Home | History | Annotate | Download | only in Analysis
      1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic AliasAnalysis interface which is used as the
     11 // common interface used by all clients and implementations of alias analysis.
     12 //
     13 // This file also implements the default version of the AliasAnalysis interface
     14 // that is to be used when no other implementation is specified.  This does some
     15 // simple tests that detect obvious cases: two different global pointers cannot
     16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
     17 // etc.
     18 //
     19 // This alias analysis implementation really isn't very good for anything, but
     20 // it is very fast, and makes a nice clean default implementation.  Because it
     21 // handles lots of little corner cases, other, more complex, alias analysis
     22 // implementations may choose to rely on this pass to resolve these simple and
     23 // easy cases.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Pass.h"
     29 #include "llvm/BasicBlock.h"
     30 #include "llvm/Function.h"
     31 #include "llvm/IntrinsicInst.h"
     32 #include "llvm/Instructions.h"
     33 #include "llvm/LLVMContext.h"
     34 #include "llvm/Type.h"
     35 #include "llvm/Target/TargetData.h"
     36 using namespace llvm;
     37 
     38 // Register the AliasAnalysis interface, providing a nice name to refer to.
     39 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
     40 char AliasAnalysis::ID = 0;
     41 
     42 //===----------------------------------------------------------------------===//
     43 // Default chaining methods
     44 //===----------------------------------------------------------------------===//
     45 
     46 AliasAnalysis::AliasResult
     47 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
     48   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     49   return AA->alias(LocA, LocB);
     50 }
     51 
     52 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
     53                                            bool OrLocal) {
     54   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     55   return AA->pointsToConstantMemory(Loc, OrLocal);
     56 }
     57 
     58 void AliasAnalysis::deleteValue(Value *V) {
     59   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     60   AA->deleteValue(V);
     61 }
     62 
     63 void AliasAnalysis::copyValue(Value *From, Value *To) {
     64   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     65   AA->copyValue(From, To);
     66 }
     67 
     68 void AliasAnalysis::addEscapingUse(Use &U) {
     69   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     70   AA->addEscapingUse(U);
     71 }
     72 
     73 
     74 AliasAnalysis::ModRefResult
     75 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
     76                              const Location &Loc) {
     77   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     78 
     79   ModRefBehavior MRB = getModRefBehavior(CS);
     80   if (MRB == DoesNotAccessMemory)
     81     return NoModRef;
     82 
     83   ModRefResult Mask = ModRef;
     84   if (onlyReadsMemory(MRB))
     85     Mask = Ref;
     86 
     87   if (onlyAccessesArgPointees(MRB)) {
     88     bool doesAlias = false;
     89     if (doesAccessArgPointees(MRB)) {
     90       MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
     91       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
     92            AI != AE; ++AI) {
     93         const Value *Arg = *AI;
     94         if (!Arg->getType()->isPointerTy())
     95           continue;
     96         Location CSLoc(Arg, UnknownSize, CSTag);
     97         if (!isNoAlias(CSLoc, Loc)) {
     98           doesAlias = true;
     99           break;
    100         }
    101       }
    102     }
    103     if (!doesAlias)
    104       return NoModRef;
    105   }
    106 
    107   // If Loc is a constant memory location, the call definitely could not
    108   // modify the memory location.
    109   if ((Mask & Mod) && pointsToConstantMemory(Loc))
    110     Mask = ModRefResult(Mask & ~Mod);
    111 
    112   // If this is the end of the chain, don't forward.
    113   if (!AA) return Mask;
    114 
    115   // Otherwise, fall back to the next AA in the chain. But we can merge
    116   // in any mask we've managed to compute.
    117   return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
    118 }
    119 
    120 AliasAnalysis::ModRefResult
    121 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    122   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    123 
    124   // If CS1 or CS2 are readnone, they don't interact.
    125   ModRefBehavior CS1B = getModRefBehavior(CS1);
    126   if (CS1B == DoesNotAccessMemory) return NoModRef;
    127 
    128   ModRefBehavior CS2B = getModRefBehavior(CS2);
    129   if (CS2B == DoesNotAccessMemory) return NoModRef;
    130 
    131   // If they both only read from memory, there is no dependence.
    132   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
    133     return NoModRef;
    134 
    135   AliasAnalysis::ModRefResult Mask = ModRef;
    136 
    137   // If CS1 only reads memory, the only dependence on CS2 can be
    138   // from CS1 reading memory written by CS2.
    139   if (onlyReadsMemory(CS1B))
    140     Mask = ModRefResult(Mask & Ref);
    141 
    142   // If CS2 only access memory through arguments, accumulate the mod/ref
    143   // information from CS1's references to the memory referenced by
    144   // CS2's arguments.
