to an instance of A. 1065 /// The principle of substitutability means that we may use an instance of A 1066 /// anywhere that we may use an instance of B - it will implement all of the 1067 /// ivars of B and all of the methods of B. 1068 /// 1069 /// This substitutability is important when type checking methods, because 1070 /// the implementation may have stricter type definitions than the interface. 1071 /// The interface specifies minimum requirements, but the implementation may 1072 /// have more accurate ones. For example, a method may privately accept 1073 /// instances of B, but only publish that it accepts instances of A. Any 1074 /// object passed to it will be type checked against B, and so will implicitly 1075 /// by a valid A*. Similarly, a method may return a subclass of the class that 1076 /// it is declared as returning. 1077 /// 1078 /// This is most important when considering subclassing. A method in a 1079 /// subclass must accept any object as an argument that its superclass's 1080 /// implementation accepts. It may, however, accept a more general type 1081 /// without breaking substitutability (i.e. you can still use the subclass 1082 /// anywhere that you can use the superclass, but not vice versa). The 1083 /// converse requirement applies to return types: the return type for a 1084 /// subclass method must be a valid object of the kind that the superclass 1085 /// advertises, but it may be specified more accurately. This avoids the need 1086 /// for explicit down-casting by callers. 1087 /// 1088 /// Note: This is a stricter requirement than for assignment. 1089 static bool isObjCTypeSubstitutable(ASTContext &Context, 1090 const ObjCObjectPointerType *A, 1091 const ObjCObjectPointerType *B, 1092 bool rejectId) { 1093 // Reject a protocol-unqualified id. 1094 if (rejectId && B->isObjCIdType()) return false; 1095 1096 // If B is a qualified id, then A must also be a qualified id and it must 1097 // implement all of the protocols in B. It may not be a qualified class. 1098 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a 1099 // stricter definition so it is not substitutable for id<A>. 1100 if (B->isObjCQualifiedIdType()) { 1101 return A->isObjCQualifiedIdType() && 1102 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0), 1103 QualType(B,0), 1104 false); 1105 } 1106 1107 /* 1108 // id is a special type that bypasses type checking completely. We want a 1109 // warning when it is used in one place but not another. 1110 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; 1111 1112 1113 // If B is a qualified id, then A must also be a qualified id (which it isn't 1114 // if we've got this far) 1115 if (B->isObjCQualifiedIdType()) return false; 1116 */ 1117 1118 // Now we know that A and B are (potentially-qualified) class types. The 1119 // normal rules for assignment apply. 1120 return Context.canAssignObjCInterfaces(A, B); 1121 } 1122 1123 static SourceRange getTypeRange(TypeSourceInfo *TSI) { 1124 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); 1125 } 1126 1127 static bool CheckMethodOverrideReturn(Sema &S, 1128 ObjCMethodDecl *MethodImpl, 1129 ObjCMethodDecl *MethodDecl, 1130 bool IsProtocolMethodDecl, 1131 bool IsOverridingMode, 1132 bool Warn) { 1133 if (IsProtocolMethodDecl && 1134 (MethodDecl->getObjCDeclQualifier() != 1135 MethodImpl->getObjCDeclQualifier())) { 1136 if (Warn) { 1137 S.Diag(MethodImpl->getLocation(), 1138 (IsOverridingMode ? 1139 diag::warn_conflicting_overriding_ret_type_modifiers 1140 : diag::warn_conflicting_ret_type_modifiers)) 1141 << MethodImpl->getDeclName() 1142 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1143 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration) 1144 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1145 } 1146 else 1147 return false; 1148 } 1149 1150 if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(), 1151 MethodDecl->getResultType())) 1152 return true; 1153 if (!Warn) 1154 return false; 1155 1156 unsigned DiagID = 1157 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 1158 : diag::warn_conflicting_ret_types; 1159 1160 // Mismatches between ObjC pointers go into a different warning 1161 // category, and sometimes they're even completely whitelisted. 1162 if (const ObjCObjectPointerType *ImplPtrTy = 1163 MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) { 1164 if (const ObjCObjectPointerType *IfacePtrTy = 1165 MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) { 1166 // Allow non-matching return types as long as they don't violate 1167 // the principle of substitutability. Specifically, we permit 1168 // return types that are subclasses of the declared return type, 1169 // or that are more-qualified versions of the declared type. 1170 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false)) 1171 return false; 1172 1173 DiagID = 1174 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 1175 : diag::warn_non_covariant_ret_types; 1176 } 1177 } 1178 1179 S.Diag(MethodImpl->getLocation(), DiagID) 1180 << MethodImpl->getDeclName() 1181 << MethodDecl->getResultType() 1182 << MethodImpl->getResultType() 1183 << getTypeRange(MethodImpl->getResultTypeSourceInfo()); 1184 S.Diag(MethodDecl->getLocation(), 1185 IsOverridingMode ? diag::note_previous_declaration 1186 : diag::note_previous_definition) 1187 << getTypeRange(MethodDecl->getResultTypeSourceInfo()); 1188 return false; 1189 } 1190 1191 static bool CheckMethodOverrideParam(Sema &S, 1192 ObjCMethodDecl *MethodImpl, 1193 ObjCMethodDecl *MethodDecl, 1194 ParmVarDecl *ImplVar, 1195 ParmVarDecl *IfaceVar, 1196 bool IsProtocolMethodDecl, 1197 bool IsOverridingMode, 1198 bool Warn) { 1199 if (IsProtocolMethodDecl && 1200 (ImplVar->getObjCDeclQualifier() != 1201 IfaceVar->getObjCDeclQualifier())) { 1202 if (Warn) { 1203 if (IsOverridingMode) 1204 S.Diag(ImplVar->getLocation(), 1205 diag::warn_conflicting_overriding_param_modifiers) 1206 << getTypeRange(ImplVar->getTypeSourceInfo()) 1207 << MethodImpl->getDeclName(); 1208 else S.Diag(ImplVar->getLocation(), 1209 diag::warn_conflicting_param_modifiers) 1210 << getTypeRange(ImplVar->getTypeSourceInfo()) 1211 << MethodImpl->getDeclName(); 1212 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration) 1213 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1214 } 1215 else 1216 return false; 1217 } 1218 1219 QualType ImplTy = ImplVar->getType(); 1220 QualType IfaceTy = IfaceVar->getType(); 1221 1222 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy)) 1223 return true; 1224 1225 if (!Warn) 1226 return false; 1227 unsigned DiagID = 1228 IsOverridingMode ? diag::warn_conflicting_overriding_param_types 1229 : diag::warn_conflicting_param_types; 1230 1231 // Mismatches between ObjC pointers go into a different warning 1232 // category, and sometimes they're even completely whitelisted. 1233 if (const ObjCObjectPointerType *ImplPtrTy = 1234 ImplTy->getAs<ObjCObjectPointerType>()) { 1235 if (const ObjCObjectPointerType *IfacePtrTy = 1236 IfaceTy->getAs<ObjCObjectPointerType>()) { 1237 // Allow non-matching argument types as long as they don't 1238 // violate the principle of substitutability. Specifically, the 1239 // implementation must accept any objects that the superclass 1240 // accepts, however it may also accept others. 1241 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true)) 1242 return false; 1243 1244 DiagID = 1245 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 1246 : diag::warn_non_contravariant_param_types; 1247 } 1248 } 1249 1250 S.Diag(ImplVar->getLocation(), DiagID) 1251 << getTypeRange(ImplVar->getTypeSourceInfo()) 1252 << MethodImpl->getDeclName() << IfaceTy << ImplTy; 1253 S.Diag(IfaceVar->getLocation(), 1254 (IsOverridingMode ? diag::note_previous_declaration 1255 : diag::note_previous_definition)) 1256 << getTypeRange(IfaceVar->getTypeSourceInfo()); 1257 return false; 1258 } 1259 1260 /// In ARC, check whether the conventional meanings of the two methods 1261 /// match. If they don't, it's a hard error. 1262 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, 1263 ObjCMethodDecl *decl) { 1264 ObjCMethodFamily implFamily = impl->getMethodFamily(); 1265 ObjCMethodFamily declFamily = decl->getMethodFamily(); 1266 if (implFamily == declFamily) return false; 1267 1268 // Since conventions are sorted by selector, the only possibility is 1269 // that the types differ enough to cause one selector or the other 1270 // to fall out of the family. 1271 assert(implFamily == OMF_None || declFamily == OMF_None); 1272 1273 // No further diagnostics required on invalid declarations. 1274 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; 1275 1276 const ObjCMethodDecl *unmatched = impl; 1277 ObjCMethodFamily family = declFamily; 1278 unsigned errorID = diag::err_arc_lost_method_convention; 1279 unsigned noteID = diag::note_arc_lost_method_convention; 1280 if (declFamily == OMF_None) { 1281 unmatched = decl; 1282 family = implFamily; 1283 errorID = diag::err_arc_gained_method_convention; 1284 noteID = diag::note_arc_gained_method_convention; 1285 } 1286 1287 // Indexes into a %select clause in the diagnostic. 