Home | History | Annotate | Download | only in i18n
      1 /************************************************************************
      2  * Copyright (C) 1996-2008, International Business Machines Corporation *
      3  * and others. All Rights Reserved.                                     *
      4  ************************************************************************
      5  *  2003-nov-07   srl       Port from Java
      6  */
      7 
      8 #include "astro.h"
      9 
     10 #if !UCONFIG_NO_FORMATTING
     11 
     12 #include "unicode/calendar.h"
     13 #include <math.h>
     14 #include <float.h>
     15 #include "unicode/putil.h"
     16 #include "uhash.h"
     17 #include "umutex.h"
     18 #include "ucln_in.h"
     19 #include "putilimp.h"
     20 #include <stdio.h>  // for toString()
     21 
     22 #if defined (PI)
     23 #undef PI
     24 #endif
     25 
     26 #ifdef U_DEBUG_ASTRO
     27 # include "uresimp.h" // for debugging
     28 
     29 static void debug_astro_loc(const char *f, int32_t l)
     30 {
     31   fprintf(stderr, "%s:%d: ", f, l);
     32 }
     33 
     34 static void debug_astro_msg(const char *pat, ...)
     35 {
     36   va_list ap;
     37   va_start(ap, pat);
     38   vfprintf(stderr, pat, ap);
     39   fflush(stderr);
     40 }
     41 #include "unicode/datefmt.h"
     42 #include "unicode/ustring.h"
     43 static const char * debug_astro_date(UDate d) {
     44   static char gStrBuf[1024];
     45   static DateFormat *df = NULL;
     46   if(df == NULL) {
     47     df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
     48     df->adoptTimeZone(TimeZone::getGMT()->clone());
     49   }
     50   UnicodeString str;
     51   df->format(d,str);
     52   u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
     53   return gStrBuf;
     54 }
     55 
     56 // must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
     57 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
     58 #else
     59 #define U_DEBUG_ASTRO_MSG(x)
     60 #endif
     61 
     62 static inline UBool isINVALID(double d) {
     63   return(uprv_isNaN(d));
     64 }
     65 
     66 static UMTX ccLock = NULL;
     67 
     68 U_CDECL_BEGIN
     69 static UBool calendar_astro_cleanup(void) {
     70   umtx_destroy(&ccLock);
     71   return TRUE;
     72 }
     73 U_CDECL_END
     74 
     75 U_NAMESPACE_BEGIN
     76 
     77 /**
     78  * The number of standard hours in one sidereal day.
     79  * Approximately 24.93.
     80  * @internal
     81  * @deprecated ICU 2.4. This class may be removed or modified.
     82  */
     83 #define SIDEREAL_DAY (23.93446960027)
     84 
     85 /**
     86  * The number of sidereal hours in one mean solar day.
     87  * Approximately 24.07.
     88  * @internal
     89  * @deprecated ICU 2.4. This class may be removed or modified.
     90  */
     91 #define SOLAR_DAY  (24.065709816)
     92 
     93 /**
     94  * The average number of solar days from one new moon to the next.  This is the time
     95  * it takes for the moon to return the same ecliptic longitude as the sun.
     96  * It is longer than the sidereal month because the sun's longitude increases
     97  * during the year due to the revolution of the earth around the sun.
     98  * Approximately 29.53.
     99  *
    100  * @see #SIDEREAL_MONTH
    101  * @internal
    102  * @deprecated ICU 2.4. This class may be removed or modified.
    103  */
    104 const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
    105 
    106 /**
    107  * The average number of days it takes
    108  * for the moon to return to the same ecliptic longitude relative to the
    109  * stellar background.  This is referred to as the sidereal month.
    110  * It is shorter than the synodic month due to
    111  * the revolution of the earth around the sun.
    112  * Approximately 27.32.
    113  *
    114  * @see #SYNODIC_MONTH
    115  * @internal
    116  * @deprecated ICU 2.4. This class may be removed or modified.
    117  */
    118 #define SIDEREAL_MONTH  27.32166
    119 
    120 /**
    121  * The average number number of days between successive vernal equinoxes.
    122  * Due to the precession of the earth's
    123  * axis, this is not precisely the same as the sidereal year.
    124  * Approximately 365.24
    125  *
    126  * @see #SIDEREAL_YEAR
    127  * @internal
    128  * @deprecated ICU 2.4. This class may be removed or modified.
    129  */
    130 #define TROPICAL_YEAR  365.242191
    131 
    132 /**
    133  * The average number of days it takes
    134  * for the sun to return to the same position against the fixed stellar
    135  * background.  This is the duration of one orbit of the earth about the sun
    136  * as it would appear to an outside observer.
    137  * Due to the precession of the earth's
    138  * axis, this is not precisely the same as the tropical year.
    139  * Approximately 365.25.
    140  *
    141  * @see #TROPICAL_YEAR
    142  * @internal
    143  * @deprecated ICU 2.4. This class may be removed or modified.
    144  */
    145 #define SIDEREAL_YEAR  365.25636
    146 
    147 //-------------------------------------------------------------------------
    148 // Time-related constants
    149 //-------------------------------------------------------------------------
    150 
    151 /**
    152  * The number of milliseconds in one second.
    153  * @internal
    154  * @deprecated ICU 2.4. This class may be removed or modified.
    155  */
    156 #define SECOND_MS  U_MILLIS_PER_SECOND
    157 
    158 /**
    159  * The number of milliseconds in one minute.
    160  * @internal
    161  * @deprecated ICU 2.4. This class may be removed or modified.
    162  */
    163 #define MINUTE_MS  U_MILLIS_PER_MINUTE
    164 
    165 /**
    166  * The number of milliseconds in one hour.
    167  * @internal
    168  * @deprecated ICU 2.4. This class may be removed or modified.
    169  */
    170 #define HOUR_MS   U_MILLIS_PER_HOUR
    171 
    172 /**
    173  * The number of milliseconds in one day.
    174  * @internal
    175  * @deprecated ICU 2.4. This class may be removed or modified.
    176  */
    177 #define DAY_MS U_MILLIS_PER_DAY
    178 
    179 /**
    180  * The start of the julian day numbering scheme used by astronomers, which
    181  * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
    182  * since 1/1/1970 AD (Gregorian), a negative number.
