1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines BugReporter, a utility class for generating 11 // PathDiagnostics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" 16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/Analysis/CFG.h" 20 #include "clang/AST/Expr.h" 21 #include "clang/AST/ParentMap.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Analysis/ProgramPoint.h" 25 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/OwningPtr.h" 30 #include <queue> 31 32 using namespace clang; 33 using namespace ento; 34 35 BugReporterVisitor::~BugReporterVisitor() {} 36 37 //===----------------------------------------------------------------------===// 38 // Helper routines for walking the ExplodedGraph and fetching statements. 39 //===----------------------------------------------------------------------===// 40 41 static inline const Stmt *GetStmt(const ProgramPoint &P) { 42 if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P)) 43 return SP->getStmt(); 44 else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) 45 return BE->getSrc()->getTerminator(); 46 47 return 0; 48 } 49 50 static inline const ExplodedNode* 51 GetPredecessorNode(const ExplodedNode *N) { 52 return N->pred_empty() ? NULL : *(N->pred_begin()); 53 } 54 55 static inline const ExplodedNode* 56 GetSuccessorNode(const ExplodedNode *N) { 57 return N->succ_empty() ? NULL : *(N->succ_begin()); 58 } 59 60 static const Stmt *GetPreviousStmt(const ExplodedNode *N) { 61 for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N)) 62 if (const Stmt *S = GetStmt(N->getLocation())) 63 return S; 64 65 return 0; 66 } 67 68 static const Stmt *GetNextStmt(const ExplodedNode *N) { 69 for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N)) 70 if (const Stmt *S = GetStmt(N->getLocation())) { 71 // Check if the statement is '?' or '&&'/'||'. These are "merges", 72 // not actual statement points. 73 switch (S->getStmtClass()) { 74 case Stmt::ChooseExprClass: 75 case Stmt::BinaryConditionalOperatorClass: continue; 76 case Stmt::ConditionalOperatorClass: continue; 77 case Stmt::BinaryOperatorClass: { 78 BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode(); 79 if (Op == BO_LAnd || Op == BO_LOr) 80 continue; 81 break; 82 } 83 default: 84 break; 85 } 86 return S; 87 } 88 89 return 0; 90 } 91 92 static inline const Stmt* 93 GetCurrentOrPreviousStmt(const ExplodedNode *N) { 94 if (const Stmt *S = GetStmt(N->getLocation())) 95 return S; 96 97 return GetPreviousStmt(N); 98 } 99 100 static inline const Stmt* 101 GetCurrentOrNextStmt(const ExplodedNode *N) { 102 if (const Stmt *S = GetStmt(N->getLocation())) 103 return S; 104 105 return GetNextStmt(N); 106 } 107 108 //===----------------------------------------------------------------------===// 109 // PathDiagnosticBuilder and its associated routines and helper objects. 110 //===----------------------------------------------------------------------===// 111 112 typedef llvm::DenseMap<const ExplodedNode*, 113 const ExplodedNode*> NodeBackMap; 114 115 namespace { 116 class NodeMapClosure : public BugReport::NodeResolver { 117 NodeBackMap& M; 118 public: 119 NodeMapClosure(NodeBackMap *m) : M(*m) {} 120 ~NodeMapClosure() {} 121 122 const ExplodedNode *getOriginalNode(const ExplodedNode *N) { 123 NodeBackMap::iterator I = M.find(N); 124 return I == M.end() ? 0 : I->second; 125 } 126 }; 127 128 class PathDiagnosticBuilder : public BugReporterContext { 129 BugReport *R; 130 PathDiagnosticConsumer *PDC; 131 llvm::OwningPtr<ParentMap> PM; 132 NodeMapClosure NMC; 133 public: 134 PathDiagnosticBuilder(GRBugReporter &br, 135 BugReport *r, NodeBackMap *Backmap, 136 PathDiagnosticConsumer *pdc) 137 : BugReporterContext(br), 138 R(r), PDC(pdc), NMC(Backmap) {} 139 140 PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N); 141 142 PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os, 143 const ExplodedNode *N); 144 145 BugReport *getBugReport() { return R; } 146 147 Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); } 148 149 const LocationContext* getLocationContext() { 150 return R->getErrorNode()->getLocationContext(); 151 } 152 153 ParentMap& getParentMap() { return R->getErrorNode()->getParentMap(); } 154 155 const Stmt *getParent(const Stmt *S) { 156 return getParentMap().getParent(S); 157 } 158 159 virtual NodeMapClosure& getNodeResolver() { return NMC; } 160 161 PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S); 162 163 PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const { 164 return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive; 165 } 166 167 bool supportsLogicalOpControlFlow() const { 168 return PDC ? PDC->supportsLogicalOpControlFlow() : true; 169 } 170 }; 171 } // end anonymous namespace 172 173 PathDiagnosticLocation 174 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) { 175 if (const Stmt *S = GetNextStmt(N)) 176 return PathDiagnosticLocation(S, getSourceManager(), getLocationContext()); 177 178 return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(), 179 getSourceManager()); 180 } 181 182 PathDiagnosticLocation 183 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os, 184 const ExplodedNode *N) { 185 186 // Slow, but probably doesn't matter. 187 if (os.str().empty()) 188 os << ' '; 189 190 const PathDiagnosticLocation &Loc = ExecutionContinues(N); 191 192 if (Loc.asStmt()) 193 os << "Execution continues on line " 194 << getSourceManager().getExpansionLineNumber(Loc.asLocation()) 195 << '.'; 196 else { 197 os << "Execution jumps to the end of the "; 198 const Decl *D = N->getLocationContext()->getDecl(); 199 if (isa<ObjCMethodDecl>(D)) 200 os << "method"; 201 else if (isa<FunctionDecl>(D)) 202 os << "function"; 203 else { 204 assert(isa<BlockDecl>(D)); 205 os << "anonymous block"; 206 } 207 os << '.'; 208 } 209 210 return Loc; 211 } 212 213 static bool IsNested(const Stmt *S, ParentMap &PM) { 214 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S))) 215 return true; 216 217 const Stmt *Parent = PM.getParentIgnoreParens(S); 218 219 if (Parent) 220 switch (Parent->getStmtClass()) { 221 case Stmt::ForStmtClass: 222 case Stmt::DoStmtClass: 223 case Stmt::WhileStmtClass: 224 return true; 225 default: 226 break; 227 } 228 229 return false; 230 } 231 232 PathDiagnosticLocation 233 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) { 234 assert(S && "Null Stmt *passed to getEnclosingStmtLocation"); 235 ParentMap &P = getParentMap(); 236 SourceManager &SMgr = getSourceManager(); 237 const LocationContext *LC = getLocationContext(); 238 239 while (IsNested(S, P)) { 240 const Stmt *Parent = P.getParentIgnoreParens(S); 241 242 if (!Parent) 243 break; 244 245 switch (Parent->getStmtClass()) { 246 case Stmt::BinaryOperatorClass: { 247 const BinaryOperator *B = cast<BinaryOperator>(Parent); 248 if (B->isLogicalOp()) 249 return PathDiagnosticLocation(S, SMgr, LC); 250 break; 251 } 252 case Stmt::CompoundStmtClass: 253 case Stmt::StmtExprClass: 254 return PathDiagnosticLocation(S, SMgr, LC); 255 case Stmt::ChooseExprClass: 256 // Similar to '?' if we are referring to condition, just have the edge 257 // point to the entire choose expression. 