    145   if (onlyAccessesArgPointees(CS2B)) {
    146     AliasAnalysis::ModRefResult R = NoModRef;
    147     if (doesAccessArgPointees(CS2B)) {
    148       MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
    149       for (ImmutableCallSite::arg_iterator
    150            I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
    151         const Value *Arg = *I;
    152         if (!Arg->getType()->isPointerTy())
    153           continue;
    154         Location CS2Loc(Arg, UnknownSize, CS2Tag);
    155         R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
    156         if (R == Mask)
    157           break;
    158       }
    159     }
    160     return R;
    161   }
    162 
    163   // If CS1 only accesses memory through arguments, check if CS2 references
    164   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
    165   if (onlyAccessesArgPointees(CS1B)) {
    166     AliasAnalysis::ModRefResult R = NoModRef;
    167     if (doesAccessArgPointees(CS1B)) {
    168       MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
    169       for (ImmutableCallSite::arg_iterator
    170            I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
    171         const Value *Arg = *I;
    172         if (!Arg->getType()->isPointerTy())
    173           continue;
    174         Location CS1Loc(Arg, UnknownSize, CS1Tag);
    175         if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
    176           R = Mask;
    177           break;
    178         }
    179       }
    180     }
    181     if (R == NoModRef)
    182       return R;
    183   }
    184 
    185   // If this is the end of the chain, don't forward.
    186   if (!AA) return Mask;
    187 
    188   // Otherwise, fall back to the next AA in the chain. But we can merge
    189   // in any mask we've managed to compute.
    190   return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
    191 }
    192 
    193 AliasAnalysis::ModRefBehavior
    194 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    195   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    196 
    197   ModRefBehavior Min = UnknownModRefBehavior;
    198 
    199   // Call back into the alias analysis with the other form of getModRefBehavior
    200   // to see if it can give a better response.
    201   if (const Function *F = CS.getCalledFunction())
    202     Min = getModRefBehavior(F);
    203 
    204   // If this is the end of the chain, don't forward.
    205   if (!AA) return Min;
    206 
    207   // Otherwise, fall back to the next AA in the chain. But we can merge
    208   // in any result we've managed to compute.
    209   return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
    210 }
    211 
    212 AliasAnalysis::ModRefBehavior
    213 AliasAnalysis::getModRefBehavior(const Function *F) {
    214   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    215   return AA->getModRefBehavior(F);
    216 }
    217 
    218 //===----------------------------------------------------------------------===//
    219 // AliasAnalysis non-virtual helper method implementation
    220 //===----------------------------------------------------------------------===//
    221 
    222 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
    223   return Location(LI->getPointerOperand(),
    224                   getTypeStoreSize(LI->getType()),
    225                   LI->getMetadata(LLVMContext::MD_tbaa));
    226 }
    227 
    228 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
    229   return Location(SI->getPointerOperand(),
    230                   getTypeStoreSize(SI->getValueOperand()->getType()),
    231                   SI->getMetadata(LLVMContext::MD_tbaa));
    232 }
    233 
    234 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
    235   return Location(VI->getPointerOperand(),
    236                   UnknownSize,
    237                   VI->getMetadata(LLVMContext::MD_tbaa));
    238 }
    239 
    240 AliasAnalysis::Location
    241 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
    242   return Location(CXI->getPointerOperand(),
    243                   getTypeStoreSize(CXI->getCompareOperand()->getType()),
    244                   CXI->getMetadata(LLVMContext::MD_tbaa));
    245 }
    246 
    247 AliasAnalysis::Location
    248 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
    249   return Location(RMWI->getPointerOperand(),
    250                   getTypeStoreSize(RMWI->getValOperand()->getType()),
    251                   RMWI->getMetadata(LLVMContext::MD_tbaa));
    252 }
    253 
    254 AliasAnalysis::Location
    255 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
    256   uint64_t Size = UnknownSize;
    257   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    258     Size = C->getValue().getZExtValue();
    259 
    260   // memcpy/memmove can have TBAA tags. For memcpy, they apply
    261   // to both the source and the destination.
    262   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
    263 
    264   return Location(MTI->getRawSource(), Size, TBAATag);
    265 }
    266 
    267 AliasAnalysis::Location
    268 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
    269   uint64_t Size = UnknownSize;
    270   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    271     Size = C->getValue().getZExtValue();
    272 
    273   // memcpy/memmove can have TBAA tags. For memcpy, they apply
    274   // to both the source and the destination.
    275   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
    276 
    277   return Location(MTI->getRawDest(), Size, TBAATag);
    278 }
    279 
    280 
    281 
    282 AliasAnalysis::ModRefResult
    283 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
    284   // Be conservative in the face of volatile/atomic.
    285   if (!L->isUnordered())
    286     return ModRef;
    287 
    288   // If the load address doesn't alias the given address, it doesn't read
    289   // or write the specified memory.
    290   if (!alias(getLocation(L), Loc))
    291     return NoModRef;
    292 
    293   // Otherwise, a load just reads.
    294   return Ref;
    295 }
    296 
    297 AliasAnalysis::ModRefResult
    298 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
    299   // Be conservative in the face of volatile/atomic.