    183  * Note that julian day numbers and
    184  * the Julian calendar are <em>not</em> the same thing.  Also note that
    185  * julian days start at <em>noon</em>, not midnight.
    186  * @internal
    187  * @deprecated ICU 2.4. This class may be removed or modified.
    188  */
    189 #define JULIAN_EPOCH_MS  -210866760000000.0
    190 
    191 
    192 /**
    193  * Milliseconds value for 0.0 January 2000 AD.
    194  */
    195 #define EPOCH_2000_MS  946598400000.0
    196 
    197 //-------------------------------------------------------------------------
    198 // Assorted private data used for conversions
    199 //-------------------------------------------------------------------------
    200 
    201 // My own copies of these so compilers are more likely to optimize them away
    202 const double CalendarAstronomer::PI = 3.14159265358979323846;
    203 
    204 #define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
    205 #define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
    206 #define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
    207 #define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
    208 
    209 /***
    210  * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
    211  * The modulus operator.
    212  */
    213 inline static double normalize(double value, double range)  {
    214     return value - range * ClockMath::floorDivide(value, range);
    215 }
    216 
    217 /**
    218  * Normalize an angle so that it's in the range 0 - 2pi.
    219  * For positive angles this is just (angle % 2pi), but the Java
    220  * mod operator doesn't work that way for negative numbers....
    221  */
    222 inline static double norm2PI(double angle)  {
    223     return normalize(angle, CalendarAstronomer::PI * 2.0);
    224 }
    225 
    226 /**
    227  * Normalize an angle into the range -PI - PI
    228  */
    229 inline static  double normPI(double angle)  {
    230     return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
    231 }
    232 
    233 //-------------------------------------------------------------------------
    234 // Constructors
    235 //-------------------------------------------------------------------------
    236 
    237 /**
    238  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
    239  * the current date and time.
    240  * @internal
    241  * @deprecated ICU 2.4. This class may be removed or modified.
    242  */
    243 CalendarAstronomer::CalendarAstronomer():
    244   fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
    245   clearCache();
    246 }
    247 
    248 /**
    249  * Construct a new <code>CalendarAstronomer</code> object that is initialized to
    250  * the specified date and time.
    251  * @internal
    252  * @deprecated ICU 2.4. This class may be removed or modified.
    253  */
    254 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
    255   clearCache();
    256 }
    257 
    258 /**
    259  * Construct a new <code>CalendarAstronomer</code> object with the given
    260  * latitude and longitude.  The object's time is set to the current
    261  * date and time.
    262  * <p>
    263  * @param longitude The desired longitude, in <em>degrees</em> east of
    264  *                  the Greenwich meridian.
    265  *
    266  * @param latitude  The desired latitude, in <em>degrees</em>.  Positive
    267  *                  values signify North, negative South.
    268  *
    269  * @see java.util.Date#getTime()
    270  * @internal
    271  * @deprecated ICU 2.4. This class may be removed or modified.
    272  */
    273 CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
    274   fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
    275   fLongitude = normPI(longitude * (double)DEG_RAD);
    276   fLatitude  = normPI(latitude  * (double)DEG_RAD);
    277   fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
    278   clearCache();
    279 }
    280 
    281 CalendarAstronomer::~CalendarAstronomer()
    282 {
    283 }
    284 
    285 //-------------------------------------------------------------------------
    286 // Time and date getters and setters
    287 //-------------------------------------------------------------------------
    288 
    289 /**
    290  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
    291  * astronomical calculations are performed based on this time setting.
    292  *
    293  * @param aTime the date and time, expressed as the number of milliseconds since
    294  *              1/1/1970 0:00 GMT (Gregorian).
    295  *
    296  * @see #setDate
    297  * @see #getTime
    298  * @internal
    299  * @deprecated ICU 2.4. This class may be removed or modified.
    300  */
    301 void CalendarAstronomer::setTime(UDate aTime) {
    302     fTime = aTime;
    303     U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
    304     clearCache();
    305 }
    306 
    307 /**
    308  * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
    309  * astronomical calculations are performed based on this time setting.
    310  *
    311  * @param jdn   the desired time, expressed as a "julian day number",
    312  *              which is the number of elapsed days since
    313  *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day
    314  *              numbers start at <em>noon</em>.  To get the jdn for
    315  *              the corresponding midnight, subtract 0.5.
    316  *
    317  * @see #getJulianDay
    318  * @see #JULIAN_EPOCH_MS
    319  * @internal
    320  * @deprecated ICU 2.4. This class may be removed or modified.
    321  */
    322 void CalendarAstronomer::setJulianDay(double jdn) {
    323     fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
    324     clearCache();
    325     julianDay = jdn;
    326 }
    327 
    328 /**
    329  * Get the current time of this <code>CalendarAstronomer</code> object,
    330  * represented as the number of milliseconds since
    331  * 1/1/1970 AD 0:00 GMT (Gregorian).
    332  *
    333  * @see #setTime
    334  * @see #getDate
    335  * @internal
    336  * @deprecated ICU 2.4. This class may be removed or modified.
    337  */
    338 UDate CalendarAstronomer::getTime() {
    339     return fTime;
    340 }
    341 
    342 /**
    343  * Get the current time of this <code>CalendarAstronomer</code> object,
    344  * expressed as a "julian day number", which is the number of elapsed
    345  * days since 1/1/4713 BC (Julian), 12:00 GMT.
    346  *
    347  * @see #setJulianDay
    348  * @see #JULIAN_EPOCH_MS
    349  * @internal
    350  * @deprecated ICU 2.4. This class may be removed or modified.
    351  */
    352 double CalendarAstronomer::getJulianDay() {
    353     if (isINVALID(julianDay)) {
    354         julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
    355     }
    356     return julianDay;
    357 }
    358 
    359 /**
    360  * Return this object's time expressed in julian centuries:
    361  * the number of centuries after 1/1/1900 AD, 12:00 GMT
    362  *
    363  * @see #getJulianDay
    364  * @internal
    365  * @deprecated ICU 2.4. This class may be removed or modified.