258 if (cast<ChooseExpr>(Parent)->getCond() == S) 259 return PathDiagnosticLocation(Parent, SMgr, LC); 260 else 261 return PathDiagnosticLocation(S, SMgr, LC); 262 case Stmt::BinaryConditionalOperatorClass: 263 case Stmt::ConditionalOperatorClass: 264 // For '?', if we are referring to condition, just have the edge point 265 // to the entire '?' expression. 266 if (cast<AbstractConditionalOperator>(Parent)->getCond() == S) 267 return PathDiagnosticLocation(Parent, SMgr, LC); 268 else 269 return PathDiagnosticLocation(S, SMgr, LC); 270 case Stmt::DoStmtClass: 271 return PathDiagnosticLocation(S, SMgr, LC); 272 case Stmt::ForStmtClass: 273 if (cast<ForStmt>(Parent)->getBody() == S) 274 return PathDiagnosticLocation(S, SMgr, LC); 275 break; 276 case Stmt::IfStmtClass: 277 if (cast<IfStmt>(Parent)->getCond() != S) 278 return PathDiagnosticLocation(S, SMgr, LC); 279 break; 280 case Stmt::ObjCForCollectionStmtClass: 281 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S) 282 return PathDiagnosticLocation(S, SMgr, LC); 283 break; 284 case Stmt::WhileStmtClass: 285 if (cast<WhileStmt>(Parent)->getCond() != S) 286 return PathDiagnosticLocation(S, SMgr, LC); 287 break; 288 default: 289 break; 290 } 291 292 S = Parent; 293 } 294 295 assert(S && "Cannot have null Stmt for PathDiagnosticLocation"); 296 297 // Special case: DeclStmts can appear in for statement declarations, in which 298 // case the ForStmt is the context. 299 if (isa<DeclStmt>(S)) { 300 if (const Stmt *Parent = P.getParent(S)) { 301 switch (Parent->getStmtClass()) { 302 case Stmt::ForStmtClass: 303 case Stmt::ObjCForCollectionStmtClass: 304 return PathDiagnosticLocation(Parent, SMgr, LC); 305 default: 306 break; 307 } 308 } 309 } 310 else if (isa<BinaryOperator>(S)) { 311 // Special case: the binary operator represents the initialization 312 // code in a for statement (this can happen when the variable being 313 // initialized is an old variable. 314 if (const ForStmt *FS = 315 dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) { 316 if (FS->getInit() == S) 317 return PathDiagnosticLocation(FS, SMgr, LC); 318 } 319 } 320 321 return PathDiagnosticLocation(S, SMgr, LC); 322 } 323 324 //===----------------------------------------------------------------------===// 325 // ScanNotableSymbols: closure-like callback for scanning Store bindings. 326 //===----------------------------------------------------------------------===// 327 328 static const VarDecl* GetMostRecentVarDeclBinding(const ExplodedNode *N, 329 ProgramStateManager& VMgr, 330 SVal X) { 331 332 for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) { 333 334 ProgramPoint P = N->getLocation(); 335 336 if (!isa<PostStmt>(P)) 337 continue; 338 339 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt()); 340 341 if (!DR) 342 continue; 343 344 SVal Y = N->getState()->getSVal(DR); 345 346 if (X != Y) 347 continue; 348 349 const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()); 350 351 if (!VD) 352 continue; 353 354 return VD; 355 } 356 357 return 0; 358 } 359 360 namespace { 361 class NotableSymbolHandler 362 : public StoreManager::BindingsHandler { 363 364 SymbolRef Sym; 365 const ProgramState *PrevSt; 366 const Stmt *S; 367 ProgramStateManager& VMgr; 368 const ExplodedNode *Pred; 369 PathDiagnostic& PD; 370 BugReporter& BR; 371 372 public: 373 374 NotableSymbolHandler(SymbolRef sym, 375 const ProgramState *prevst, 376 const Stmt *s, 377 ProgramStateManager& vmgr, 378 const ExplodedNode *pred, 379 PathDiagnostic& pd, 380 BugReporter& br) 381 : Sym(sym), 382 PrevSt(prevst), 383 S(s), 384 VMgr(vmgr), 385 Pred(pred), 386 PD(pd), 387 BR(br) {} 388 389 bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R, 390 SVal V) { 391 392 SymbolRef ScanSym = V.getAsSymbol(); 393 394 if (ScanSym != Sym) 395 return true; 396 397 // Check if the previous state has this binding. 398 SVal X = PrevSt->getSVal(loc::MemRegionVal(R)); 399 400 if (X == V) // Same binding? 401 return true; 402 403 // Different binding. Only handle assignments for now. We don't pull 404 // this check out of the loop because we will eventually handle other 405 // cases. 406 407 VarDecl *VD = 0; 408 409 if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { 410 if (!B->isAssignmentOp()) 411 return true; 412 413 // What variable did we assign to? 414 DeclRefExpr *DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts()); 415 416 if (!DR) 417 return true; 418 419 VD = dyn_cast<VarDecl>(DR->getDecl()); 420 } 421 else if (const DeclStmt *DS = dyn_cast<DeclStmt>(S)) { 422 // FIXME: Eventually CFGs won't have DeclStmts. Right now we 423 // assume that each DeclStmt has a single Decl. This invariant 424 // holds by construction in the CFG. 425 VD = dyn_cast<VarDecl>(*DS->decl_begin()); 426 } 427 428 if (!VD) 429 return true; 430 431 // What is the most recently referenced variable with this binding? 432 const VarDecl *MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V); 433 434 if (!MostRecent) 435 return true; 436 437 // Create the diagnostic. 438 if (Loc::isLocType(VD->getType())) { 439 llvm::SmallString<64> buf; 440 llvm::raw_svector_ostream os(buf); 441 os << '\'' << *VD << "' now aliases '" << *MostRecent << '\''; 442 PathDiagnosticLocation L = 443 PathDiagnosticLocation::createBegin(S, BR.getSourceManager(), 444 Pred->getLocationContext()); 445 PD.push_front(new PathDiagnosticEventPiece(L, os.str())); 446 } 447 448 return true; 449 } 450 }; 451 } 452 453 static void HandleNotableSymbol(const ExplodedNode *N, 454 const Stmt *S, 455 SymbolRef Sym, BugReporter& BR, 456 PathDiagnostic& PD) { 457 458 const ExplodedNode *Pred = N->pred_empty() ? 0 : *N->pred_begin(); 459 const ProgramState *PrevSt = Pred ? Pred->getState() : 0; 460 461 if (!PrevSt) 462 return; 463 464 // Look at the region bindings of the current state that map to the 465 // specified symbol. Are any of them not in the previous state? 466 ProgramStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager(); 467 NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR); 468 cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H); 469 } 470 471 namespace { 472 class ScanNotableSymbols 473 : public StoreManager::BindingsHandler { 474 475 llvm::SmallSet<SymbolRef, 10> AlreadyProcessed; 476 const ExplodedNode *N; 477 const Stmt *S; 478 GRBugReporter& BR; 479 PathDiagnostic& PD; 480 481 public: 482 ScanNotableSymbols(const ExplodedNode *n, const Stmt *s, 483 GRBugReporter& br, PathDiagnostic& pd) 484 : N(n), S(s), BR(br), PD(pd) {} 485 486 bool HandleBinding(StoreManager& SMgr, Store store, 487 const MemRegion* R, SVal V) { 488 489 SymbolRef ScanSym = V.getAsSymbol(); 490 491 if (!ScanSym) 492 return true; 493 494 if (!BR.isNotable(ScanSym)) 495 return true; 496 497 if (AlreadyProcessed.count(ScanSym)) 498 return true; 499 500 AlreadyProcessed.insert(ScanSym); 501 502 HandleNotableSymbol(N, S, ScanSym, BR, PD); 503 return true; 504 } 505 }; 506 } // end anonymous namespace 507 508 //===----------------------------------------------------------------------===// 509 // "Minimal" path diagnostic generation algorithm. 