1288 enum FamilySelector { 1289 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new 1290 }; 1291 FamilySelector familySelector = FamilySelector(); 1292 1293 switch (family) { 1294 case OMF_None: llvm_unreachable("logic error, no method convention"); 1295 case OMF_retain: 1296 case OMF_release: 1297 case OMF_autorelease: 1298 case OMF_dealloc: 1299 case OMF_finalize: 1300 case OMF_retainCount: 1301 case OMF_self: 1302 case OMF_performSelector: 1303 // Mismatches for these methods don't change ownership 1304 // conventions, so we don't care. 1305 return false; 1306 1307 case OMF_init: familySelector = F_init; break; 1308 case OMF_alloc: familySelector = F_alloc; break; 1309 case OMF_copy: familySelector = F_copy; break; 1310 case OMF_mutableCopy: familySelector = F_mutableCopy; break; 1311 case OMF_new: familySelector = F_new; break; 1312 } 1313 1314 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; 1315 ReasonSelector reasonSelector; 1316 1317 // The only reason these methods don't fall within their families is 1318 // due to unusual result types. 1319 if (unmatched->getResultType()->isObjCObjectPointerType()) { 1320 reasonSelector = R_UnrelatedReturn; 1321 } else { 1322 reasonSelector = R_NonObjectReturn; 1323 } 1324 1325 S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector; 1326 S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector; 1327 1328 return true; 1329 } 1330 1331 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1332 ObjCMethodDecl *MethodDecl, 1333 bool IsProtocolMethodDecl) { 1334 if (getLangOptions().ObjCAutoRefCount && 1335 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl)) 1336 return; 1337 1338 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1339 IsProtocolMethodDecl, false, 1340 true); 1341 1342 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1343 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1344 IM != EM; ++IM, ++IF) { 1345 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF, 1346 IsProtocolMethodDecl, false, true); 1347 } 1348 1349 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { 1350 Diag(ImpMethodDecl->getLocation(), 1351 diag::warn_conflicting_variadic); 1352 Diag(MethodDecl->getLocation(), diag::note_previous_declaration); 1353 } 1354 } 1355 1356 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, 1357 ObjCMethodDecl *Overridden, 1358 bool IsProtocolMethodDecl) { 1359 1360 CheckMethodOverrideReturn(*this, Method, Overridden, 1361 IsProtocolMethodDecl, true, 1362 true); 1363 1364 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), 1365 IF = Overridden->param_begin(), EM = Method->param_end(); 1366 IM != EM; ++IM, ++IF) { 1367 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF, 1368 IsProtocolMethodDecl, true, true); 1369 } 1370 1371 if (Method->isVariadic() != Overridden->isVariadic()) { 1372 Diag(Method->getLocation(), 1373 diag::warn_conflicting_overriding_variadic); 1374 Diag(Overridden->getLocation(), diag::note_previous_declaration); 1375 } 1376 } 1377 1378 /// WarnExactTypedMethods - This routine issues a warning if method 1379 /// implementation declaration matches exactly that of its declaration. 1380 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, 1381 ObjCMethodDecl *MethodDecl, 1382 bool IsProtocolMethodDecl) { 1383 // don't issue warning when protocol method is optional because primary 1384 // class is not required to implement it and it is safe for protocol 1385 // to implement it. 1386 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional) 1387 return; 1388 // don't issue warning when primary class's method is 1389 // depecated/unavailable. 1390 if (MethodDecl->hasAttr<UnavailableAttr>() || 1391 MethodDecl->hasAttr<DeprecatedAttr>()) 1392 return; 1393 1394 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 1395 IsProtocolMethodDecl, false, false); 1396 if (match) 1397 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), 1398 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(); 1399 IM != EM; ++IM, ++IF) { 1400 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 1401 *IM, *IF, 1402 IsProtocolMethodDecl, false, false); 1403 if (!match) 1404 break; 1405 } 1406 if (match) 1407 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); 1408 if (match) 1409 match = !(MethodDecl->isClassMethod() && 1410 MethodDecl->getSelector() == GetNullarySelector("load", Context)); 1411 1412 if (match) { 1413 Diag(ImpMethodDecl->getLocation(), 1414 diag::warn_category_method_impl_match); 1415 Diag(MethodDecl->getLocation(), diag::note_method_declared_at); 1416 } 1417 } 1418 1419 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely 1420 /// improve the efficiency of selector lookups and type checking by associating 1421 /// with each protocol / interface / category the flattened instance tables. If 1422 /// we used an immutable set to keep the table then it wouldn't add significant 1423 /// memory cost and it would be handy for lookups. 1424 1425 /// CheckProtocolMethodDefs - This routine checks unimplemented methods 1426 /// Declared in protocol, and those referenced by it. 1427 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc, 1428 ObjCProtocolDecl *PDecl, 1429 bool& IncompleteImpl, 1430 const llvm::DenseSet<Selector> &InsMap, 1431 const llvm::DenseSet<Selector> &ClsMap, 1432 ObjCContainerDecl *CDecl) { 1433 ObjCInterfaceDecl *IDecl; 1434 if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) 1435 IDecl = C->getClassInterface(); 1436 else 1437 IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl); 1438 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null"); 1439 1440 ObjCInterfaceDecl *Super = IDecl->getSuperClass(); 1441 ObjCInterfaceDecl *NSIDecl = 0; 1442 if (getLangOptions().NeXTRuntime) { 1443 // check to see if class implements forwardInvocation method and objects 1444 // of this class are derived from 'NSProxy' so that to forward requests 1445 // from one object to another. 1446 // Under such conditions, which means that every method possible is 1447 // implemented in the class, we should not issue "Method definition not 1448 // found" warnings. 1449 // FIXME: Use a general GetUnarySelector method for this. 1450 IdentifierInfo* II = &Context.Idents.get("forwardInvocation"); 1451 Selector fISelector = Context.Selectors.getSelector(1, &II); 1452 if (InsMap.count(fISelector)) 1453 // Is IDecl derived from 'NSProxy'? If so, no instance methods 1454 // need be implemented in the implementation. 1455 NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy")); 1456 } 1457 1458 // If a method lookup fails locally we still need to look and see if 1459 // the method was implemented by a base class or an inherited 1460 // protocol. This lookup is slow, but occurs rarely in correct code 1461 // and otherwise would terminate in a warning. 1462 1463 // check unimplemented instance methods. 1464 if (!NSIDecl) 1465 for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(), 1466 E = PDecl->instmeth_end(); I != E; ++I) { 1467 ObjCMethodDecl *method = *I; 1468 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1469 !method->isSynthesized() && !InsMap.count(method->getSelector()) && 1470 (!Super || 1471 !Super->lookupInstanceMethod(method->getSelector()))) { 1472 // Ugly, but necessary. Method declared in protcol might have 1473 // have been synthesized due to a property declared in the class which 1474 // uses the protocol. 1475 ObjCMethodDecl *MethodInClass = 1476 IDecl->lookupInstanceMethod(method->getSelector()); 1477 if (!MethodInClass || !MethodInClass->isSynthesized()) { 1478 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1479 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) 1480 != DiagnosticsEngine::Ignored) { 1481 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1482 Diag(method->getLocation(), diag::note_method_declared_at); 1483 Diag(CDecl->getLocation(), diag::note_required_for_protocol_at) 1484 << PDecl->getDeclName(); 1485 } 1486 } 1487 } 1488 } 1489 // check unimplemented class methods 1490 for (ObjCProtocolDecl::classmeth_iterator 1491 I = PDecl->classmeth_begin(), E = PDecl->classmeth_end(); 1492 I != E; ++I) { 1493 ObjCMethodDecl *method = *I; 1494 if (method->getImplementationControl() != ObjCMethodDecl::Optional && 1495 !ClsMap.count(method->getSelector()) && 1496 (!Super || !Super->lookupClassMethod(method->getSelector()))) { 1497 unsigned DIAG = diag::warn_unimplemented_protocol_method; 1498 if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != 1499 DiagnosticsEngine::Ignored) { 1500 WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG); 1501 Diag(method->getLocation(), diag::note_method_declared_at); 1502 Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) << 1503 PDecl->getDeclName(); 1504 } 1505 } 1506 } 1507 // Check on this protocols's referenced protocols, recursively. 