    366  */
    367 double CalendarAstronomer::getJulianCentury() {
    368     if (isINVALID(julianCentury)) {
    369         julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
    370     }
    371     return julianCentury;
    372 }
    373 
    374 /**
    375  * Returns the current Greenwich sidereal time, measured in hours
    376  * @internal
    377  * @deprecated ICU 2.4. This class may be removed or modified.
    378  */
    379 double CalendarAstronomer::getGreenwichSidereal() {
    380     if (isINVALID(siderealTime)) {
    381         // See page 86 of "Practial Astronomy with your Calculator",
    382         // by Peter Duffet-Smith, for details on the algorithm.
    383 
    384         double UT = normalize(fTime/(double)HOUR_MS, 24.);
    385 
    386         siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
    387     }
    388     return siderealTime;
    389 }
    390 
    391 double CalendarAstronomer::getSiderealOffset() {
    392     if (isINVALID(siderealT0)) {
    393         double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;
    394         double S   = JD - 2451545.0;
    395         double T   = S / 36525.0;
    396         siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
    397     }
    398     return siderealT0;
    399 }
    400 
    401 /**
    402  * Returns the current local sidereal time, measured in hours
    403  * @internal
    404  * @deprecated ICU 2.4. This class may be removed or modified.
    405  */
    406 double CalendarAstronomer::getLocalSidereal() {
    407     return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
    408 }
    409 
    410 /**
    411  * Converts local sidereal time to Universal Time.
    412  *
    413  * @param lst   The Local Sidereal Time, in hours since sidereal midnight
    414  *              on this object's current date.
    415  *
    416  * @return      The corresponding Universal Time, in milliseconds since
    417  *              1 Jan 1970, GMT.
    418  */
    419 double CalendarAstronomer::lstToUT(double lst) {
    420     // Convert to local mean time
    421     double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
    422 
    423     // Then find local midnight on this day
    424     double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
    425 
    426     //out("    lt  =" + lt + " hours");
    427     //out("    base=" + new Date(base));
    428 
    429     return base + (long)(lt * HOUR_MS);
    430 }
    431 
    432 
    433 //-------------------------------------------------------------------------
    434 // Coordinate transformations, all based on the current time of this object
    435 //-------------------------------------------------------------------------
    436 
    437 /**
    438  * Convert from ecliptic to equatorial coordinates.
    439  *
    440  * @param ecliptic  A point in the sky in ecliptic coordinates.
    441  * @return          The corresponding point in equatorial coordinates.
    442  * @internal
    443  * @deprecated ICU 2.4. This class may be removed or modified.
    444  */
    445 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
    446 {
    447     return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
    448 }
    449 
    450 /**
    451  * Convert from ecliptic to equatorial coordinates.
    452  *
    453  * @param eclipLong     The ecliptic longitude
    454  * @param eclipLat      The ecliptic latitude
    455  *
    456  * @return              The corresponding point in equatorial coordinates.
    457  * @internal
    458  * @deprecated ICU 2.4. This class may be removed or modified.
    459  */
    460 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
    461 {
    462     // See page 42 of "Practial Astronomy with your Calculator",
    463     // by Peter Duffet-Smith, for details on the algorithm.
    464 
    465     double obliq = eclipticObliquity();
    466     double sinE = ::sin(obliq);
    467     double cosE = cos(obliq);
    468 
    469     double sinL = ::sin(eclipLong);
    470     double cosL = cos(eclipLong);
    471 
    472     double sinB = ::sin(eclipLat);
    473     double cosB = cos(eclipLat);
    474     double tanB = tan(eclipLat);
    475 
    476     result.set(atan2(sinL*cosE - tanB*sinE, cosL),
    477         asin(sinB*cosE + cosB*sinE*sinL) );
    478     return result;
    479 }
    480 
    481 /**
    482  * Convert from ecliptic longitude to equatorial coordinates.
    483  *
    484  * @param eclipLong     The ecliptic longitude
    485  *
    486  * @return              The corresponding point in equatorial coordinates.
    487  * @internal
    488  * @deprecated ICU 2.4. This class may be removed or modified.
    489  */
    490 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
    491 {
    492     return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize
    493 }
    494 
    495 /**
    496  * @internal
    497  * @deprecated ICU 2.4. This class may be removed or modified.
    498  */
    499 CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
    500 {
    501     Equatorial equatorial;
    502     eclipticToEquatorial(equatorial, eclipLong);
    503 
    504     double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle
    505 
    506     double sinH = ::sin(H);
    507     double cosH = cos(H);
    508     double sinD = ::sin(equatorial.declination);
    509     double cosD = cos(equatorial.declination);
    510     double sinL = ::sin(fLatitude);
    511     double cosL = cos(fLatitude);
    512 
    513     double altitude = asin(sinD*sinL + cosD*cosL*cosH);
    514     double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
    515 
    516     result.set(azimuth, altitude);
    517     return result;
    518 }
    519 
    520 
    521 //-------------------------------------------------------------------------
    522 // The Sun
    523 //-------------------------------------------------------------------------
    524 
    525 //
    526 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
    527 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
    528 //
    529 #define JD_EPOCH  2447891.5 // Julian day of epoch
    530 
    531 #define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
    532 #define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
    533 #define SUN_E         0.016713          // Eccentricity of orbit
    534 //double sunR0        1.495585e8        // Semi-major axis in KM
    535 //double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
    536 
    537 // The following three methods, which compute the sun parameters
    538 // given above for an arbitrary epoch (whatever time the object is
    539 // set to), make only a small difference as compared to using the
    540 // above constants.  E.g., Sunset times might differ by ~12
    541 // seconds.  Furthermore, the eta-g computation is befuddled by
    542 // Duffet-Smith's incorrect coefficients (p.86).  I've corrected
    543 // the first-order coefficient but the others may be off too - no
    544 // way of knowing without consulting another source.
    545 
    546 //  /**
    547 //   * Return the sun's ecliptic longitude at perigee for the current time.
    548 //   * See Duffett-Smith, p. 86.