510 //===----------------------------------------------------------------------===// 511 512 static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM); 513 514 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD, 515 PathDiagnosticBuilder &PDB, 516 const ExplodedNode *N) { 517 518 SourceManager& SMgr = PDB.getSourceManager(); 519 const LocationContext *LC = PDB.getLocationContext(); 520 const ExplodedNode *NextNode = N->pred_empty() 521 ? NULL : *(N->pred_begin()); 522 while (NextNode) { 523 N = NextNode; 524 NextNode = GetPredecessorNode(N); 525 526 ProgramPoint P = N->getLocation(); 527 528 if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { 529 const CFGBlock *Src = BE->getSrc(); 530 const CFGBlock *Dst = BE->getDst(); 531 const Stmt *T = Src->getTerminator(); 532 533 if (!T) 534 continue; 535 536 PathDiagnosticLocation Start = 537 PathDiagnosticLocation::createBegin(T, SMgr, 538 N->getLocationContext()); 539 540 switch (T->getStmtClass()) { 541 default: 542 break; 543 544 case Stmt::GotoStmtClass: 545 case Stmt::IndirectGotoStmtClass: { 546 const Stmt *S = GetNextStmt(N); 547 548 if (!S) 549 continue; 550 551 std::string sbuf; 552 llvm::raw_string_ostream os(sbuf); 553 const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S); 554 555 os << "Control jumps to line " 556 << End.asLocation().getExpansionLineNumber(); 557 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 558 os.str())); 559 break; 560 } 561 562 case Stmt::SwitchStmtClass: { 563 // Figure out what case arm we took. 564 std::string sbuf; 565 llvm::raw_string_ostream os(sbuf); 566 567 if (const Stmt *S = Dst->getLabel()) { 568 PathDiagnosticLocation End(S, SMgr, LC); 569 570 switch (S->getStmtClass()) { 571 default: 572 os << "No cases match in the switch statement. " 573 "Control jumps to line " 574 << End.asLocation().getExpansionLineNumber(); 575 break; 576 case Stmt::DefaultStmtClass: 577 os << "Control jumps to the 'default' case at line " 578 << End.asLocation().getExpansionLineNumber(); 579 break; 580 581 case Stmt::CaseStmtClass: { 582 os << "Control jumps to 'case "; 583 const CaseStmt *Case = cast<CaseStmt>(S); 584 const Expr *LHS = Case->getLHS()->IgnoreParenCasts(); 585 586 // Determine if it is an enum. 587 bool GetRawInt = true; 588 589 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) { 590 // FIXME: Maybe this should be an assertion. Are there cases 591 // were it is not an EnumConstantDecl? 592 const EnumConstantDecl *D = 593 dyn_cast<EnumConstantDecl>(DR->getDecl()); 594 595 if (D) { 596 GetRawInt = false; 597 os << *D; 598 } 599 } 600 601 if (GetRawInt) 602 os << LHS->EvaluateKnownConstInt(PDB.getASTContext()); 603 604 os << ":' at line " 605 << End.asLocation().getExpansionLineNumber(); 606 break; 607 } 608 } 609 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 610 os.str())); 611 } 612 else { 613 os << "'Default' branch taken. "; 614 const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N); 615 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 616 os.str())); 617 } 618 619 break; 620 } 621 622 case Stmt::BreakStmtClass: 623 case Stmt::ContinueStmtClass: { 624 std::string sbuf; 625 llvm::raw_string_ostream os(sbuf); 626 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 627 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 628 os.str())); 629 break; 630 } 631 632 // Determine control-flow for ternary '?'. 633 case Stmt::BinaryConditionalOperatorClass: 634 case Stmt::ConditionalOperatorClass: { 635 std::string sbuf; 636 llvm::raw_string_ostream os(sbuf); 637 os << "'?' condition is "; 638 639 if (*(Src->succ_begin()+1) == Dst) 640 os << "false"; 641 else 642 os << "true"; 643 644 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 645 646 if (const Stmt *S = End.asStmt()) 647 End = PDB.getEnclosingStmtLocation(S); 648 649 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 650 os.str())); 651 break; 652 } 653 654 // Determine control-flow for short-circuited '&&' and '||'. 655 case Stmt::BinaryOperatorClass: { 656 if (!PDB.supportsLogicalOpControlFlow()) 657 break; 658 659 const BinaryOperator *B = cast<BinaryOperator>(T); 660 std::string sbuf; 661 llvm::raw_string_ostream os(sbuf); 662 os << "Left side of '"; 663 664 if (B->getOpcode() == BO_LAnd) { 665 os << "&&" << "' is "; 666 667 if (*(Src->succ_begin()+1) == Dst) { 668 os << "false"; 669 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 670 PathDiagnosticLocation Start = 671 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 672 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 673 os.str())); 674 } 675 else { 676 os << "true"; 677 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 678 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 679 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 680 os.str())); 681 } 682 } 683 else { 684 assert(B->getOpcode() == BO_LOr); 685 os << "||" << "' is "; 686 687 if (*(Src->succ_begin()+1) == Dst) { 688 os << "false"; 689 PathDiagnosticLocation Start(B->getLHS(), SMgr, LC); 690 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 691 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 692 os.str())); 693 } 694 else { 695 os << "true"; 696 PathDiagnosticLocation End(B->getLHS(), SMgr, LC); 697 PathDiagnosticLocation Start = 698 PathDiagnosticLocation::createOperatorLoc(B, SMgr); 699 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 700 os.str())); 701 } 702 } 703 704 break; 705 } 706 707 case Stmt::DoStmtClass: { 708 if (*(Src->succ_begin()) == Dst) { 709 std::string sbuf; 710 llvm::raw_string_ostream os(sbuf); 711 712 os << "Loop condition is true. "; 713 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 714 715 if (const Stmt *S = End.asStmt()) 716 End = PDB.getEnclosingStmtLocation(S); 717 718 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 719 os.str())); 720 } 721 else { 722 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 723 724 if (const Stmt *S = End.asStmt()) 725 End = PDB.getEnclosingStmtLocation(S); 726 727 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 728 "Loop condition is false. Exiting loop")); 729 } 730 731 break; 732 } 733 734 case Stmt::WhileStmtClass: 735 case Stmt::ForStmtClass: { 736 if (*(Src->succ_begin()+1) == Dst) { 737 std::string sbuf; 738 llvm::raw_string_ostream os(sbuf); 739 740 os << "Loop condition is false. "; 741 PathDiagnosticLocation End = PDB.ExecutionContinues(os, N); 742 if (const Stmt *S = End.asStmt()) 743 End = PDB.getEnclosingStmtLocation(S); 744 745 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 746 os.str())); 747 } 748 else { 749 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 750 if (const Stmt *S = End.asStmt()) 751 End = PDB.getEnclosingStmtLocation(S); 752 753 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 754 "Loop condition is true. Entering loop body")); 755 } 756 757 break; 758 } 759 760 case Stmt::IfStmtClass: { 761 PathDiagnosticLocation End = PDB.ExecutionContinues(N); 762 763 if (const Stmt *S = End.asStmt()) 764 End = PDB.getEnclosingStmtLocation(S); 765 766 if (*(Src->succ_begin()+1) == Dst) 767 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 768 "Taking false branch")); 769 else 770 PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, 771 "Taking true branch")); 772 773 break; 774 } 775 } 776 } 777 778 if (NextNode) { 779 // Add diagnostic pieces from custom visitors. 780 BugReport *R = PDB.getBugReport(); 781 for (BugReport::visitor_iterator I = R->visitor_begin(), 782 E = R->visitor_end(); I!=E; ++I) { 783 if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) 784 PD.push_front(p); 785 } 786 } 787 788 if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) { 789 // Scan the region bindings, and see if a "notable" symbol has a new 790 // lval binding. 