1508 for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(), 1509 E = PDecl->protocol_end(); PI != E; ++PI) 1510 CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl); 1511 } 1512 1513 /// MatchAllMethodDeclarations - Check methods declared in interface 1514 /// or protocol against those declared in their implementations. 1515 /// 1516 void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap, 1517 const llvm::DenseSet<Selector> &ClsMap, 1518 llvm::DenseSet<Selector> &InsMapSeen, 1519 llvm::DenseSet<Selector> &ClsMapSeen, 1520 ObjCImplDecl* IMPDecl, 1521 ObjCContainerDecl* CDecl, 1522 bool &IncompleteImpl, 1523 bool ImmediateClass, 1524 bool WarnExactMatch) { 1525 // Check and see if instance methods in class interface have been 1526 // implemented in the implementation class. If so, their types match. 1527 for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(), 1528 E = CDecl->instmeth_end(); I != E; ++I) { 1529 if (InsMapSeen.count((*I)->getSelector())) 1530 continue; 1531 InsMapSeen.insert((*I)->getSelector()); 1532 if (!(*I)->isSynthesized() && 1533 !InsMap.count((*I)->getSelector())) { 1534 if (ImmediateClass) 1535 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1536 diag::note_undef_method_impl); 1537 continue; 1538 } else { 1539 ObjCMethodDecl *ImpMethodDecl = 1540 IMPDecl->getInstanceMethod((*I)->getSelector()); 1541 assert(CDecl->getInstanceMethod((*I)->getSelector()) && 1542 "Expected to find the method through lookup as well"); 1543 ObjCMethodDecl *MethodDecl = *I; 1544 // ImpMethodDecl may be null as in a @dynamic property. 1545 if (ImpMethodDecl) { 1546 if (!WarnExactMatch) 1547 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1548 isa<ObjCProtocolDecl>(CDecl)); 1549 else if (!MethodDecl->isSynthesized()) 1550 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1551 isa<ObjCProtocolDecl>(CDecl)); 1552 } 1553 } 1554 } 1555 1556 // Check and see if class methods in class interface have been 1557 // implemented in the implementation class. If so, their types match. 1558 for (ObjCInterfaceDecl::classmeth_iterator 1559 I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) { 1560 if (ClsMapSeen.count((*I)->getSelector())) 1561 continue; 1562 ClsMapSeen.insert((*I)->getSelector()); 1563 if (!ClsMap.count((*I)->getSelector())) { 1564 if (ImmediateClass) 1565 WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl, 1566 diag::note_undef_method_impl); 1567 } else { 1568 ObjCMethodDecl *ImpMethodDecl = 1569 IMPDecl->getClassMethod((*I)->getSelector()); 1570 assert(CDecl->getClassMethod((*I)->getSelector()) && 1571 "Expected to find the method through lookup as well"); 1572 ObjCMethodDecl *MethodDecl = *I; 1573 if (!WarnExactMatch) 1574 WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl, 1575 isa<ObjCProtocolDecl>(CDecl)); 1576 else 1577 WarnExactTypedMethods(ImpMethodDecl, MethodDecl, 1578 isa<ObjCProtocolDecl>(CDecl)); 1579 } 1580 } 1581 1582 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1583 // Also methods in class extensions need be looked at next. 1584 for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension(); 1585 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) 1586 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1587 IMPDecl, 1588 const_cast<ObjCCategoryDecl *>(ClsExtDecl), 1589 IncompleteImpl, false, WarnExactMatch); 1590 1591 // Check for any implementation of a methods declared in protocol. 1592 for (ObjCInterfaceDecl::all_protocol_iterator 1593 PI = I->all_referenced_protocol_begin(), 1594 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1595 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1596 IMPDecl, 1597 (*PI), IncompleteImpl, false, WarnExactMatch); 1598 1599 // FIXME. For now, we are not checking for extact match of methods 1600 // in category implementation and its primary class's super class. 1601 if (!WarnExactMatch && I->getSuperClass()) 1602 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1603 IMPDecl, 1604 I->getSuperClass(), IncompleteImpl, false); 1605 } 1606 } 1607 1608 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in 1609 /// category matches with those implemented in its primary class and 1610 /// warns each time an exact match is found. 1611 void Sema::CheckCategoryVsClassMethodMatches( 1612 ObjCCategoryImplDecl *CatIMPDecl) { 1613 llvm::DenseSet<Selector> InsMap, ClsMap; 1614 1615 for (ObjCImplementationDecl::instmeth_iterator 1616 I = CatIMPDecl->instmeth_begin(), 1617 E = CatIMPDecl->instmeth_end(); I!=E; ++I) 1618 InsMap.insert((*I)->getSelector()); 1619 1620 for (ObjCImplementationDecl::classmeth_iterator 1621 I = CatIMPDecl->classmeth_begin(), 1622 E = CatIMPDecl->classmeth_end(); I != E; ++I) 1623 ClsMap.insert((*I)->getSelector()); 1624 if (InsMap.empty() && ClsMap.empty()) 1625 return; 1626 1627 // Get category's primary class. 1628 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); 1629 if (!CatDecl) 1630 return; 1631 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); 1632 if (!IDecl) 1633 return; 1634 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1635 bool IncompleteImpl = false; 1636 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1637 CatIMPDecl, IDecl, 1638 IncompleteImpl, false, true /*WarnExactMatch*/); 1639 } 1640 1641 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, 1642 ObjCContainerDecl* CDecl, 1643 bool IncompleteImpl) { 1644 llvm::DenseSet<Selector> InsMap; 1645 // Check and see if instance methods in class interface have been 1646 // implemented in the implementation class. 1647 for (ObjCImplementationDecl::instmeth_iterator 1648 I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I) 1649 InsMap.insert((*I)->getSelector()); 1650 1651 // Check and see if properties declared in the interface have either 1) 1652 // an implementation or 2) there is a @synthesize/@dynamic implementation 1653 // of the property in the @implementation. 1654 if (isa<ObjCInterfaceDecl>(CDecl) && 1655 !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2)) 1656 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1657 1658 llvm::DenseSet<Selector> ClsMap; 1659 for (ObjCImplementationDecl::classmeth_iterator 1660 I = IMPDecl->classmeth_begin(), 1661 E = IMPDecl->classmeth_end(); I != E; ++I) 1662 ClsMap.insert((*I)->getSelector()); 1663 1664 // Check for type conflict of methods declared in a class/protocol and 1665 // its implementation; if any. 1666 llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen; 1667 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, 1668 IMPDecl, CDecl, 1669 IncompleteImpl, true); 1670 1671 // check all methods implemented in category against those declared 1672 // in its primary class. 1673 if (ObjCCategoryImplDecl *CatDecl = 1674 dyn_cast<ObjCCategoryImplDecl>(IMPDecl)) 1675 CheckCategoryVsClassMethodMatches(CatDecl); 1676 1677 // Check the protocol list for unimplemented methods in the @implementation 1678 // class. 1679 // Check and see if class methods in class interface have been 1680 // implemented in the implementation class. 1681 1682 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) { 1683 for (ObjCInterfaceDecl::all_protocol_iterator 1684 PI = I->all_referenced_protocol_begin(), 1685 E = I->all_referenced_protocol_end(); PI != E; ++PI) 1686 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1687 InsMap, ClsMap, I); 1688 // Check class extensions (unnamed categories) 1689 for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension(); 1690 Categories; Categories = Categories->getNextClassExtension()) 1691 ImplMethodsVsClassMethods(S, IMPDecl, 1692 const_cast<ObjCCategoryDecl*>(Categories), 1693 IncompleteImpl); 1694 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1695 // For extended class, unimplemented methods in its protocols will 1696 // be reported in the primary class. 1697 if (!C->IsClassExtension()) { 1698 for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(), 1699 E = C->protocol_end(); PI != E; ++PI) 1700 CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl, 1701 InsMap, ClsMap, CDecl); 1702 // Report unimplemented properties in the category as well. 1703 // When reporting on missing setter/getters, do not report when 1704 // setter/getter is implemented in category's primary class 1705 // implementation. 1706 if (ObjCInterfaceDecl *ID = C->getClassInterface()) 1707 if (ObjCImplDecl *IMP = ID->getImplementation()) { 1708 for (ObjCImplementationDecl::instmeth_iterator 1709 I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I) 1710 InsMap.insert((*I)->getSelector()); 1711 } 1712 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap); 1713 } 1714 } else 1715 llvm_unreachable("invalid ObjCContainerDecl type."); 1716 } 1717 1718 /// ActOnForwardClassDeclaration - 1719 Sema::DeclGroupPtrTy 1720 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc, 1721 IdentifierInfo **IdentList, 1722 SourceLocation *IdentLocs, 1723 unsigned NumElts) { 1724 SmallVector<Decl *, 8> DeclsInGroup; 1725 for (unsigned i = 0; i != NumElts; ++i) { 1726 // Check for another declaration kind with the same name. 1727 NamedDecl *PrevDecl 1728 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 1729 LookupOrdinaryName, ForRedeclaration); 1730 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1731 // Maybe we will complain about the shadowed template parameter. 