    549 //   * @return radians
    550 //   */
    551 //  private double getSunOmegaG() {
    552 //      double T = getJulianCentury();
    553 //      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
    554 //  }
    555 
    556 //  /**
    557 //   * Return the sun's ecliptic longitude for the current time.
    558 //   * See Duffett-Smith, p. 86.
    559 //   * @return radians
    560 //   */
    561 //  private double getSunEtaG() {
    562 //      double T = getJulianCentury();
    563 //      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
    564 //      //
    565 //      // The above line is from Duffett-Smith, and yields manifestly wrong
    566 //      // results.  The below constant is derived empirically to match the
    567 //      // constant he gives for the 1990 EPOCH.
    568 //      //
    569 //      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
    570 //  }
    571 
    572 //  /**
    573 //   * Return the sun's eccentricity of orbit for the current time.
    574 //   * See Duffett-Smith, p. 86.
    575 //   * @return double
    576 //   */
    577 //  private double getSunE() {
    578 //      double T = getJulianCentury();
    579 //      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
    580 //  }
    581 
    582 /**
    583  * Find the "true anomaly" (longitude) of an object from
    584  * its mean anomaly and the eccentricity of its orbit.  This uses
    585  * an iterative solution to Kepler's equation.
    586  *
    587  * @param meanAnomaly   The object's longitude calculated as if it were in
    588  *                      a regular, circular orbit, measured in radians
    589  *                      from the point of perigee.
    590  *
    591  * @param eccentricity  The eccentricity of the orbit
    592  *
    593  * @return The true anomaly (longitude) measured in radians
    594  */
    595 static double trueAnomaly(double meanAnomaly, double eccentricity)
    596 {
    597     // First, solve Kepler's equation iteratively
    598     // Duffett-Smith, p.90
    599     double delta;
    600     double E = meanAnomaly;
    601     do {
    602         delta = E - eccentricity * ::sin(E) - meanAnomaly;
    603         E = E - delta / (1 - eccentricity * ::cos(E));
    604     }
    605     while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
    606 
    607     return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
    608                                              /(1-eccentricity) ) );
    609 }
    610 
    611 /**
    612  * The longitude of the sun at the time specified by this object.
    613  * The longitude is measured in radians along the ecliptic
    614  * from the "first point of Aries," the point at which the ecliptic
    615  * crosses the earth's equatorial plane at the vernal equinox.
    616  * <p>
    617  * Currently, this method uses an approximation of the two-body Kepler's
    618  * equation for the earth and the sun.  It does not take into account the
    619  * perturbations caused by the other planets, the moon, etc.
    620  * @internal
    621  * @deprecated ICU 2.4. This class may be removed or modified.
    622  */
    623 double CalendarAstronomer::getSunLongitude()
    624 {
    625     // See page 86 of "Practial Astronomy with your Calculator",
    626     // by Peter Duffet-Smith, for details on the algorithm.
    627 
    628     if (isINVALID(sunLongitude)) {
    629         getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
    630     }
    631     return sunLongitude;
    632 }
    633 
    634 /**
    635  * TODO Make this public when the entire class is package-private.
    636  */
    637 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
    638 {
    639     // See page 86 of "Practial Astronomy with your Calculator",
    640     // by Peter Duffet-Smith, for details on the algorithm.
    641 
    642     double day = jDay - JD_EPOCH;       // Days since epoch
    643 
    644     // Find the angular distance the sun in a fictitious
    645     // circular orbit has travelled since the epoch.
    646     double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
    647 
    648     // The epoch wasn't at the sun's perigee; find the angular distance
    649     // since perigee, which is called the "mean anomaly"
    650     meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
    651 
    652     // Now find the "true anomaly", e.g. the real solar longitude
    653     // by solving Kepler's equation for an elliptical orbit
    654     // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
    655     // equations; omega_g is to be correct.
    656     longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
    657 }
    658 
    659 /**
    660  * The position of the sun at this object's current date and time,
    661  * in equatorial coordinates.
    662  * @internal
    663  * @deprecated ICU 2.4. This class may be removed or modified.
    664  */
    665 CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
    666     return eclipticToEquatorial(result, getSunLongitude(), 0);
    667 }
    668 
    669 
    670 /**
    671  * Constant representing the vernal equinox.
    672  * For use with {@link #getSunTime getSunTime}.
    673  * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
    674  * @internal
    675  * @deprecated ICU 2.4. This class may be removed or modified.
    676  */
    677 /*double CalendarAstronomer::VERNAL_EQUINOX() {
    678   return 0;
    679 }*/
    680 
    681 /**
    682  * Constant representing the summer solstice.
    683  * For use with {@link #getSunTime getSunTime}.
    684  * Note: In this case, "summer" refers to the northern hemisphere's seasons.
    685  * @internal
    686  * @deprecated ICU 2.4. This class may be removed or modified.
    687  */
    688 double CalendarAstronomer::SUMMER_SOLSTICE() {
    689     return  (CalendarAstronomer::PI/2);
    690 }
    691 
    692 /**
    693  * Constant representing the autumnal equinox.
    694  * For use with {@link #getSunTime getSunTime}.
    695  * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
    696  * @internal
    697  * @deprecated ICU 2.4. This class may be removed or modified.
    698  */
    699 /*double CalendarAstronomer::AUTUMN_EQUINOX() {
    700   return  (CalendarAstronomer::PI);
    701 }*/
    702 
    703 /**
    704  * Constant representing the winter solstice.
    705  * For use with {@link #getSunTime getSunTime}.
    706  * Note: In this case, "winter" refers to the northern hemisphere's seasons.
    707  * @internal
    708  * @deprecated ICU 2.4. This class may be removed or modified.
    709  */
    710 double CalendarAstronomer::WINTER_SOLSTICE() {
    711     return  ((CalendarAstronomer::PI*3)/2);
    712 }
    713 
    714 CalendarAstronomer::AngleFunc::~AngleFunc() {}
    715 
    716 /**
    717  * Find the next time at which the sun's ecliptic longitude will have
    718  * the desired value.
    719  * @internal
    720  * @deprecated ICU 2.4. This class may be removed or modified.