791 ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD); 792 PDB.getStateManager().iterBindings(N->getState(), SNS); 793 } 794 } 795 796 // After constructing the full PathDiagnostic, do a pass over it to compact 797 // PathDiagnosticPieces that occur within a macro. 798 CompactPathDiagnostic(PD, PDB.getSourceManager()); 799 } 800 801 //===----------------------------------------------------------------------===// 802 // "Extensive" PathDiagnostic generation. 803 //===----------------------------------------------------------------------===// 804 805 static bool IsControlFlowExpr(const Stmt *S) { 806 const Expr *E = dyn_cast<Expr>(S); 807 808 if (!E) 809 return false; 810 811 E = E->IgnoreParenCasts(); 812 813 if (isa<AbstractConditionalOperator>(E)) 814 return true; 815 816 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E)) 817 if (B->isLogicalOp()) 818 return true; 819 820 return false; 821 } 822 823 namespace { 824 class ContextLocation : public PathDiagnosticLocation { 825 bool IsDead; 826 public: 827 ContextLocation(const PathDiagnosticLocation &L, bool isdead = false) 828 : PathDiagnosticLocation(L), IsDead(isdead) {} 829 830 void markDead() { IsDead = true; } 831 bool isDead() const { return IsDead; } 832 }; 833 834 class EdgeBuilder { 835 std::vector<ContextLocation> CLocs; 836 typedef std::vector<ContextLocation>::iterator iterator; 837 PathDiagnostic &PD; 838 PathDiagnosticBuilder &PDB; 839 PathDiagnosticLocation PrevLoc; 840 841 bool IsConsumedExpr(const PathDiagnosticLocation &L); 842 843 bool containsLocation(const PathDiagnosticLocation &Container, 844 const PathDiagnosticLocation &Containee); 845 846 PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L); 847 848 PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L, 849 bool firstCharOnly = false) { 850 if (const Stmt *S = L.asStmt()) { 851 const Stmt *Original = S; 852 while (1) { 853 // Adjust the location for some expressions that are best referenced 854 // by one of their subexpressions. 855 switch (S->getStmtClass()) { 856 default: 857 break; 858 case Stmt::ParenExprClass: 859 case Stmt::GenericSelectionExprClass: 860 S = cast<Expr>(S)->IgnoreParens(); 861 firstCharOnly = true; 862 continue; 863 case Stmt::BinaryConditionalOperatorClass: 864 case Stmt::ConditionalOperatorClass: 865 S = cast<AbstractConditionalOperator>(S)->getCond(); 866 firstCharOnly = true; 867 continue; 868 case Stmt::ChooseExprClass: 869 S = cast<ChooseExpr>(S)->getCond(); 870 firstCharOnly = true; 871 continue; 872 case Stmt::BinaryOperatorClass: 873 S = cast<BinaryOperator>(S)->getLHS(); 874 firstCharOnly = true; 875 continue; 876 } 877 878 break; 879 } 880 881 if (S != Original) 882 L = PathDiagnosticLocation(S, L.getManager(), PDB.getLocationContext()); 883 } 884 885 if (firstCharOnly) 886 L = PathDiagnosticLocation::createSingleLocation(L); 887 888 return L; 889 } 890 891 void popLocation() { 892 if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) { 893 // For contexts, we only one the first character as the range. 894 rawAddEdge(cleanUpLocation(CLocs.back(), true)); 895 } 896 CLocs.pop_back(); 897 } 898 899 public: 900 EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb) 901 : PD(pd), PDB(pdb) { 902 903 // If the PathDiagnostic already has pieces, add the enclosing statement 904 // of the first piece as a context as well. 905 if (!PD.empty()) { 906 PrevLoc = PD.begin()->getLocation(); 907 908 if (const Stmt *S = PrevLoc.asStmt()) 909 addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 910 } 911 } 912 913 ~EdgeBuilder() { 914 while (!CLocs.empty()) popLocation(); 915 916 // Finally, add an initial edge from the start location of the first 917 // statement (if it doesn't already exist). 918 PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin( 919 PDB.getLocationContext(), 920 PDB.getSourceManager()); 921 if (L.isValid()) 922 rawAddEdge(L); 923 } 924 925 void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false); 926 927 void rawAddEdge(PathDiagnosticLocation NewLoc); 928 929 void addContext(const Stmt *S); 930 void addExtendedContext(const Stmt *S); 931 }; 932 } // end anonymous namespace 933 934 935 PathDiagnosticLocation 936 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) { 937 if (const Stmt *S = L.asStmt()) { 938 if (IsControlFlowExpr(S)) 939 return L; 940 941 return PDB.getEnclosingStmtLocation(S); 942 } 943 944 return L; 945 } 946 947 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container, 948 const PathDiagnosticLocation &Containee) { 949 950 if (Container == Containee) 951 return true; 952 953 if (Container.asDecl()) 954 return true; 955 956 if (const Stmt *S = Containee.asStmt()) 957 if (const Stmt *ContainerS = Container.asStmt()) { 958 while (S) { 959 if (S == ContainerS) 960 return true; 961 S = PDB.getParent(S); 962 } 963 return false; 964 } 965 966 // Less accurate: compare using source ranges. 967 SourceRange ContainerR = Container.asRange(); 968 SourceRange ContaineeR = Containee.asRange(); 969 970 SourceManager &SM = PDB.getSourceManager(); 971 SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin()); 972 SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd()); 973 SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin()); 974 SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd()); 975 976 unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg); 977 unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd); 978 unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg); 979 unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd); 980 981 assert(ContainerBegLine <= ContainerEndLine); 982 assert(ContaineeBegLine <= ContaineeEndLine); 983 984 return (ContainerBegLine <= ContaineeBegLine && 985 ContainerEndLine >= ContaineeEndLine && 986 (ContainerBegLine != ContaineeBegLine || 987 SM.getExpansionColumnNumber(ContainerRBeg) <= 988 SM.getExpansionColumnNumber(ContaineeRBeg)) && 989 (ContainerEndLine != ContaineeEndLine || 990 SM.getExpansionColumnNumber(ContainerREnd) >= 991 SM.getExpansionColumnNumber(ContainerREnd))); 992 } 993 994 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) { 995 if (!PrevLoc.isValid()) { 996 PrevLoc = NewLoc; 997 return; 998 } 999 1000 const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc); 1001 const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc); 1002 1003 if (NewLocClean.asLocation() == PrevLocClean.asLocation()) 1004 return; 1005 1006 // FIXME: Ignore intra-macro edges for now. 1007 if (NewLocClean.asLocation().getExpansionLoc() == 1008 PrevLocClean.asLocation().getExpansionLoc()) 1009 return; 1010 1011 PD.push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean)); 1012 PrevLoc = NewLoc; 1013 } 1014 1015 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) { 1016 1017 if (!alwaysAdd && NewLoc.asLocation().isMacroID()) 1018 return; 1019 1020 const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc); 1021 1022 while (!CLocs.empty()) { 1023 ContextLocation &TopContextLoc = CLocs.back(); 1024 1025 // Is the top location context the same as the one for the new location? 