1732 DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl); 1733 // Just pretend that we didn't see the previous declaration. 1734 PrevDecl = 0; 1735 } 1736 1737 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) { 1738 // GCC apparently allows the following idiom: 1739 // 1740 // typedef NSObject < XCElementTogglerP > XCElementToggler; 1741 // @class XCElementToggler; 1742 // 1743 // FIXME: Make an extension? 1744 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl); 1745 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { 1746 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i]; 1747 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1748 } else { 1749 // a forward class declaration matching a typedef name of a class refers 1750 // to the underlying class. 1751 if (const ObjCObjectType *OI = 1752 TDD->getUnderlyingType()->getAs<ObjCObjectType>()) 1753 PrevDecl = OI->getInterface(); 1754 } 1755 } 1756 ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl); 1757 if (!IDecl) { // Not already seen? Make a forward decl. 1758 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc, 1759 IdentList[i], IdentLocs[i], true); 1760 1761 // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to 1762 // the current DeclContext. This prevents clients that walk DeclContext 1763 // from seeing the imaginary ObjCInterfaceDecl until it is actually 1764 // declared later (if at all). We also take care to explicitly make 1765 // sure this declaration is visible for name lookup. 1766 PushOnScopeChains(IDecl, TUScope, false); 1767 CurContext->makeDeclVisibleInContext(IDecl, true); 1768 } 1769 ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc, 1770 IDecl, IdentLocs[i]); 1771 CurContext->addDecl(CDecl); 1772 CheckObjCDeclScope(CDecl); 1773 DeclsInGroup.push_back(CDecl); 1774 } 1775 1776 return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false); 1777 } 1778 1779 static bool tryMatchRecordTypes(ASTContext &Context, 1780 Sema::MethodMatchStrategy strategy, 1781 const Type *left, const Type *right); 1782 1783 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, 1784 QualType leftQT, QualType rightQT) { 1785 const Type *left = 1786 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr(); 1787 const Type *right = 1788 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr(); 1789 1790 if (left == right) return true; 1791 1792 // If we're doing a strict match, the types have to match exactly. 1793 if (strategy == Sema::MMS_strict) return false; 1794 1795 if (left->isIncompleteType() || right->isIncompleteType()) return false; 1796 1797 // Otherwise, use this absurdly complicated algorithm to try to 1798 // validate the basic, low-level compatibility of the two types. 1799 1800 // As a minimum, require the sizes and alignments to match. 1801 if (Context.getTypeInfo(left) != Context.getTypeInfo(right)) 1802 return false; 1803 1804 // Consider all the kinds of non-dependent canonical types: 1805 // - functions and arrays aren't possible as return and parameter types 1806 1807 // - vector types of equal size can be arbitrarily mixed 1808 if (isa<VectorType>(left)) return isa<VectorType>(right); 1809 if (isa<VectorType>(right)) return false; 1810 1811 // - references should only match references of identical type 1812 // - structs, unions, and Objective-C objects must match more-or-less 1813 // exactly 1814 // - everything else should be a scalar 1815 if (!left->isScalarType() || !right->isScalarType()) 1816 return tryMatchRecordTypes(Context, strategy, left, right); 1817 1818 // Make scalars agree in kind, except count bools as chars, and group 1819 // all non-member pointers together. 1820 Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); 1821 Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); 1822 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; 1823 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; 1824 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) 1825 leftSK = Type::STK_ObjCObjectPointer; 1826 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) 1827 rightSK = Type::STK_ObjCObjectPointer; 1828 1829 // Note that data member pointers and function member pointers don't 1830 // intermix because of the size differences. 1831 1832 return (leftSK == rightSK); 1833 } 1834 1835 static bool tryMatchRecordTypes(ASTContext &Context, 1836 Sema::MethodMatchStrategy strategy, 1837 const Type *lt, const Type *rt) { 1838 assert(lt && rt && lt != rt); 1839 1840 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false; 1841 RecordDecl *left = cast<RecordType>(lt)->getDecl(); 1842 RecordDecl *right = cast<RecordType>(rt)->getDecl(); 1843 1844 // Require union-hood to match. 1845 if (left->isUnion() != right->isUnion()) return false; 1846 1847 // Require an exact match if either is non-POD. 1848 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) || 1849 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD())) 1850 return false; 1851 1852 // Require size and alignment to match. 1853 if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false; 1854 1855 // Require fields to match. 1856 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); 1857 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); 1858 for (; li != le && ri != re; ++li, ++ri) { 1859 if (!matchTypes(Context, strategy, li->getType(), ri->getType())) 1860 return false; 1861 } 1862 return (li == le && ri == re); 1863 } 1864 1865 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and 1866 /// returns true, or false, accordingly. 1867 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons 1868 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, 1869 const ObjCMethodDecl *right, 1870 MethodMatchStrategy strategy) { 1871 if (!matchTypes(Context, strategy, 1872 left->getResultType(), right->getResultType())) 1873 return false; 1874 1875 if (getLangOptions().ObjCAutoRefCount && 1876 (left->hasAttr<NSReturnsRetainedAttr>() 1877 != right->hasAttr<NSReturnsRetainedAttr>() || 1878 left->hasAttr<NSConsumesSelfAttr>() 1879 != right->hasAttr<NSConsumesSelfAttr>())) 1880 return false; 1881 1882 ObjCMethodDecl::param_const_iterator 1883 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(); 1884 1885 for (; li != le; ++li, ++ri) { 1886 assert(ri != right->param_end() && "Param mismatch"); 1887 const ParmVarDecl *lparm = *li, *rparm = *ri; 1888 1889 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType())) 1890 return false; 1891 1892 if (getLangOptions().ObjCAutoRefCount && 1893 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) 1894 return false; 1895 } 1896 return true; 1897 } 1898 1899 /// \brief Read the contents of the method pool for a given selector from 1900 /// external storage. 1901 /// 1902 /// This routine should only be called once, when the method pool has no entry 1903 /// for this selector. 1904 Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) { 1905 assert(ExternalSource && "We need an external AST source"); 1906 assert(MethodPool.find(Sel) == MethodPool.end() && 1907 "Selector data already loaded into the method pool"); 1908 1909 // Read the method list from the external source. 1910 GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel); 1911 1912 return MethodPool.insert(std::make_pair(Sel, Methods)).first; 1913 } 1914 1915 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, 1916 bool instance) { 1917 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector()); 1918 if (Pos == MethodPool.end()) { 1919 if (ExternalSource) 1920 Pos = ReadMethodPool(Method->getSelector()); 1921 else 1922 Pos = MethodPool.insert(std::make_pair(Method->getSelector(), 1923 GlobalMethods())).first; 1924 } 1925 Method->setDefined(impl); 1926 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; 1927 if (Entry.Method == 0) { 1928 // Haven't seen a method with this selector name yet - add it. 1929 Entry.Method = Method; 1930 Entry.Next = 0; 1931 return; 1932 } 1933 1934 // We've seen a method with this name, see if we have already seen this type 1935 // signature. 1936 for (ObjCMethodList *List = &Entry; List; List = List->Next) { 1937 bool match = MatchTwoMethodDeclarations(Method, List->Method); 1938 1939 if (match) { 1940 ObjCMethodDecl *PrevObjCMethod = List->Method; 1941 PrevObjCMethod->setDefined(impl); 1942 // If a method is deprecated, push it in the global pool. 1943 // This is used for better diagnostics. 1944 if (Method->isDeprecated()) { 1945 if (!PrevObjCMethod->isDeprecated()) 1946 List->Method = Method; 1947 } 1948 // If new method is unavailable, push it into global pool 1949 // unless previous one is deprecated. 