    721  */
    722 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
    723 public:
    724     virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
    725 };
    726 
    727 UDate CalendarAstronomer::getSunTime(double desired, UBool next)
    728 {
    729     SunTimeAngleFunc func;
    730     return timeOfAngle( func,
    731                         desired,
    732                         TROPICAL_YEAR,
    733                         MINUTE_MS,
    734                         next);
    735 }
    736 
    737 CalendarAstronomer::CoordFunc::~CoordFunc() {}
    738 
    739 class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
    740 public:
    741     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); }
    742 };
    743 
    744 UDate CalendarAstronomer::getSunRiseSet(UBool rise)
    745 {
    746     UDate t0 = fTime;
    747 
    748     // Make a rough guess: 6am or 6pm local time on the current day
    749     double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
    750 
    751     U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
    752     setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));
    753     U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
    754 
    755     RiseSetCoordFunc func;
    756     double t = riseOrSet(func,
    757                          rise,
    758                          .533 * DEG_RAD,        // Angular Diameter
    759                          34. /60.0 * DEG_RAD,    // Refraction correction
    760                          MINUTE_MS / 12.);       // Desired accuracy
    761 
    762     setTime(t0);
    763     return t;
    764 }
    765 
    766 // Commented out - currently unused. ICU 2.6, Alan
    767 //    //-------------------------------------------------------------------------
    768 //    // Alternate Sun Rise/Set
    769 //    // See Duffett-Smith p.93
    770 //    //-------------------------------------------------------------------------
    771 //
    772 //    // This yields worse results (as compared to USNO data) than getSunRiseSet().
    773 //    /**
    774 //     * TODO Make this when the entire class is package-private.
    775 //     */
    776 //    /*public*/ long getSunRiseSet2(boolean rise) {
    777 //        // 1. Calculate coordinates of the sun's center for midnight
    778 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
    779 //        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];
    780 //        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
    781 //
    782 //        // 2. Add ... to lambda to get position 24 hours later
    783 //        double lambda2 = lambda1 + 0.985647*DEG_RAD;
    784 //        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
    785 //
    786 //        // 3. Calculate LSTs of rising and setting for these two positions
    787 //        double tanL = ::tan(fLatitude);
    788 //        double H = ::acos(-tanL * ::tan(pos1.declination));
    789 //        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
    790 //        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
    791 //               H = ::acos(-tanL * ::tan(pos2.declination));
    792 //        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
    793 //        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
    794 //        if (lst1r > 24) lst1r -= 24;
    795 //        if (lst1s > 24) lst1s -= 24;
    796 //        if (lst2r > 24) lst2r -= 24;
    797 //        if (lst2s > 24) lst2s -= 24;
    798 //
    799 //        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.
    800 //        double gst1r = lstToGst(lst1r);
    801 //        double gst1s = lstToGst(lst1s);
    802 //        double gst2r = lstToGst(lst2r);
    803 //        double gst2s = lstToGst(lst2s);
    804 //        if (gst1r > gst2r) gst2r += 24;
    805 //        if (gst1s > gst2s) gst2s += 24;
    806 //
    807 //        // 5. Calculate GST at 0h UT of this date
    808 //        double t00 = utToGst(0);
    809 //
    810 //        // 6. Calculate GST at 0h on the observer's longitude
    811 //        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
    812 //        double t00p = t00 - offset*1.002737909;
    813 //        if (t00p < 0) t00p += 24; // do NOT normalize
    814 //
    815 //        // 7. Adjust
    816 //        if (gst1r < t00p) {
    817 //            gst1r += 24;
    818 //            gst2r += 24;
    819 //        }
    820 //        if (gst1s < t00p) {
    821 //            gst1s += 24;
    822 //            gst2s += 24;
    823 //        }
    824 //
    825 //        // 8.
    826 //        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
    827 //        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
    828 //
    829 //        // 9. Correct for parallax, refraction, and sun's diameter
    830 //        double dec = (pos1.declination + pos2.declination) / 2;
    831 //        double psi = ::acos(sin(fLatitude) / cos(dec));
    832 //        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
    833 //        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
    834 //        double delta_t = 240 * y / cos(dec) / 3600; // hours
    835 //
    836 //        // 10. Add correction to GSTs, subtract from GSTr
    837 //        gstr -= delta_t;
    838 //        gsts += delta_t;
    839 //
    840 //        // 11. Convert GST to UT and then to local civil time
    841 //        double ut = gstToUt(rise ? gstr : gsts);
    842 //        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
    843 //        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
    844 //        return midnight + (long) (ut * 3600000);
    845 //    }
    846 
    847 // Commented out - currently unused. ICU 2.6, Alan
    848 //    /**
    849 //     * Convert local sidereal time to Greenwich sidereal time.
    850 //     * Section 15.  Duffett-Smith p.21
    851 //     * @param lst in hours (0..24)
    852 //     * @return GST in hours (0..24)
    853 //     */
    854 //    double lstToGst(double lst) {
    855 //        double delta = fLongitude * 24 / CalendarAstronomer_PI2;
    856 //        return normalize(lst - delta, 24);
    857 //    }
    858 
    859 // Commented out - currently unused. ICU 2.6, Alan
    860 //    /**
    861 //     * Convert UT to GST on this date.
    862 //     * Section 12.  Duffett-Smith p.17
    863 //     * @param ut in hours
    864 //     * @return GST in hours
    865 //     */
    866 //    double utToGst(double ut) {
    867 //        return normalize(getT0() + ut*1.002737909, 24);
    868 //    }
    869 
    870 // Commented out - currently unused. ICU 2.6, Alan
    871 //    /**
    872 //     * Convert GST to UT on this date.
    873 //     * Section 13.  Duffett-Smith p.18
    874 //     * @param gst in hours
    875 //     * @return UT in hours
    876 //     */
    877 //    double gstToUt(double gst) {
    878 //        return normalize(gst - getT0(), 24) * 0.9972695663;
    879 //    }
    880 
    881 // Commented out - currently unused. ICU 2.6, Alan
    882 //    double getT0() {
    883 //        // Common computation for UT <=> GST
    884 //
    885 //        // Find JD for 0h UT
    886 //        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
    887 //
    888 //        double s = jd - 2451545.0;
    889 //        double t = s / 36525.0;
    890 //        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
    891 //        return t0;
    892 //    }
    893 
    894 // Commented out - currently unused. ICU 2.6, Alan
    895 //    //-------------------------------------------------------------------------
    896 //    // Alternate Sun Rise/Set
    897 //    // See sci.astro FAQ
    898 //    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
    899 //    //-------------------------------------------------------------------------
    900 //
    901 //    // Note: This method appears to produce inferior accuracy as
    902 //    // compared to getSunRiseSet().