1026 if (TopContextLoc == CLoc) { 1027 if (alwaysAdd) { 1028 if (IsConsumedExpr(TopContextLoc) && 1029 !IsControlFlowExpr(TopContextLoc.asStmt())) 1030 TopContextLoc.markDead(); 1031 1032 rawAddEdge(NewLoc); 1033 } 1034 1035 return; 1036 } 1037 1038 if (containsLocation(TopContextLoc, CLoc)) { 1039 if (alwaysAdd) { 1040 rawAddEdge(NewLoc); 1041 1042 if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) { 1043 CLocs.push_back(ContextLocation(CLoc, true)); 1044 return; 1045 } 1046 } 1047 1048 CLocs.push_back(CLoc); 1049 return; 1050 } 1051 1052 // Context does not contain the location. Flush it. 1053 popLocation(); 1054 } 1055 1056 // If we reach here, there is no enclosing context. Just add the edge. 1057 rawAddEdge(NewLoc); 1058 } 1059 1060 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) { 1061 if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt())) 1062 return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X); 1063 1064 return false; 1065 } 1066 1067 void EdgeBuilder::addExtendedContext(const Stmt *S) { 1068 if (!S) 1069 return; 1070 1071 const Stmt *Parent = PDB.getParent(S); 1072 while (Parent) { 1073 if (isa<CompoundStmt>(Parent)) 1074 Parent = PDB.getParent(Parent); 1075 else 1076 break; 1077 } 1078 1079 if (Parent) { 1080 switch (Parent->getStmtClass()) { 1081 case Stmt::DoStmtClass: 1082 case Stmt::ObjCAtSynchronizedStmtClass: 1083 addContext(Parent); 1084 default: 1085 break; 1086 } 1087 } 1088 1089 addContext(S); 1090 } 1091 1092 void EdgeBuilder::addContext(const Stmt *S) { 1093 if (!S) 1094 return; 1095 1096 PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.getLocationContext()); 1097 1098 while (!CLocs.empty()) { 1099 const PathDiagnosticLocation &TopContextLoc = CLocs.back(); 1100 1101 // Is the top location context the same as the one for the new location? 1102 if (TopContextLoc == L) 1103 return; 1104 1105 if (containsLocation(TopContextLoc, L)) { 1106 CLocs.push_back(L); 1107 return; 1108 } 1109 1110 // Context does not contain the location. Flush it. 1111 popLocation(); 1112 } 1113 1114 CLocs.push_back(L); 1115 } 1116 1117 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD, 1118 PathDiagnosticBuilder &PDB, 1119 const ExplodedNode *N) { 1120 EdgeBuilder EB(PD, PDB); 1121 const SourceManager& SM = PDB.getSourceManager(); 1122 1123 const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin()); 1124 while (NextNode) { 1125 N = NextNode; 1126 NextNode = GetPredecessorNode(N); 1127 ProgramPoint P = N->getLocation(); 1128 1129 do { 1130 // Block edges. 1131 if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) { 1132 const CFGBlock &Blk = *BE->getSrc(); 1133 const Stmt *Term = Blk.getTerminator(); 1134 1135 // Are we jumping to the head of a loop? Add a special diagnostic. 1136 if (const Stmt *Loop = BE->getDst()->getLoopTarget()) { 1137 PathDiagnosticLocation L(Loop, SM, PDB.getLocationContext()); 1138 const CompoundStmt *CS = NULL; 1139 1140 if (!Term) { 1141 if (const ForStmt *FS = dyn_cast<ForStmt>(Loop)) 1142 CS = dyn_cast<CompoundStmt>(FS->getBody()); 1143 else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop)) 1144 CS = dyn_cast<CompoundStmt>(WS->getBody()); 1145 } 1146 1147 PathDiagnosticEventPiece *p = 1148 new PathDiagnosticEventPiece(L, 1149 "Looping back to the head of the loop"); 1150 1151 EB.addEdge(p->getLocation(), true); 1152 PD.push_front(p); 1153 1154 if (CS) { 1155 PathDiagnosticLocation BL = 1156 PathDiagnosticLocation::createEndBrace(CS, SM); 1157 EB.addEdge(BL); 1158 } 1159 } 1160 1161 if (Term) 1162 EB.addContext(Term); 1163 1164 break; 1165 } 1166 1167 if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) { 1168 if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) { 1169 const Stmt *stmt = S->getStmt(); 1170 if (IsControlFlowExpr(stmt)) { 1171 // Add the proper context for '&&', '||', and '?'. 1172 EB.addContext(stmt); 1173 } 1174 else 1175 EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt()); 1176 } 1177 1178 break; 1179 } 1180 } while (0); 1181 1182 if (!NextNode) 1183 continue; 1184 1185 // Add pieces from custom visitors. 1186 BugReport *R = PDB.getBugReport(); 1187 for (BugReport::visitor_iterator I = R->visitor_begin(), 1188 E = R->visitor_end(); I!=E; ++I) { 1189 if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) { 1190 const PathDiagnosticLocation &Loc = p->getLocation(); 1191 EB.addEdge(Loc, true); 1192 PD.push_front(p); 1193 if (const Stmt *S = Loc.asStmt()) 1194 EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt()); 1195 } 1196 } 1197 } 1198 } 1199 1200 //===----------------------------------------------------------------------===// 1201 // Methods for BugType and subclasses. 1202 //===----------------------------------------------------------------------===// 1203 BugType::~BugType() { } 1204 1205 void BugType::FlushReports(BugReporter &BR) {} 1206 1207 //===----------------------------------------------------------------------===// 1208 // Methods for BugReport and subclasses. 1209 //===----------------------------------------------------------------------===// 1210 1211 void BugReport::addVisitor(BugReporterVisitor* visitor) { 1212 if (!visitor) 1213 return; 1214 1215 llvm::FoldingSetNodeID ID; 1216 visitor->Profile(ID); 1217 void *InsertPos; 1218 1219 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) { 1220 delete visitor; 1221 return; 1222 } 1223 1224 CallbacksSet.InsertNode(visitor, InsertPos); 1225 Callbacks = F.add(visitor, Callbacks); 1226 } 1227 1228 BugReport::~BugReport() { 1229 for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) { 1230 delete *I; 1231 } 1232 } 1233 1234 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const { 1235 hash.AddPointer(&BT); 1236 hash.AddString(Description); 1237 if (Location.isValid()) { 1238 Location.Profile(hash); 1239 } else { 1240 assert(ErrorNode); 1241 hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode)); 1242 } 1243 1244 for (SmallVectorImpl<SourceRange>::const_iterator I = 1245 Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1246 const SourceRange range = *I; 1247 if (!range.isValid()) 1248 continue; 1249 hash.AddInteger(range.getBegin().getRawEncoding()); 1250 hash.AddInteger(range.getEnd().getRawEncoding()); 1251 } 1252 } 1253 1254 const Stmt *BugReport::getStmt() const { 1255 if (!ErrorNode) 1256 return 0; 1257 1258 ProgramPoint ProgP = ErrorNode->getLocation(); 1259 const Stmt *S = NULL; 1260 1261 if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) { 1262 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit(); 1263 if (BE->getBlock() == &Exit) 1264 S = GetPreviousStmt(ErrorNode); 1265 } 1266 if (!S) 1267 S = GetStmt(ProgP); 1268 1269 return S; 1270 } 1271 1272 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator> 1273 BugReport::getRanges() { 1274 // If no custom ranges, add the range of the statement corresponding to 1275 // the error node. 1276 if (Ranges.empty()) { 1277 if (const Expr *E = dyn_cast_or_null<Expr>(getStmt())) 1278 addRange(E->getSourceRange()); 1279 else 1280 return std::make_pair(ranges_iterator(), ranges_iterator()); 1281 } 1282 1283 // User-specified absence of range info. 1284 if (Ranges.size() == 1 && !Ranges.begin()->isValid()) 1285 return std::make_pair(ranges_iterator(), ranges_iterator()); 1286 1287 return std::make_pair(Ranges.begin(), Ranges.end()); 1288 } 1289 1290 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const { 1291 if (ErrorNode) { 1292 assert(!Location.isValid() && 1293 "Either Location or ErrorNode should be specified but not both."); 1294 1295 if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) { 1296 const LocationContext *LC = ErrorNode->getLocationContext(); 1297 1298 // For member expressions, return the location of the '.' or '->'. 