1950 if (Method->isUnavailable()) { 1951 if (PrevObjCMethod->getAvailability() < AR_Deprecated) 1952 List->Method = Method; 1953 } 1954 return; 1955 } 1956 } 1957 1958 // We have a new signature for an existing method - add it. 1959 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". 1960 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>(); 1961 Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next); 1962 } 1963 1964 /// Determines if this is an "acceptable" loose mismatch in the global 1965 /// method pool. This exists mostly as a hack to get around certain 1966 /// global mismatches which we can't afford to make warnings / errors. 1967 /// Really, what we want is a way to take a method out of the global 1968 /// method pool. 1969 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, 1970 ObjCMethodDecl *other) { 1971 if (!chosen->isInstanceMethod()) 1972 return false; 1973 1974 Selector sel = chosen->getSelector(); 1975 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length") 1976 return false; 1977 1978 // Don't complain about mismatches for -length if the method we 1979 // chose has an integral result type. 1980 return (chosen->getResultType()->isIntegerType()); 1981 } 1982 1983 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R, 1984 bool receiverIdOrClass, 1985 bool warn, bool instance) { 1986 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 1987 if (Pos == MethodPool.end()) { 1988 if (ExternalSource) 1989 Pos = ReadMethodPool(Sel); 1990 else 1991 return 0; 1992 } 1993 1994 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; 1995 1996 if (warn && MethList.Method && MethList.Next) { 1997 bool issueDiagnostic = false, issueError = false; 1998 1999 // We support a warning which complains about *any* difference in 2000 // method signature. 2001 bool strictSelectorMatch = 2002 (receiverIdOrClass && warn && 2003 (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl, 2004 R.getBegin()) != 2005 DiagnosticsEngine::Ignored)); 2006 if (strictSelectorMatch) 2007 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 2008 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 2009 MMS_strict)) { 2010 issueDiagnostic = true; 2011 break; 2012 } 2013 } 2014 2015 // If we didn't see any strict differences, we won't see any loose 2016 // differences. In ARC, however, we also need to check for loose 2017 // mismatches, because most of them are errors. 2018 if (!strictSelectorMatch || 2019 (issueDiagnostic && getLangOptions().ObjCAutoRefCount)) 2020 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) { 2021 // This checks if the methods differ in type mismatch. 2022 if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, 2023 MMS_loose) && 2024 !isAcceptableMethodMismatch(MethList.Method, Next->Method)) { 2025 issueDiagnostic = true; 2026 if (getLangOptions().ObjCAutoRefCount) 2027 issueError = true; 2028 break; 2029 } 2030 } 2031 2032 if (issueDiagnostic) { 2033 if (issueError) 2034 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R; 2035 else if (strictSelectorMatch) 2036 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R; 2037 else 2038 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R; 2039 2040 Diag(MethList.Method->getLocStart(), 2041 issueError ? diag::note_possibility : diag::note_using) 2042 << MethList.Method->getSourceRange(); 2043 for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) 2044 Diag(Next->Method->getLocStart(), diag::note_also_found) 2045 << Next->Method->getSourceRange(); 2046 } 2047 } 2048 return MethList.Method; 2049 } 2050 2051 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) { 2052 GlobalMethodPool::iterator Pos = MethodPool.find(Sel); 2053 if (Pos == MethodPool.end()) 2054 return 0; 2055 2056 GlobalMethods &Methods = Pos->second; 2057 2058 if (Methods.first.Method && Methods.first.Method->isDefined()) 2059 return Methods.first.Method; 2060 if (Methods.second.Method && Methods.second.Method->isDefined()) 2061 return Methods.second.Method; 2062 return 0; 2063 } 2064 2065 /// CompareMethodParamsInBaseAndSuper - This routine compares methods with 2066 /// identical selector names in current and its super classes and issues 2067 /// a warning if any of their argument types are incompatible. 2068 void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl, 2069 ObjCMethodDecl *Method, 2070 bool IsInstance) { 2071 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2072 if (ID == 0) return; 2073 2074 while (ObjCInterfaceDecl *SD = ID->getSuperClass()) { 2075 ObjCMethodDecl *SuperMethodDecl = 2076 SD->lookupMethod(Method->getSelector(), IsInstance); 2077 if (SuperMethodDecl == 0) { 2078 ID = SD; 2079 continue; 2080 } 2081 ObjCMethodDecl::param_iterator ParamI = Method->param_begin(), 2082 E = Method->param_end(); 2083 ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin(); 2084 for (; ParamI != E; ++ParamI, ++PrevI) { 2085 // Number of parameters are the same and is guaranteed by selector match. 2086 assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch"); 2087 QualType T1 = Context.getCanonicalType((*ParamI)->getType()); 2088 QualType T2 = Context.getCanonicalType((*PrevI)->getType()); 2089 // If type of argument of method in this class does not match its 2090 // respective argument type in the super class method, issue warning; 2091 if (!Context.typesAreCompatible(T1, T2)) { 2092 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super) 2093 << T1 << T2; 2094 Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration); 2095 return; 2096 } 2097 } 2098 ID = SD; 2099 } 2100 } 2101 2102 /// DiagnoseDuplicateIvars - 2103 /// Check for duplicate ivars in the entire class at the start of 2104 /// @implementation. This becomes necesssary because class extension can 2105 /// add ivars to a class in random order which will not be known until 2106 /// class's @implementation is seen. 2107 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 2108 ObjCInterfaceDecl *SID) { 2109 for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(), 2110 IVE = ID->ivar_end(); IVI != IVE; ++IVI) { 2111 ObjCIvarDecl* Ivar = (*IVI); 2112 if (Ivar->isInvalidDecl()) 2113 continue; 2114 if (IdentifierInfo *II = Ivar->getIdentifier()) { 2115 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II); 2116 if (prevIvar) { 2117 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II; 2118 Diag(prevIvar->getLocation(), diag::note_previous_declaration); 2119 Ivar->setInvalidDecl(); 2120 } 2121 } 2122 } 2123 } 2124 2125 // Note: For class/category implemenations, allMethods/allProperties is 2126 // always null. 2127 void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, 2128 Decl **allMethods, unsigned allNum, 2129 Decl **allProperties, unsigned pNum, 2130 DeclGroupPtrTy *allTUVars, unsigned tuvNum) { 2131 2132 if (!CurContext->isObjCContainer()) 2133 return; 2134 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2135 Decl *ClassDecl = cast<Decl>(OCD); 2136 2137 bool isInterfaceDeclKind = 2138 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl) 2139 || isa<ObjCProtocolDecl>(ClassDecl); 2140 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl); 2141 2142 if (!isInterfaceDeclKind && AtEnd.isInvalid()) { 2143 // FIXME: This is wrong. We shouldn't be pretending that there is 2144 // an '@end' in the declaration. 2145 SourceLocation L = ClassDecl->getLocation(); 2146 AtEnd.setBegin(L); 2147 AtEnd.setEnd(L); 2148 Diag(L, diag::err_missing_atend); 2149 } 2150 2151 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. 2152 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; 2153 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; 2154 2155 for (unsigned i = 0; i < allNum; i++ ) { 2156 ObjCMethodDecl *Method = 2157 cast_or_null<ObjCMethodDecl>(allMethods[i]); 2158 2159 if (!Method) continue; // Already issued a diagnostic. 2160 if (Method->isInstanceMethod()) { 2161 /// Check for instance method of the same name with incompatible types 2162 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; 2163 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2164 : false; 2165 if ((isInterfaceDeclKind && PrevMethod && !match) 2166 || (checkIdenticalMethods && match)) { 2167 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2168 << Method->getDeclName(); 2169 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2170 Method->setInvalidDecl(); 2171 } else { 2172 if (PrevMethod) 2173 Method->setAsRedeclaration(PrevMethod); 2174 InsMap[Method->getSelector()] = Method; 2175 /// The following allows us to typecheck messages to "id". 