    903 //
    904 //    /**
    905 //     * TODO Make this when the entire class is package-private.
    906 //     */
    907 //    /*public*/ long getSunRiseSet3(boolean rise) {
    908 //
    909 //        // Compute day number for 0.0 Jan 2000 epoch
    910 //        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
    911 //
    912 //        // Now compute the Local Sidereal Time, LST:
    913 //        //
    914 //        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/
    915 //            fLongitude*RAD_DEG;
    916 //        //
    917 //        // (east long. positive).  Note that LST is here expressed in degrees,
    918 //        // where 15 degrees corresponds to one hour.  Since LST really is an angle,
    919 //        // it's convenient to use one unit---degrees---throughout.
    920 //
    921 //        //    COMPUTING THE SUN'S POSITION
    922 //        //    ----------------------------
    923 //        //
    924 //        // To be able to compute the Sun's rise/set times, you need to be able to
    925 //        // compute the Sun's position at any time.  First compute the "day
    926 //        // number" d as outlined above, for the desired moment.  Next compute:
    927 //        //
    928 //        double oblecl = 23.4393 - 3.563E-7 * d;
    929 //        //
    930 //        double w  =  282.9404  +  4.70935E-5   * d;
    931 //        double M  =  356.0470  +  0.9856002585 * d;
    932 //        double e  =  0.016709  -  1.151E-9     * d;
    933 //        //
    934 //        // This is the obliquity of the ecliptic, plus some of the elements of
    935 //        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
    936 //        // argument of perihelion, M = mean anomaly, e = eccentricity.
    937 //        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
    938 //        // true, this is still an accurate approximation).  Next compute E, the
    939 //        // eccentric anomaly:
    940 //        //
    941 //        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
    942 //        //
    943 //        // where E and M are in degrees.  This is it---no further iterations are
    944 //        // needed because we know e has a sufficiently small value.  Next compute
    945 //        // the true anomaly, v, and the distance, r:
    946 //        //
    947 //        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;
    948 //        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
    949 //        //
    950 //        // and
    951 //        //
    952 //        //      r  =  sqrt( A*A + B*B )
    953 //        double v  =  ::atan2( B, A )*RAD_DEG;
    954 //        //
    955 //        // The Sun's true longitude, slon, can now be computed:
    956 //        //
    957 //        double slon  =  v + w;
    958 //        //
    959 //        // Since the Sun is always at the ecliptic (or at least very very close to
    960 //        // it), we can use simplified formulae to convert slon (the Sun's ecliptic
    961 //        // longitude) to sRA and sDec (the Sun's RA and Dec):
    962 //        //
    963 //        //                   ::sin(slon) * cos(oblecl)
    964 //        //     tan(sRA)  =  -------------------------
    965 //        //            cos(slon)
    966 //        //
    967 //        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)
    968 //        //
    969 //        // As was the case when computing az, the Azimuth, if possible use an
    970 //        // atan2() function to compute sRA.
    971 //
    972 //        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
    973 //
    974 //        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
    975 //        double sDec = ::asin(sin_sDec)*RAD_DEG;
    976 //
    977 //        //    COMPUTING RISE AND SET TIMES
    978 //        //    ----------------------------
    979 //        //
    980 //        // To compute when an object rises or sets, you must compute when it
    981 //        // passes the meridian and the HA of rise/set.  Then the rise time is
    982 //        // the meridian time minus HA for rise/set, and the set time is the
    983 //        // meridian time plus the HA for rise/set.
    984 //        //
    985 //        // To find the meridian time, compute the Local Sidereal Time at 0h local
    986 //        // time (or 0h UT if you prefer to work in UT) as outlined above---name
    987 //        // that quantity LST0.  The Meridian Time, MT, will now be:
    988 //        //
    989 //        //     MT  =  RA - LST0
    990 //        double MT = normalize(sRA - LST, 360);
    991 //        //
    992 //        // where "RA" is the object's Right Ascension (in degrees!).  If negative,
    993 //        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,
    994 //        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
    995 //        // sidereal to solar time.  Now, compute HA for rise/set, name that
    996 //        // quantity HA0:
    997 //        //
    998 //        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)
    999 //        // cos(HA0)  =  ---------------------------------
   1000 //        //                      cos(lat) * cos(Dec)
   1001 //        //
   1002 //        // where h0 is the altitude selected to represent rise/set.  For a purely
   1003 //        // mathematical horizon, set h0 = 0 and simplify to:
   1004 //        //
   1005 //        //    cos(HA0)  =  - tan(lat) * tan(Dec)
   1006 //        //
   1007 //        // If you want to account for refraction on the atmosphere, set h0 = -35/60
   1008 //        // degrees (-35 arc minutes), and if you want to compute the rise/set times
   1009 //        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
   1010 //        //
   1011 //        double h0 = -50/60 * DEG_RAD;
   1012 //
   1013 //        double HA0 = ::acos(
   1014 //          (sin(h0) - ::sin(fLatitude) * sin_sDec) /
   1015 //          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
   1016 //
   1017 //        // When HA0 has been computed, leave it as it is for the Sun but multiply
   1018 //        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
   1019 //        // solar time.  Finally compute:
   1020 //        //
   1021 //        //    Rise time  =  MT - HA0
   1022 //        //    Set  time  =  MT + HA0
   1023 //        //
   1024 //        // convert the times from degrees to hours by dividing by 15.