1299 if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) 1300 return PathDiagnosticLocation::createMemberLoc(ME, SM); 1301 // For binary operators, return the location of the operator. 1302 if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S)) 1303 return PathDiagnosticLocation::createOperatorLoc(B, SM); 1304 1305 return PathDiagnosticLocation::createBegin(S, SM, LC); 1306 } 1307 } else { 1308 assert(Location.isValid()); 1309 return Location; 1310 } 1311 1312 return PathDiagnosticLocation(); 1313 } 1314 1315 //===----------------------------------------------------------------------===// 1316 // Methods for BugReporter and subclasses. 1317 //===----------------------------------------------------------------------===// 1318 1319 BugReportEquivClass::~BugReportEquivClass() { 1320 for (iterator I=begin(), E=end(); I!=E; ++I) delete *I; 1321 } 1322 1323 GRBugReporter::~GRBugReporter() { } 1324 BugReporterData::~BugReporterData() {} 1325 1326 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); } 1327 1328 ProgramStateManager& 1329 GRBugReporter::getStateManager() { return Eng.getStateManager(); } 1330 1331 BugReporter::~BugReporter() { 1332 FlushReports(); 1333 1334 // Free the bug reports we are tracking. 1335 typedef std::vector<BugReportEquivClass *> ContTy; 1336 for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end(); 1337 I != E; ++I) { 1338 delete *I; 1339 } 1340 } 1341 1342 void BugReporter::FlushReports() { 1343 if (BugTypes.isEmpty()) 1344 return; 1345 1346 // First flush the warnings for each BugType. This may end up creating new 1347 // warnings and new BugTypes. 1348 // FIXME: Only NSErrorChecker needs BugType's FlushReports. 1349 // Turn NSErrorChecker into a proper checker and remove this. 1350 SmallVector<const BugType*, 16> bugTypes; 1351 for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) 1352 bugTypes.push_back(*I); 1353 for (SmallVector<const BugType*, 16>::iterator 1354 I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I) 1355 const_cast<BugType*>(*I)->FlushReports(*this); 1356 1357 typedef llvm::FoldingSet<BugReportEquivClass> SetTy; 1358 for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){ 1359 BugReportEquivClass& EQ = *EI; 1360 FlushReport(EQ); 1361 } 1362 1363 // BugReporter owns and deletes only BugTypes created implicitly through 1364 // EmitBasicReport. 1365 // FIXME: There are leaks from checkers that assume that the BugTypes they 1366 // create will be destroyed by the BugReporter. 1367 for (llvm::StringMap<BugType*>::iterator 1368 I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I) 1369 delete I->second; 1370 1371 // Remove all references to the BugType objects. 1372 BugTypes = F.getEmptySet(); 1373 } 1374 1375 //===----------------------------------------------------------------------===// 1376 // PathDiagnostics generation. 1377 //===----------------------------------------------------------------------===// 1378 1379 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>, 1380 std::pair<ExplodedNode*, unsigned> > 1381 MakeReportGraph(const ExplodedGraph* G, 1382 SmallVectorImpl<const ExplodedNode*> &nodes) { 1383 1384 // Create the trimmed graph. It will contain the shortest paths from the 1385 // error nodes to the root. In the new graph we should only have one 1386 // error node unless there are two or more error nodes with the same minimum 1387 // path length. 1388 ExplodedGraph* GTrim; 1389 InterExplodedGraphMap* NMap; 1390 1391 llvm::DenseMap<const void*, const void*> InverseMap; 1392 llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(), 1393 &InverseMap); 1394 1395 // Create owning pointers for GTrim and NMap just to ensure that they are 1396 // released when this function exists. 1397 llvm::OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim); 1398 llvm::OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap); 1399 1400 // Find the (first) error node in the trimmed graph. We just need to consult 1401 // the node map (NMap) which maps from nodes in the original graph to nodes 1402 // in the new graph. 1403 1404 std::queue<const ExplodedNode*> WS; 1405 typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy; 1406 IndexMapTy IndexMap; 1407 1408 for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) { 1409 const ExplodedNode *originalNode = nodes[nodeIndex]; 1410 if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) { 1411 WS.push(N); 1412 IndexMap[originalNode] = nodeIndex; 1413 } 1414 } 1415 1416 assert(!WS.empty() && "No error node found in the trimmed graph."); 1417 1418 // Create a new (third!) graph with a single path. This is the graph 1419 // that will be returned to the caller. 1420 ExplodedGraph *GNew = new ExplodedGraph(); 1421 1422 // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS 1423 // to the root node, and then construct a new graph that contains only 1424 // a single path. 1425 llvm::DenseMap<const void*,unsigned> Visited; 1426 1427 unsigned cnt = 0; 1428 const ExplodedNode *Root = 0; 1429 1430 while (!WS.empty()) { 1431 const ExplodedNode *Node = WS.front(); 1432 WS.pop(); 1433 1434 if (Visited.find(Node) != Visited.end()) 1435 continue; 1436 1437 Visited[Node] = cnt++; 1438 1439 if (Node->pred_empty()) { 1440 Root = Node; 1441 break; 1442 } 1443 1444 for (ExplodedNode::const_pred_iterator I=Node->pred_begin(), 1445 E=Node->pred_end(); I!=E; ++I) 1446 WS.push(*I); 1447 } 1448 1449 assert(Root); 1450 1451 // Now walk from the root down the BFS path, always taking the successor 1452 // with the lowest number. 1453 ExplodedNode *Last = 0, *First = 0; 1454 NodeBackMap *BM = new NodeBackMap(); 1455 unsigned NodeIndex = 0; 1456 1457 for ( const ExplodedNode *N = Root ;;) { 1458 // Lookup the number associated with the current node. 1459 llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N); 1460 assert(I != Visited.end()); 1461 1462 // Create the equivalent node in the new graph with the same state 1463 // and location. 1464 ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState()); 1465 1466 // Store the mapping to the original node. 1467 llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N); 1468 assert(IMitr != InverseMap.end() && "No mapping to original node."); 1469 (*BM)[NewN] = (const ExplodedNode*) IMitr->second; 1470 1471 // Link up the new node with the previous node. 1472 if (Last) 1473 NewN->addPredecessor(Last, *GNew); 1474 1475 Last = NewN; 1476 1477 // Are we at the final node? 1478 IndexMapTy::iterator IMI = 1479 IndexMap.find((const ExplodedNode*)(IMitr->second)); 1480 if (IMI != IndexMap.end()) { 1481 First = NewN; 1482 NodeIndex = IMI->second; 1483 break; 1484 } 1485 1486 // Find the next successor node. We choose the node that is marked 1487 // with the lowest DFS number. 