2176 AddInstanceMethodToGlobalPool(Method); 2177 // verify that the instance method conforms to the same definition of 2178 // parent methods if it shadows one. 2179 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true); 2180 } 2181 } else { 2182 /// Check for class method of the same name with incompatible types 2183 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; 2184 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod) 2185 : false; 2186 if ((isInterfaceDeclKind && PrevMethod && !match) 2187 || (checkIdenticalMethods && match)) { 2188 Diag(Method->getLocation(), diag::err_duplicate_method_decl) 2189 << Method->getDeclName(); 2190 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2191 Method->setInvalidDecl(); 2192 } else { 2193 if (PrevMethod) 2194 Method->setAsRedeclaration(PrevMethod); 2195 ClsMap[Method->getSelector()] = Method; 2196 /// The following allows us to typecheck messages to "Class". 2197 AddFactoryMethodToGlobalPool(Method); 2198 // verify that the class method conforms to the same definition of 2199 // parent methods if it shadows one. 2200 CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false); 2201 } 2202 } 2203 } 2204 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) { 2205 // Compares properties declared in this class to those of its 2206 // super class. 2207 ComparePropertiesInBaseAndSuper(I); 2208 CompareProperties(I, I); 2209 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) { 2210 // Categories are used to extend the class by declaring new methods. 2211 // By the same token, they are also used to add new properties. No 2212 // need to compare the added property to those in the class. 2213 2214 // Compare protocol properties with those in category 2215 CompareProperties(C, C); 2216 if (C->IsClassExtension()) { 2217 ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); 2218 DiagnoseClassExtensionDupMethods(C, CCPrimary); 2219 } 2220 } 2221 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) { 2222 if (CDecl->getIdentifier()) 2223 // ProcessPropertyDecl is responsible for diagnosing conflicts with any 2224 // user-defined setter/getter. It also synthesizes setter/getter methods 2225 // and adds them to the DeclContext and global method pools. 2226 for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(), 2227 E = CDecl->prop_end(); 2228 I != E; ++I) 2229 ProcessPropertyDecl(*I, CDecl); 2230 CDecl->setAtEndRange(AtEnd); 2231 } 2232 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) { 2233 IC->setAtEndRange(AtEnd); 2234 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { 2235 // Any property declared in a class extension might have user 2236 // declared setter or getter in current class extension or one 2237 // of the other class extensions. Mark them as synthesized as 2238 // property will be synthesized when property with same name is 2239 // seen in the @implementation. 2240 for (const ObjCCategoryDecl *ClsExtDecl = 2241 IDecl->getFirstClassExtension(); 2242 ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) { 2243 for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(), 2244 E = ClsExtDecl->prop_end(); I != E; ++I) { 2245 ObjCPropertyDecl *Property = (*I); 2246 // Skip over properties declared @dynamic 2247 if (const ObjCPropertyImplDecl *PIDecl 2248 = IC->FindPropertyImplDecl(Property->getIdentifier())) 2249 if (PIDecl->getPropertyImplementation() 2250 == ObjCPropertyImplDecl::Dynamic) 2251 continue; 2252 2253 for (const ObjCCategoryDecl *CExtDecl = 2254 IDecl->getFirstClassExtension(); 2255 CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) { 2256 if (ObjCMethodDecl *GetterMethod = 2257 CExtDecl->getInstanceMethod(Property->getGetterName())) 2258 GetterMethod->setSynthesized(true); 2259 if (!Property->isReadOnly()) 2260 if (ObjCMethodDecl *SetterMethod = 2261 CExtDecl->getInstanceMethod(Property->getSetterName())) 2262 SetterMethod->setSynthesized(true); 2263 } 2264 } 2265 } 2266 ImplMethodsVsClassMethods(S, IC, IDecl); 2267 AtomicPropertySetterGetterRules(IC, IDecl); 2268 DiagnoseOwningPropertyGetterSynthesis(IC); 2269 2270 if (LangOpts.ObjCNonFragileABI2) 2271 while (IDecl->getSuperClass()) { 2272 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass()); 2273 IDecl = IDecl->getSuperClass(); 2274 } 2275 } 2276 SetIvarInitializers(IC); 2277 } else if (ObjCCategoryImplDecl* CatImplClass = 2278 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) { 2279 CatImplClass->setAtEndRange(AtEnd); 2280 2281 // Find category interface decl and then check that all methods declared 2282 // in this interface are implemented in the category @implementation. 2283 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { 2284 for (ObjCCategoryDecl *Categories = IDecl->getCategoryList(); 2285 Categories; Categories = Categories->getNextClassCategory()) { 2286 if (Categories->getIdentifier() == CatImplClass->getIdentifier()) { 2287 ImplMethodsVsClassMethods(S, CatImplClass, Categories); 2288 break; 2289 } 2290 } 2291 } 2292 } 2293 if (isInterfaceDeclKind) { 2294 // Reject invalid vardecls. 2295 for (unsigned i = 0; i != tuvNum; i++) { 2296 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2297 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) 2298 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) { 2299 if (!VDecl->hasExternalStorage()) 2300 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass); 2301 } 2302 } 2303 } 2304 ActOnObjCContainerFinishDefinition(); 2305 2306 for (unsigned i = 0; i != tuvNum; i++) { 2307 DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>(); 2308 Consumer.HandleTopLevelDeclInObjCContainer(DG); 2309 } 2310 } 2311 2312 2313 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for 2314 /// objective-c's type qualifier from the parser version of the same info. 2315 static Decl::ObjCDeclQualifier 2316 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { 2317 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; 2318 } 2319 2320 static inline 2321 bool containsInvalidMethodImplAttribute(const AttrVec &A) { 2322 // The 'ibaction' attribute is allowed on method definitions because of 2323 // how the IBAction macro is used on both method declarations and definitions. 2324 // If the method definitions contains any other attributes, return true. 2325 for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) 2326 if ((*i)->getKind() != attr::IBAction) 2327 return true; 2328 return false; 2329 } 2330 2331 namespace { 2332 /// \brief Describes the compatibility of a result type with its method. 2333 enum ResultTypeCompatibilityKind { 2334 RTC_Compatible, 2335 RTC_Incompatible, 2336 RTC_Unknown 2337 }; 2338 } 2339 2340 /// \brief Check whether the declared result type of the given Objective-C 2341 /// method declaration is compatible with the method's class. 2342 /// 2343 static ResultTypeCompatibilityKind 2344 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, 2345 ObjCInterfaceDecl *CurrentClass) { 2346 QualType ResultType = Method->getResultType(); 2347 2348 // If an Objective-C method inherits its related result type, then its 2349 // declared result type must be compatible with its own class type. The 2350 // declared result type is compatible if: 2351 if (const ObjCObjectPointerType *ResultObjectType 2352 = ResultType->getAs<ObjCObjectPointerType>()) { 2353 // - it is id or qualified id, or 2354 if (ResultObjectType->isObjCIdType() || 2355 ResultObjectType->isObjCQualifiedIdType()) 2356 return RTC_Compatible; 2357 2358 if (CurrentClass) { 2359 if (ObjCInterfaceDecl *ResultClass 2360 = ResultObjectType->getInterfaceDecl()) { 2361 // - it is the same as the method's class type, or 2362 if (CurrentClass == ResultClass) 2363 return RTC_Compatible; 2364 2365 // - it is a superclass of the method's class type 2366 if (ResultClass->isSuperClassOf(CurrentClass)) 2367 return RTC_Compatible; 2368 } 2369 } else { 2370 // Any Objective-C pointer type might be acceptable for a protocol 2371 // method; we just don't know. 2372 return RTC_Unknown; 2373 } 2374 } 2375 2376 return RTC_Incompatible; 2377 } 2378 2379 namespace { 2380 /// A helper class for searching for methods which a particular method 2381 /// overrides. 2382 class OverrideSearch { 2383 Sema &S; 2384 ObjCMethodDecl *Method; 2385 llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched; 2386 llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden; 2387 bool Recursive; 2388 2389 public: 2390 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) { 2391 Selector selector = method->getSelector(); 2392 2393 // Bypass this search if we've never seen an instance/class method 2394 // with this selector before. 2395 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector); 2396 if (it == S.MethodPool.end()) { 2397 if (!S.ExternalSource) return; 2398 it = S.ReadMethodPool(selector); 2399 } 2400 ObjCMethodList &list = 2401 method->isInstanceMethod() ? it->second.first : it->second.second; 2402 if (!list.Method) return; 2403 2404 ObjCContainerDecl *container 2405 = cast<ObjCContainerDecl>(method->getDeclContext()); 2406 2407 // Prevent the search from reaching this container again. This is 2408 // important with categories, which override methods from the 2409 // interface and each other. 