   1025 //        //
   1026 //        // If you'd like to check that your calculations are accurate or just
   1027 //        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
   1028 //        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
   1029 //
   1030 //        double result = MT + (rise ? -HA0 : HA0); // in degrees
   1031 //
   1032 //        // Find UT midnight on this day
   1033 //        long midnight = DAY_MS * (time / DAY_MS);
   1034 //
   1035 //        return midnight + (long) (result * 3600000 / 15);
   1036 //    }
   1037 
   1038 //-------------------------------------------------------------------------
   1039 // The Moon
   1040 //-------------------------------------------------------------------------
   1041 
   1042 #define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
   1043 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
   1044 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
   1045 #define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
   1046 #define moonE  (   0.054900 )            // Eccentricity of orbit
   1047 
   1048 // These aren't used right now
   1049 #define moonA  (   3.84401e5 )           // semi-major axis (km)
   1050 #define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
   1051 #define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
   1052 
   1053 /**
   1054  * The position of the moon at the time set on this
   1055  * object, in equatorial coordinates.
   1056  * @internal
   1057  * @deprecated ICU 2.4. This class may be removed or modified.
   1058  */
   1059 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
   1060 {
   1061     //
   1062     // See page 142 of "Practial Astronomy with your Calculator",
   1063     // by Peter Duffet-Smith, for details on the algorithm.
   1064     //
   1065     if (moonPositionSet == FALSE) {
   1066         // Calculate the solar longitude.  Has the side effect of
   1067         // filling in "meanAnomalySun" as well.
   1068         getSunLongitude();
   1069 
   1070         //
   1071         // Find the # of days since the epoch of our orbital parameters.
   1072         // TODO: Convert the time of day portion into ephemeris time
   1073         //
   1074         double day = getJulianDay() - JD_EPOCH;       // Days since epoch
   1075 
   1076         // Calculate the mean longitude and anomaly of the moon, based on
   1077         // a circular orbit.  Similar to the corresponding solar calculation.
   1078         double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
   1079         meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
   1080 
   1081         //
   1082         // Calculate the following corrections:
   1083         //  Evection:   the sun's gravity affects the moon's eccentricity
   1084         //  Annual Eqn: variation in the effect due to earth-sun distance
   1085         //  A3:         correction factor (for ???)
   1086         //
   1087         double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
   1088             - meanAnomalyMoon);
   1089         double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
   1090         double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
   1091 
   1092         meanAnomalyMoon += evection - annual - a3;
   1093 
   1094         //
   1095         // More correction factors:
   1096         //  center  equation of the center correction
   1097         //  a4      yet another error correction (???)
   1098         //
   1099         // TODO: Skip the equation of the center correction and solve Kepler's eqn?
   1100         //
   1101         double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
   1102         double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
   1103 
   1104         // Now find the moon's corrected longitude
   1105         moonLongitude = meanLongitude + evection + center - annual + a4;
   1106 
   1107         //
   1108         // And finally, find the variation, caused by the fact that the sun's
   1109         // gravitational pull on the moon varies depending on which side of
   1110         // the earth the moon is on
   1111         //
   1112         double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
   1113 
   1114         moonLongitude += variation;
   1115 
   1116         //
   1117         // What we've calculated so far is the moon's longitude in the plane
   1118         // of its own orbit.  Now map to the ecliptic to get the latitude
   1119         // and longitude.  First we need to find the longitude of the ascending
   1120         // node, the position on the ecliptic where it is crossed by the moon's
   1121         // orbit as it crosses from the southern to the northern hemisphere.
   1122         //
   1123         double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
   1124 
   1125         nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
   1126 
   1127         double y = ::sin(moonLongitude - nodeLongitude);
   1128         double x = cos(moonLongitude - nodeLongitude);
   1129 
   1130         moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
   1131         double moonEclipLat = ::asin(y * ::sin(moonI));
   1132 
   1133         eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
   1134         moonPositionSet = TRUE;
   1135     }
   1136     return moonPosition;
   1137 }
   1138 
   1139 /**
   1140  * The "age" of the moon at the time specified in this object.
   1141  * This is really the angle between the
   1142  * current ecliptic longitudes of the sun and the moon,
   1143  * measured in radians.
   1144  *
   1145  * @see #getMoonPhase
   1146  * @internal
   1147  * @deprecated ICU 2.4. This class may be removed or modified.
   1148  */
   1149 double CalendarAstronomer::getMoonAge() {
   1150     // See page 147 of "Practial Astronomy with your Calculator",
   1151     // by Peter Duffet-Smith, for details on the algorithm.
   1152     //
   1153     // Force the moon's position to be calculated.  We're going to use
   1154     // some the intermediate results cached during that calculation.
   1155     //
   1156     getMoonPosition();
   1157 
   1158     return norm2PI(moonEclipLong - sunLongitude);
   1159 }
   1160 
   1161 /**
   1162  * Calculate the phase of the moon at the time set in this object.
   1163  * The returned phase is a <code>double</code> in the range
   1164  * <code>0 <= phase < 1</code>, interpreted as follows:
   1165  * <ul>
   1166  * <li>0.00: New moon
   1167  * <li>0.25: First quarter
   1168  * <li>0.50: Full moon
   1169  * <li>0.75: Last quarter
   1170  * </ul>
   1171  *
   1172  * @see #getMoonAge
   1173  * @internal
   1174  * @deprecated ICU 2.4. This class may be removed or modified.
   1175  */
   1176 double CalendarAstronomer::getMoonPhase() {
   1177     // See page 147 of "Practial Astronomy with your Calculator",
   1178     // by Peter Duffet-Smith, for details on the algorithm.
   1179     return 0.5 * (1 - cos(getMoonAge()));
   1180 }
   1181 
   1182 /**
   1183  * Constant representing a new moon.
   1184  * For use with {@link #getMoonTime getMoonTime}
   1185  * @internal
   1186  * @deprecated ICU 2.4. This class may be removed or modified.
   1187  */
   1188 const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
   1189     return  CalendarAstronomer::MoonAge(0);
   1190 }
   1191 
   1192 /**
   1193  * Constant representing the moon's first quarter.
   1194  * For use with {@link #getMoonTime getMoonTime}
   1195  * @internal
   1196  * @deprecated ICU 2.4. This class may be removed or modified.
   1197  */
   1198 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
   1199   return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
   1200 }*/
   1201 
   1202 /**
   1203  * Constant representing a full moon.