1488 ExplodedNode::const_succ_iterator SI = N->succ_begin(); 1489 ExplodedNode::const_succ_iterator SE = N->succ_end(); 1490 N = 0; 1491 1492 for (unsigned MinVal = 0; SI != SE; ++SI) { 1493 1494 I = Visited.find(*SI); 1495 1496 if (I == Visited.end()) 1497 continue; 1498 1499 if (!N || I->second < MinVal) { 1500 N = *SI; 1501 MinVal = I->second; 1502 } 1503 } 1504 1505 assert(N); 1506 } 1507 1508 assert(First); 1509 1510 return std::make_pair(std::make_pair(GNew, BM), 1511 std::make_pair(First, NodeIndex)); 1512 } 1513 1514 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object 1515 /// and collapses PathDiagosticPieces that are expanded by macros. 1516 static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) { 1517 typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> > 1518 MacroStackTy; 1519 1520 typedef std::vector<PathDiagnosticPiece*> 1521 PiecesTy; 1522 1523 MacroStackTy MacroStack; 1524 PiecesTy Pieces; 1525 1526 for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) { 1527 // Get the location of the PathDiagnosticPiece. 1528 const FullSourceLoc Loc = I->getLocation().asLocation(); 1529 1530 // Determine the instantiation location, which is the location we group 1531 // related PathDiagnosticPieces. 1532 SourceLocation InstantiationLoc = Loc.isMacroID() ? 1533 SM.getExpansionLoc(Loc) : 1534 SourceLocation(); 1535 1536 if (Loc.isFileID()) { 1537 MacroStack.clear(); 1538 Pieces.push_back(&*I); 1539 continue; 1540 } 1541 1542 assert(Loc.isMacroID()); 1543 1544 // Is the PathDiagnosticPiece within the same macro group? 1545 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { 1546 MacroStack.back().first->push_back(&*I); 1547 continue; 1548 } 1549 1550 // We aren't in the same group. Are we descending into a new macro 1551 // or are part of an old one? 1552 PathDiagnosticMacroPiece *MacroGroup = 0; 1553 1554 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? 1555 SM.getExpansionLoc(Loc) : 1556 SourceLocation(); 1557 1558 // Walk the entire macro stack. 1559 while (!MacroStack.empty()) { 1560 if (InstantiationLoc == MacroStack.back().second) { 1561 MacroGroup = MacroStack.back().first; 1562 break; 1563 } 1564 1565 if (ParentInstantiationLoc == MacroStack.back().second) { 1566 MacroGroup = MacroStack.back().first; 1567 break; 1568 } 1569 1570 MacroStack.pop_back(); 1571 } 1572 1573 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { 1574 // Create a new macro group and add it to the stack. 1575 PathDiagnosticMacroPiece *NewGroup = 1576 new PathDiagnosticMacroPiece( 1577 PathDiagnosticLocation::createSingleLocation(I->getLocation())); 1578 1579 if (MacroGroup) 1580 MacroGroup->push_back(NewGroup); 1581 else { 1582 assert(InstantiationLoc.isFileID()); 1583 Pieces.push_back(NewGroup); 1584 } 1585 1586 MacroGroup = NewGroup; 1587 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); 1588 } 1589 1590 // Finally, add the PathDiagnosticPiece to the group. 1591 MacroGroup->push_back(&*I); 1592 } 1593 1594 // Now take the pieces and construct a new PathDiagnostic. 1595 PD.resetPath(false); 1596 1597 for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) { 1598 if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I)) 1599 if (!MP->containsEvent()) { 1600 delete MP; 1601 continue; 1602 } 1603 1604 PD.push_back(*I); 1605 } 1606 } 1607 1608 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD, 1609 SmallVectorImpl<BugReport *> &bugReports) { 1610 1611 assert(!bugReports.empty()); 1612 SmallVector<const ExplodedNode *, 10> errorNodes; 1613 for (SmallVectorImpl<BugReport*>::iterator I = bugReports.begin(), 1614 E = bugReports.end(); I != E; ++I) { 1615 errorNodes.push_back((*I)->getErrorNode()); 1616 } 1617 1618 // Construct a new graph that contains only a single path from the error 1619 // node to a root. 1620 const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>, 1621 std::pair<ExplodedNode*, unsigned> >& 1622 GPair = MakeReportGraph(&getGraph(), errorNodes); 1623 1624 // Find the BugReport with the original location. 1625 assert(GPair.second.second < bugReports.size()); 1626 BugReport *R = bugReports[GPair.second.second]; 1627 assert(R && "No original report found for sliced graph."); 1628 1629 llvm::OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first); 1630 llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second); 1631 const ExplodedNode *N = GPair.second.first; 1632 1633 // Start building the path diagnostic... 1634 PathDiagnosticBuilder PDB(*this, R, BackMap.get(), 1635 getPathDiagnosticConsumer()); 1636 1637 // Register additional node visitors. 1638 R->addVisitor(new NilReceiverBRVisitor()); 1639 R->addVisitor(new ConditionBRVisitor()); 1640 1641 // Generate the very last diagnostic piece - the piece is visible before 1642 // the trace is expanded. 1643 PathDiagnosticPiece *LastPiece = 0; 1644 for (BugReport::visitor_iterator I = R->visitor_begin(), 1645 E = R->visitor_end(); I!=E; ++I) { 1646 if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) { 1647 assert (!LastPiece && 1648 "There can only be one final piece in a diagnostic."); 1649 LastPiece = Piece; 1650 } 1651 } 1652 if (!LastPiece) 1653 LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R); 1654 if (LastPiece) 1655 PD.push_back(LastPiece); 1656 else 1657 return; 1658 1659 switch (PDB.getGenerationScheme()) { 1660 case PathDiagnosticConsumer::Extensive: 1661 GenerateExtensivePathDiagnostic(PD, PDB, N); 1662 break; 1663 case PathDiagnosticConsumer::Minimal: 1664 GenerateMinimalPathDiagnostic(PD, PDB, N); 1665 break; 1666 } 1667 } 1668 1669 void BugReporter::Register(BugType *BT) { 1670 BugTypes = F.add(BugTypes, BT); 1671 } 1672 1673 void BugReporter::EmitReport(BugReport* R) { 1674 // Compute the bug report's hash to determine its equivalence class. 1675 llvm::FoldingSetNodeID ID; 1676 R->Profile(ID); 1677 1678 // Lookup the equivance class. If there isn't one, create it. 1679 BugType& BT = R->getBugType(); 1680 Register(&BT); 1681 void *InsertPos; 1682 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos); 1683 1684 if (!EQ) { 1685 EQ = new BugReportEquivClass(R); 1686 EQClasses.InsertNode(EQ, InsertPos); 1687 EQClassesVector.push_back(EQ); 1688 } 1689 else 1690 EQ->AddReport(R); 1691 } 1692 1693 1694 //===----------------------------------------------------------------------===// 1695 // Emitting reports in equivalence classes. 1696 //===----------------------------------------------------------------------===// 1697 1698 namespace { 1699 struct FRIEC_WLItem { 1700 const ExplodedNode *N; 1701 ExplodedNode::const_succ_iterator I, E; 1702 1703 FRIEC_WLItem(const ExplodedNode *n) 1704 : N(n), I(N->succ_begin()), E(N->succ_end()) {} 1705 }; 1706 } 1707 1708 static BugReport * 1709 FindReportInEquivalenceClass(BugReportEquivClass& EQ, 1710 SmallVectorImpl<BugReport*> &bugReports) { 1711 1712 BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end(); 1713 assert(I != E); 1714 BugReport *R = *I; 1715 BugType& BT = R->getBugType(); 1716 1717 // If we don't need to suppress any of the nodes because they are 1718 // post-dominated by a sink, simply add all the nodes in the equivalence class 1719 // to 'Nodes'. Any of the reports will serve as a "representative" report. 