    300   if (!S->isUnordered())
    301     return ModRef;
    302 
    303   // If the store address cannot alias the pointer in question, then the
    304   // specified memory cannot be modified by the store.
    305   if (!alias(getLocation(S), Loc))
    306     return NoModRef;
    307 
    308   // If the pointer is a pointer to constant memory, then it could not have been
    309   // modified by this store.
    310   if (pointsToConstantMemory(Loc))
    311     return NoModRef;
    312 
    313   // Otherwise, a store just writes.
    314   return Mod;
    315 }
    316 
    317 AliasAnalysis::ModRefResult
    318 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
    319   // If the va_arg address cannot alias the pointer in question, then the
    320   // specified memory cannot be accessed by the va_arg.
    321   if (!alias(getLocation(V), Loc))
    322     return NoModRef;
    323 
    324   // If the pointer is a pointer to constant memory, then it could not have been
    325   // modified by this va_arg.
    326   if (pointsToConstantMemory(Loc))
    327     return NoModRef;
    328 
    329   // Otherwise, a va_arg reads and writes.
    330   return ModRef;
    331 }
    332 
    333 AliasAnalysis::ModRefResult
    334 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
    335   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
    336   if (CX->getOrdering() > Monotonic)
    337     return ModRef;
    338 
    339   // If the cmpxchg address does not alias the location, it does not access it.
    340   if (!alias(getLocation(CX), Loc))
    341     return NoModRef;
    342 
    343   return ModRef;
    344 }
    345 
    346 AliasAnalysis::ModRefResult
    347 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
    348   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
    349   if (RMW->getOrdering() > Monotonic)
    350     return ModRef;
    351 
    352   // If the atomicrmw address does not alias the location, it does not access it.
    353   if (!alias(getLocation(RMW), Loc))
    354     return NoModRef;
    355 
    356   return ModRef;
    357 }
    358 
    359 
    360 // AliasAnalysis destructor: DO NOT move this to the header file for
    361 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
    362 // the AliasAnalysis.o file in the current .a file, causing alias analysis
    363 // support to not be included in the tool correctly!
    364 //
    365 AliasAnalysis::~AliasAnalysis() {}
    366 
    367 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
    368 /// AliasAnalysis interface before any other methods are called.
    369 ///
    370 void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
    371   TD = P->getAnalysisIfAvailable<TargetData>();
    372   AA = &P->getAnalysis<AliasAnalysis>();
    373 }
    374 
    375 // getAnalysisUsage - All alias analysis implementations should invoke this
    376 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
    377 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    378   AU.addRequired<AliasAnalysis>();         // All AA's chain
    379 }
    380 
    381 /// getTypeStoreSize - Return the TargetData store size for the given type,
    382 /// if known, or a conservative value otherwise.
    383 ///
    384 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
    385   return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
    386 }
    387 
    388 /// canBasicBlockModify - Return true if it is possible for execution of the
    389 /// specified basic block to modify the value pointed to by Ptr.
    390 ///
    391 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
    392                                         const Location &Loc) {
    393   return canInstructionRangeModify(BB.front(), BB.back(), Loc);
    394 }
    395 
    396 /// canInstructionRangeModify - Return true if it is possible for the execution
    397 /// of the specified instructions to modify the value pointed to by Ptr.  The
    398 /// instructions to consider are all of the instructions in the range of [I1,I2]
    399 /// INCLUSIVE.  I1 and I2 must be in the same basic block.
    400 ///
    401 bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
    402                                               const Instruction &I2,
    403                                               const Location &Loc) {
    404   assert(I1.getParent() == I2.getParent() &&
    405          "Instructions not in same basic block!");
    406   BasicBlock::const_iterator I = &I1;
    407   BasicBlock::const_iterator E = &I2;
    408   ++E;  // Convert from inclusive to exclusive range.
    409 
    410   for (; I != E; ++I) // Check every instruction in range
    411     if (getModRefInfo(I, Loc) & Mod)
    412       return true;
    413   return false;
    414 }
    415 
    416 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    417 /// function.
    418 bool llvm::isNoAliasCall(const Value *V) {
    419   if (isa<CallInst>(V) || isa<InvokeInst>(V))
    420     return ImmutableCallSite(cast<Instruction>(V))
    421       .paramHasAttr(0, Attribute::NoAlias);
    422   return false;
    423 }
    424 
    425 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    426 /// identifiable object.  This returns true for:
    427 ///    Global Variables and Functions (but not Global Aliases)
    428 ///    Allocas and Mallocs
    429 ///    ByVal and NoAlias Arguments
    430 ///    NoAlias returns
    431 ///
    432 bool llvm::isIdentifiedObject(const Value *V) {
    433   if (isa<AllocaInst>(V))
    434     return true;
    435   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    436     return true;
    437   if (isNoAliasCall(V))
    438     return true;
    439   if (const Argument *A = dyn_cast<Argument>(V))
    440     return A->hasNoAliasAttr() || A->hasByValAttr();
    441   return false;
    442 }
    443