2410 Searched.insert(container); 2411 searchFromContainer(container); 2412 } 2413 2414 typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator; 2415 iterator begin() const { return Overridden.begin(); } 2416 iterator end() const { return Overridden.end(); } 2417 2418 private: 2419 void searchFromContainer(ObjCContainerDecl *container) { 2420 if (container->isInvalidDecl()) return; 2421 2422 switch (container->getDeclKind()) { 2423 #define OBJCCONTAINER(type, base) \ 2424 case Decl::type: \ 2425 searchFrom(cast<type##Decl>(container)); \ 2426 break; 2427 #define ABSTRACT_DECL(expansion) 2428 #define DECL(type, base) \ 2429 case Decl::type: 2430 #include "clang/AST/DeclNodes.inc" 2431 llvm_unreachable("not an ObjC container!"); 2432 } 2433 } 2434 2435 void searchFrom(ObjCProtocolDecl *protocol) { 2436 // A method in a protocol declaration overrides declarations from 2437 // referenced ("parent") protocols. 2438 search(protocol->getReferencedProtocols()); 2439 } 2440 2441 void searchFrom(ObjCCategoryDecl *category) { 2442 // A method in a category declaration overrides declarations from 2443 // the main class and from protocols the category references. 2444 search(category->getClassInterface()); 2445 search(category->getReferencedProtocols()); 2446 } 2447 2448 void searchFrom(ObjCCategoryImplDecl *impl) { 2449 // A method in a category definition that has a category 2450 // declaration overrides declarations from the category 2451 // declaration. 2452 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { 2453 search(category); 2454 2455 // Otherwise it overrides declarations from the class. 2456 } else { 2457 search(impl->getClassInterface()); 2458 } 2459 } 2460 2461 void searchFrom(ObjCInterfaceDecl *iface) { 2462 // A method in a class declaration overrides declarations from 2463 2464 // - categories, 2465 for (ObjCCategoryDecl *category = iface->getCategoryList(); 2466 category; category = category->getNextClassCategory()) 2467 search(category); 2468 2469 // - the super class, and 2470 if (ObjCInterfaceDecl *super = iface->getSuperClass()) 2471 search(super); 2472 2473 // - any referenced protocols. 2474 search(iface->getReferencedProtocols()); 2475 } 2476 2477 void searchFrom(ObjCImplementationDecl *impl) { 2478 // A method in a class implementation overrides declarations from 2479 // the class interface. 2480 search(impl->getClassInterface()); 2481 } 2482 2483 2484 void search(const ObjCProtocolList &protocols) { 2485 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end(); 2486 i != e; ++i) 2487 search(*i); 2488 } 2489 2490 void search(ObjCContainerDecl *container) { 2491 // Abort if we've already searched this container. 2492 if (!Searched.insert(container)) return; 2493 2494 // Check for a method in this container which matches this selector. 2495 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(), 2496 Method->isInstanceMethod()); 2497 2498 // If we find one, record it and bail out. 2499 if (meth) { 2500 Overridden.insert(meth); 2501 return; 2502 } 2503 2504 // Otherwise, search for methods that a hypothetical method here 2505 // would have overridden. 2506 2507 // Note that we're now in a recursive case. 2508 Recursive = true; 2509 2510 searchFromContainer(container); 2511 } 2512 }; 2513 } 2514 2515 Decl *Sema::ActOnMethodDeclaration( 2516 Scope *S, 2517 SourceLocation MethodLoc, SourceLocation EndLoc, 2518 tok::TokenKind MethodType, 2519 ObjCDeclSpec &ReturnQT, ParsedType ReturnType, 2520 ArrayRef<SourceLocation> SelectorLocs, 2521 Selector Sel, 2522 // optional arguments. The number of types/arguments is obtained 2523 // from the Sel.getNumArgs(). 2524 ObjCArgInfo *ArgInfo, 2525 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args 2526 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind, 2527 bool isVariadic, bool MethodDefinition) { 2528 // Make sure we can establish a context for the method. 2529 if (!CurContext->isObjCContainer()) { 2530 Diag(MethodLoc, diag::error_missing_method_context); 2531 return 0; 2532 } 2533 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 2534 Decl *ClassDecl = cast<Decl>(OCD); 2535 QualType resultDeclType; 2536 2537 bool HasRelatedResultType = false; 2538 TypeSourceInfo *ResultTInfo = 0; 2539 if (ReturnType) { 2540 resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo); 2541 2542 // Methods cannot return interface types. All ObjC objects are 2543 // passed by reference. 2544 if (resultDeclType->isObjCObjectType()) { 2545 Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value) 2546 << 0 << resultDeclType; 2547 return 0; 2548 } 2549 2550 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType()); 2551 } else { // get the type for "id". 2552 resultDeclType = Context.getObjCIdType(); 2553 Diag(MethodLoc, diag::warn_missing_method_return_type) 2554 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)"); 2555 } 2556 2557 ObjCMethodDecl* ObjCMethod = 2558 ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, 2559 resultDeclType, 2560 ResultTInfo, 2561 CurContext, 2562 MethodType == tok::minus, isVariadic, 2563 /*isSynthesized=*/false, 2564 /*isImplicitlyDeclared=*/false, /*isDefined=*/false, 2565 MethodDeclKind == tok::objc_optional 2566 ? ObjCMethodDecl::Optional 2567 : ObjCMethodDecl::Required, 2568 HasRelatedResultType); 2569 2570 SmallVector<ParmVarDecl*, 16> Params; 2571 2572 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { 2573 QualType ArgType; 2574 TypeSourceInfo *DI; 2575 2576 if (ArgInfo[i].Type == 0) { 2577 ArgType = Context.getObjCIdType(); 2578 DI = 0; 2579 } else { 2580 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI); 2581 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2582 ArgType = Context.getAdjustedParameterType(ArgType); 2583 } 2584 2585 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 2586 LookupOrdinaryName, ForRedeclaration); 2587 LookupName(R, S); 2588 if (R.isSingleResult()) { 2589 NamedDecl *PrevDecl = R.getFoundDecl(); 2590 if (S->isDeclScope(PrevDecl)) { 2591 Diag(ArgInfo[i].NameLoc, 2592 (MethodDefinition ? diag::warn_method_param_redefinition 2593 : diag::warn_method_param_declaration)) 2594 << ArgInfo[i].Name; 2595 Diag(PrevDecl->getLocation(), 2596 diag::note_previous_declaration); 2597 } 2598 } 2599 2600 SourceLocation StartLoc = DI 2601 ? DI->getTypeLoc().getBeginLoc() 2602 : ArgInfo[i].NameLoc; 2603 2604 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc, 2605 ArgInfo[i].NameLoc, ArgInfo[i].Name, 2606 ArgType, DI, SC_None, SC_None); 2607 2608 Param->setObjCMethodScopeInfo(i); 2609 2610 Param->setObjCDeclQualifier( 2611 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier())); 2612 2613 // Apply the attributes to the parameter. 2614 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs); 2615 2616 S->AddDecl(Param); 2617 IdResolver.AddDecl(Param); 2618 2619 Params.push_back(Param); 2620 } 2621 2622 for (unsigned i = 0, e = CNumArgs; i != e; ++i) { 2623 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param); 2624 QualType ArgType = Param->getType(); 2625 if (ArgType.isNull()) 2626 ArgType = Context.getObjCIdType(); 2627 else 2628 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). 2629 ArgType = Context.getAdjustedParameterType(ArgType); 2630 if (ArgType->isObjCObjectType()) { 2631 Diag(Param->getLocation(), 2632 diag::err_object_cannot_be_passed_returned_by_value) 2633 << 1 << ArgType; 2634 Param->setInvalidDecl(); 2635 } 2636 Param->setDeclContext(ObjCMethod); 2637 2638 Params.push_back(Param); 2639 } 2640 2641 ObjCMethod->setMethodParams(Context, Params, SelectorLocs); 2642 ObjCMethod->setObjCDeclQualifier( 2643 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier())); 2644 2645 if (AttrList) 2646 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList); 2647 2648 // Add the method now. 2649 const ObjCMethodDecl *PrevMethod = 0; 2650 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) { 2651 if (MethodType == tok::minus) { 2652 PrevMethod = ImpDecl->getInstanceMethod(Sel); 2653 ImpDecl->addInstanceMethod(ObjCMethod); 2654 } else { 2655 PrevMethod = ImpDecl->getClassMethod(Sel); 2656 ImpDecl->addClassMethod(ObjCMethod); 2657 } 2658 2659 if (ObjCMethod->hasAttrs() && 2660 containsInvalidMethodImplAttribute(ObjCMethod->getAttrs())) 2661 Diag(EndLoc, diag::warn_attribute_method_def); 2662 } else { 2663 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod); 2664 } 2665 2666 if (PrevMethod) { 2667 // You can never have two method definitions with the same name. 2668 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl) 2669 << ObjCMethod->getDeclName(); 2670 Diag(PrevMethod->getLocation(), diag::note_previous_declaration); 2671 } 2672 2673 // If this Objective-C method does not have a related result type, but we 2674 // are allowed to infer related result types, try to do so based on the 2675 // method family. 