1720 if (!BT.isSuppressOnSink()) { 1721 for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { 1722 const ExplodedNode *N = I->getErrorNode(); 1723 if (N) { 1724 R = *I; 1725 bugReports.push_back(R); 1726 } 1727 } 1728 return R; 1729 } 1730 1731 // For bug reports that should be suppressed when all paths are post-dominated 1732 // by a sink node, iterate through the reports in the equivalence class 1733 // until we find one that isn't post-dominated (if one exists). We use a 1734 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write 1735 // this as a recursive function, but we don't want to risk blowing out the 1736 // stack for very long paths. 1737 BugReport *exampleReport = 0; 1738 1739 for (; I != E; ++I) { 1740 R = *I; 1741 const ExplodedNode *errorNode = R->getErrorNode(); 1742 1743 if (!errorNode) 1744 continue; 1745 if (errorNode->isSink()) { 1746 llvm_unreachable( 1747 "BugType::isSuppressSink() should not be 'true' for sink end nodes"); 1748 } 1749 // No successors? By definition this nodes isn't post-dominated by a sink. 1750 if (errorNode->succ_empty()) { 1751 bugReports.push_back(R); 1752 if (!exampleReport) 1753 exampleReport = R; 1754 continue; 1755 } 1756 1757 // At this point we know that 'N' is not a sink and it has at least one 1758 // successor. Use a DFS worklist to find a non-sink end-of-path node. 1759 typedef FRIEC_WLItem WLItem; 1760 typedef SmallVector<WLItem, 10> DFSWorkList; 1761 llvm::DenseMap<const ExplodedNode *, unsigned> Visited; 1762 1763 DFSWorkList WL; 1764 WL.push_back(errorNode); 1765 Visited[errorNode] = 1; 1766 1767 while (!WL.empty()) { 1768 WLItem &WI = WL.back(); 1769 assert(!WI.N->succ_empty()); 1770 1771 for (; WI.I != WI.E; ++WI.I) { 1772 const ExplodedNode *Succ = *WI.I; 1773 // End-of-path node? 1774 if (Succ->succ_empty()) { 1775 // If we found an end-of-path node that is not a sink. 1776 if (!Succ->isSink()) { 1777 bugReports.push_back(R); 1778 if (!exampleReport) 1779 exampleReport = R; 1780 WL.clear(); 1781 break; 1782 } 1783 // Found a sink? Continue on to the next successor. 1784 continue; 1785 } 1786 // Mark the successor as visited. If it hasn't been explored, 1787 // enqueue it to the DFS worklist. 1788 unsigned &mark = Visited[Succ]; 1789 if (!mark) { 1790 mark = 1; 1791 WL.push_back(Succ); 1792 break; 1793 } 1794 } 1795 1796 // The worklist may have been cleared at this point. First 1797 // check if it is empty before checking the last item. 1798 if (!WL.empty() && &WL.back() == &WI) 1799 WL.pop_back(); 1800 } 1801 } 1802 1803 // ExampleReport will be NULL if all the nodes in the equivalence class 1804 // were post-dominated by sinks. 1805 return exampleReport; 1806 } 1807 1808 //===----------------------------------------------------------------------===// 1809 // DiagnosticCache. This is a hack to cache analyzer diagnostics. It 1810 // uses global state, which eventually should go elsewhere. 1811 //===----------------------------------------------------------------------===// 1812 namespace { 1813 class DiagCacheItem : public llvm::FoldingSetNode { 1814 llvm::FoldingSetNodeID ID; 1815 public: 1816 DiagCacheItem(BugReport *R, PathDiagnostic *PD) { 1817 R->Profile(ID); 1818 PD->Profile(ID); 1819 } 1820 1821 void Profile(llvm::FoldingSetNodeID &id) { 1822 id = ID; 1823 } 1824 1825 llvm::FoldingSetNodeID &getID() { return ID; } 1826 }; 1827 } 1828 1829 static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) { 1830 // FIXME: Eventually this diagnostic cache should reside in something 1831 // like AnalysisManager instead of being a static variable. This is 1832 // really unsafe in the long term. 1833 typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache; 1834 static DiagnosticCache DC; 1835 1836 void *InsertPos; 1837 DiagCacheItem *Item = new DiagCacheItem(R, PD); 1838 1839 if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) { 1840 delete Item; 1841 return true; 1842 } 1843 1844 DC.InsertNode(Item, InsertPos); 1845 return false; 1846 } 1847 1848 void BugReporter::FlushReport(BugReportEquivClass& EQ) { 1849 SmallVector<BugReport*, 10> bugReports; 1850 BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports); 1851 if (!exampleReport) 1852 return; 1853 1854 PathDiagnosticConsumer* PD = getPathDiagnosticConsumer(); 1855 1856 // FIXME: Make sure we use the 'R' for the path that was actually used. 1857 // Probably doesn't make a difference in practice. 1858 BugType& BT = exampleReport->getBugType(); 1859 1860 llvm::OwningPtr<PathDiagnostic> 1861 D(new PathDiagnostic(exampleReport->getBugType().getName(), 1862 !PD || PD->useVerboseDescription() 1863 ? exampleReport->getDescription() 1864 : exampleReport->getShortDescription(), 1865 BT.getCategory())); 1866 1867 if (!bugReports.empty()) 1868 GeneratePathDiagnostic(*D.get(), bugReports); 1869 1870 if (IsCachedDiagnostic(exampleReport, D.get())) 1871 return; 1872 1873 // Get the meta data. 1874 const BugReport::ExtraTextList &Meta = 1875 exampleReport->getExtraText(); 1876 for (BugReport::ExtraTextList::const_iterator i = Meta.begin(), 1877 e = Meta.end(); i != e; ++i) { 1878 D->addMeta(*i); 1879 } 1880 1881 // Emit a summary diagnostic to the regular Diagnostics engine. 1882 BugReport::ranges_iterator Beg, End; 1883 llvm::tie(Beg, End) = exampleReport->getRanges(); 1884 DiagnosticsEngine &Diag = getDiagnostic(); 1885 1886 // Search the description for '%', as that will be interpretted as a 1887 // format character by FormatDiagnostics. 1888 StringRef desc = exampleReport->getShortDescription(); 1889 unsigned ErrorDiag; 1890 { 1891 llvm::SmallString<512> TmpStr; 1892 llvm::raw_svector_ostream Out(TmpStr); 1893 for (StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I) 1894 if (*I == '%') 1895 Out << "%%"; 1896 else 1897 Out << *I; 1898 1899 Out.flush(); 1900 ErrorDiag = Diag.getCustomDiagID(DiagnosticsEngine::Warning, TmpStr); 1901 } 1902 1903 { 1904 DiagnosticBuilder diagBuilder = Diag.Report( 1905 exampleReport->getLocation(getSourceManager()).asLocation(), ErrorDiag); 1906 for (BugReport::ranges_iterator I = Beg; I != End; ++I) 1907 diagBuilder << *I; 1908 } 1909 1910 // Emit a full diagnostic for the path if we have a PathDiagnosticConsumer. 1911 if (!PD) 1912 return; 1913 1914 if (D->empty()) { 1915 PathDiagnosticPiece *piece = new PathDiagnosticEventPiece( 1916 exampleReport->getLocation(getSourceManager()), 1917 exampleReport->getDescription()); 1918 1919 for ( ; Beg != End; ++Beg) piece->addRange(*Beg); 1920 D->push_back(piece); 1921 } 1922 1923 PD->HandlePathDiagnostic(D.take()); 1924 } 1925 1926 void BugReporter::EmitBasicReport(StringRef name, StringRef str, 1927 PathDiagnosticLocation Loc, 1928 SourceRange* RBeg, unsigned NumRanges) { 1929 EmitBasicReport(name, "", str, Loc, RBeg, NumRanges); 1930 } 1931 1932 void BugReporter::EmitBasicReport(StringRef name, 1933 StringRef category, 1934 StringRef str, PathDiagnosticLocation Loc, 1935 SourceRange* RBeg, unsigned NumRanges) { 1936 1937 // 'BT' is owned by BugReporter. 1938 BugType *BT = getBugTypeForName(name, category); 1939 BugReport *R = new BugReport(*BT, str, Loc); 1940 for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg); 1941 EmitReport(R); 1942 } 1943 1944 BugType *BugReporter::getBugTypeForName(StringRef name, 1945 StringRef category) { 1946 llvm::SmallString<136> fullDesc; 1947 llvm::raw_svector_ostream(fullDesc) << name << ":" << category; 1948 llvm::StringMapEntry<BugType *> & 1949 entry = StrBugTypes.GetOrCreateValue(fullDesc); 1950 BugType *BT = entry.getValue(); 1951 if (!BT) { 1952 BT = new BugType(name, category); 1953 entry.setValue(BT); 1954 } 1955 return BT; 1956 } 1957