2676 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl); 2677 if (!CurrentClass) { 2678 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) 2679 CurrentClass = Cat->getClassInterface(); 2680 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl)) 2681 CurrentClass = Impl->getClassInterface(); 2682 else if (ObjCCategoryImplDecl *CatImpl 2683 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) 2684 CurrentClass = CatImpl->getClassInterface(); 2685 } 2686 2687 ResultTypeCompatibilityKind RTC 2688 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass); 2689 2690 // Search for overridden methods and merge information down from them. 2691 OverrideSearch overrides(*this, ObjCMethod); 2692 for (OverrideSearch::iterator 2693 i = overrides.begin(), e = overrides.end(); i != e; ++i) { 2694 ObjCMethodDecl *overridden = *i; 2695 2696 // Propagate down the 'related result type' bit from overridden methods. 2697 if (RTC != RTC_Incompatible && overridden->hasRelatedResultType()) 2698 ObjCMethod->SetRelatedResultType(); 2699 2700 // Then merge the declarations. 2701 mergeObjCMethodDecls(ObjCMethod, overridden); 2702 2703 // Check for overriding methods 2704 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 2705 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext())) 2706 CheckConflictingOverridingMethod(ObjCMethod, overridden, 2707 isa<ObjCProtocolDecl>(overridden->getDeclContext())); 2708 } 2709 2710 bool ARCError = false; 2711 if (getLangOptions().ObjCAutoRefCount) 2712 ARCError = CheckARCMethodDecl(*this, ObjCMethod); 2713 2714 // Infer the related result type when possible. 2715 if (!ARCError && RTC == RTC_Compatible && 2716 !ObjCMethod->hasRelatedResultType() && 2717 LangOpts.ObjCInferRelatedResultType) { 2718 bool InferRelatedResultType = false; 2719 switch (ObjCMethod->getMethodFamily()) { 2720 case OMF_None: 2721 case OMF_copy: 2722 case OMF_dealloc: 2723 case OMF_finalize: 2724 case OMF_mutableCopy: 2725 case OMF_release: 2726 case OMF_retainCount: 2727 case OMF_performSelector: 2728 break; 2729 2730 case OMF_alloc: 2731 case OMF_new: 2732 InferRelatedResultType = ObjCMethod->isClassMethod(); 2733 break; 2734 2735 case OMF_init: 2736 case OMF_autorelease: 2737 case OMF_retain: 2738 case OMF_self: 2739 InferRelatedResultType = ObjCMethod->isInstanceMethod(); 2740 break; 2741 } 2742 2743 if (InferRelatedResultType) 2744 ObjCMethod->SetRelatedResultType(); 2745 } 2746 2747 return ObjCMethod; 2748 } 2749 2750 bool Sema::CheckObjCDeclScope(Decl *D) { 2751 if (isa<TranslationUnitDecl>(CurContext->getRedeclContext())) 2752 return false; 2753 // Following is also an error. But it is caused by a missing @end 2754 // and diagnostic is issued elsewhere. 2755 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) { 2756 return false; 2757 } 2758 2759 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope); 2760 D->setInvalidDecl(); 2761 2762 return true; 2763 } 2764 2765 /// Called whenever @defs(ClassName) is encountered in the source. Inserts the 2766 /// instance variables of ClassName into Decls. 2767 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, 2768 IdentifierInfo *ClassName, 2769 SmallVectorImpl<Decl*> &Decls) { 2770 // Check that ClassName is a valid class 2771 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart); 2772 if (!Class) { 2773 Diag(DeclStart, diag::err_undef_interface) << ClassName; 2774 return; 2775 } 2776 if (LangOpts.ObjCNonFragileABI) { 2777 Diag(DeclStart, diag::err_atdef_nonfragile_interface); 2778 return; 2779 } 2780 2781 // Collect the instance variables 2782 SmallVector<const ObjCIvarDecl*, 32> Ivars; 2783 Context.DeepCollectObjCIvars(Class, true, Ivars); 2784 // For each ivar, create a fresh ObjCAtDefsFieldDecl. 2785 for (unsigned i = 0; i < Ivars.size(); i++) { 2786 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]); 2787 RecordDecl *Record = dyn_cast<RecordDecl>(TagD); 2788 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, 2789 /*FIXME: StartL=*/ID->getLocation(), 2790 ID->getLocation(), 2791 ID->getIdentifier(), ID->getType(), 2792 ID->getBitWidth()); 2793 Decls.push_back(FD); 2794 } 2795 2796 // Introduce all of these fields into the appropriate scope. 2797 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); 2798 D != Decls.end(); ++D) { 2799 FieldDecl *FD = cast<FieldDecl>(*D); 2800 if (getLangOptions().CPlusPlus) 2801 PushOnScopeChains(cast<FieldDecl>(FD), S); 2802 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD)) 2803 Record->addDecl(FD); 2804 } 2805 } 2806 2807 /// \brief Build a type-check a new Objective-C exception variable declaration. 2808 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, 2809 SourceLocation StartLoc, 2810 SourceLocation IdLoc, 2811 IdentifierInfo *Id, 2812 bool Invalid) { 2813 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 2814 // duration shall not be qualified by an address-space qualifier." 2815 // Since all parameters have automatic store duration, they can not have 2816 // an address space. 2817 if (T.getAddressSpace() != 0) { 2818 Diag(IdLoc, diag::err_arg_with_address_space); 2819 Invalid = true; 2820 } 2821 2822 // An @catch parameter must be an unqualified object pointer type; 2823 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? 2824 if (Invalid) { 2825 // Don't do any further checking. 2826 } else if (T->isDependentType()) { 2827 // Okay: we don't know what this type will instantiate to. 2828 } else if (!T->isObjCObjectPointerType()) { 2829 Invalid = true; 2830 Diag(IdLoc ,diag::err_catch_param_not_objc_type); 2831 } else if (T->isObjCQualifiedIdType()) { 2832 Invalid = true; 2833 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm); 2834 } 2835 2836 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id, 2837 T, TInfo, SC_None, SC_None); 2838 New->setExceptionVariable(true); 2839 2840 if (Invalid) 2841 New->setInvalidDecl(); 2842 return New; 2843 } 2844 2845 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { 2846 const DeclSpec &DS = D.getDeclSpec(); 2847 2848 // We allow the "register" storage class on exception variables because 2849 // GCC did, but we drop it completely. Any other storage class is an error. 2850 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 2851 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm) 2852 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc())); 2853 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 2854 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm) 2855 << DS.getStorageClassSpec(); 2856 } 2857 if (D.getDeclSpec().isThreadSpecified()) 2858 Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread); 2859 D.getMutableDeclSpec().ClearStorageClassSpecs(); 2860 2861 DiagnoseFunctionSpecifiers(D); 2862 2863 // Check that there are no default arguments inside the type of this 2864 // exception object (C++ only). 2865 if (getLangOptions().CPlusPlus) 2866 CheckExtraCXXDefaultArguments(D); 2867 2868 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 2869 QualType ExceptionType = TInfo->getType(); 2870 2871 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, 2872 D.getSourceRange().getBegin(), 2873 D.getIdentifierLoc(), 2874 D.getIdentifier(), 2875 D.isInvalidType()); 2876 2877 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 2878 if (D.getCXXScopeSpec().isSet()) { 2879 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm) 2880 << D.getCXXScopeSpec().getRange(); 2881 New->setInvalidDecl(); 2882 } 2883 2884 // Add the parameter declaration into this scope. 2885 S->AddDecl(New); 2886 if (D.getIdentifier()) 2887 IdResolver.AddDecl(New); 2888 2889 ProcessDeclAttributes(S, New, D); 2890 2891 if (New->hasAttr<BlocksAttr>()) 2892 Diag(New->getLocation(), diag::err_block_on_nonlocal); 2893 return New; 2894 } 2895 2896 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require 2897 /// initialization. 2898 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, 2899 SmallVectorImpl<ObjCIvarDecl*> &Ivars) { 2900 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 2901 Iv= Iv->getNextIvar()) { 2902 QualType QT = Context.getBaseElementType(Iv->getType()); 2903 if (QT->isRecordType()) 2904 Ivars.push_back(Iv); 2905 } 2906 } 2907 2908 void Sema::DiagnoseUseOfUnimplementedSelectors() { 2909 // Load referenced selectors from the external source. 2910 if (ExternalSource) { 2911 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; 2912 ExternalSource->ReadReferencedSelectors(Sels); 2913 for (unsigned I = 0, N = Sels.size(); I != N; ++I) 2914 ReferencedSelectors[Sels[I].first] = Sels[I].second; 2915 } 2916 2917 // Warning will be issued only when selector table is 2918 // generated (which means there is at lease one implementation 2919 // in the TU). This is to match gcc's behavior. 2920 if (ReferencedSelectors.empty() || 2921 !Context.AnyObjCImplementation()) 2922 return; 2923 for (llvm::DenseMap<Selector, SourceLocation>::iterator S = 2924 ReferencedSelectors.begin(), 2925 E = ReferencedSelectors.end(); S != E; ++S) { 2926 Selector Sel = (*S).first; 2927 if (!LookupImplementedMethodInGlobalPool(Sel)) 2928 Diag((*S).second, diag::warn_unimplemented_selector) << Sel; 2929 } 2930 return; 2931 } 2932