   1204  * For use with {@link #getMoonTime getMoonTime}
   1205  * @internal
   1206  * @deprecated ICU 2.4. This class may be removed or modified.
   1207  */
   1208 const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
   1209     return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
   1210 }
   1211 /**
   1212  * Constant representing the moon's last quarter.
   1213  * For use with {@link #getMoonTime getMoonTime}
   1214  * @internal
   1215  * @deprecated ICU 2.4. This class may be removed or modified.
   1216  */
   1217 
   1218 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
   1219 public:
   1220     virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
   1221 };
   1222 
   1223 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
   1224   return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
   1225 }*/
   1226 
   1227 /**
   1228  * Find the next or previous time at which the Moon's ecliptic
   1229  * longitude will have the desired value.
   1230  * <p>
   1231  * @param desired   The desired longitude.
   1232  * @param next      <tt>true</tt> if the next occurrance of the phase
   1233  *                  is desired, <tt>false</tt> for the previous occurrance.
   1234  * @internal
   1235  * @deprecated ICU 2.4. This class may be removed or modified.
   1236  */
   1237 UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
   1238 {
   1239     MoonTimeAngleFunc func;
   1240     return timeOfAngle( func,
   1241                         desired,
   1242                         SYNODIC_MONTH,
   1243                         MINUTE_MS,
   1244                         next);
   1245 }
   1246 
   1247 /**
   1248  * Find the next or previous time at which the moon will be in the
   1249  * desired phase.
   1250  * <p>
   1251  * @param desired   The desired phase of the moon.
   1252  * @param next      <tt>true</tt> if the next occurrance of the phase
   1253  *                  is desired, <tt>false</tt> for the previous occurrance.
   1254  * @internal
   1255  * @deprecated ICU 2.4. This class may be removed or modified.
   1256  */
   1257 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
   1258     return getMoonTime(desired.value, next);
   1259 }
   1260 
   1261 class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
   1262 public:
   1263     virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
   1264 };
   1265 
   1266 /**
   1267  * Returns the time (GMT) of sunrise or sunset on the local date to which
   1268  * this calendar is currently set.
   1269  * @internal
   1270  * @deprecated ICU 2.4. This class may be removed or modified.
   1271  */
   1272 UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
   1273 {
   1274     MoonRiseSetCoordFunc func;
   1275     return riseOrSet(func,
   1276                      rise,
   1277                      .533 * DEG_RAD,        // Angular Diameter
   1278                      34 /60.0 * DEG_RAD,    // Refraction correction
   1279                      MINUTE_MS);            // Desired accuracy
   1280 }
   1281 
   1282 //-------------------------------------------------------------------------
   1283 // Interpolation methods for finding the time at which a given event occurs
   1284 //-------------------------------------------------------------------------
   1285 
   1286 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
   1287                                       double periodDays, double epsilon, UBool next)
   1288 {
   1289     // Find the value of the function at the current time
   1290     double lastAngle = func.eval(*this);
   1291 
   1292     // Find out how far we are from the desired angle
   1293     double deltaAngle = norm2PI(desired - lastAngle) ;
   1294 
   1295     // Using the average period, estimate the next (or previous) time at
   1296     // which the desired angle occurs.
   1297     double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
   1298 
   1299     double lastDeltaT = deltaT; // Liu
   1300     UDate startTime = fTime; // Liu
   1301 
   1302     setTime(fTime + uprv_ceil(deltaT));
   1303 
   1304     // Now iterate until we get the error below epsilon.  Throughout
   1305     // this loop we use normPI to get values in the range -Pi to Pi,
   1306     // since we're using them as correction factors rather than absolute angles.
   1307     do {
   1308         // Evaluate the function at the time we've estimated
   1309         double angle = func.eval(*this);
   1310 
   1311         // Find the # of milliseconds per radian at this point on the curve
   1312         double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
   1313 
   1314         // Correct the time estimate based on how far off the angle is
   1315         deltaT = normPI(desired - angle) * factor;
   1316 
   1317         // HACK:
   1318         //
   1319         // If abs(deltaT) begins to diverge we need to quit this loop.
   1320         // This only appears to happen when attempting to locate, for
   1321         // example, a new moon on the day of the new moon.  E.g.:
   1322         //
   1323         // This result is correct:
   1324         // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
   1325         //   Sun Jul 22 10:57:41 CST 1990
   1326         //
   1327         // But attempting to make the same call a day earlier causes deltaT
   1328         // to diverge:
   1329         // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
   1330         //   1.3649828540224032E9
   1331         // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
   1332         //   Sun Jul 08 13:56:15 CST 1990
   1333         //
   1334         // As a temporary solution, we catch this specific condition and
   1335         // adjust our start time by one eighth period days (either forward
   1336         // or backward) and try again.
   1337         // Liu 11/9/00
   1338         if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
   1339             double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
   1340             setTime(startTime + (next ? delta : -delta));
   1341             return timeOfAngle(func, desired, periodDays, epsilon, next);
   1342         }
   1343 
   1344         lastDeltaT = deltaT;
   1345         lastAngle = angle;
   1346 
   1347         setTime(fTime + uprv_ceil(deltaT));
   1348     }
   1349     while (uprv_fabs(deltaT) > epsilon);
   1350 
   1351     return fTime;
   1352 }
   1353 
   1354 UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
   1355                                     double diameter, double refraction,
   1356                                     double epsilon)
   1357 {
   1358     Equatorial pos;
   1359     double      tanL   = ::tan(fLatitude);
   1360     double     deltaT = 0;
   1361     int32_t         count = 0;
   1362 
   1363     //
   1364     // Calculate the object's position at the current time, then use that
   1365     // position to calculate the time of rising or setting.  The position
   1366     // will be different at that time, so iterate until the error is allowable.
   1367     //
   1368     U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
   1369         rise?"T":"F", diameter, refraction, epsilon));
   1370     do {
   1371         // See "Practical Astronomy With Your Calculator, section 33.
   1372         func.eval(pos, *this);
   1373         double angle = ::acos(-tanL * ::tan(pos.declination));
   1374         double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
   1375 
   1376         // Convert from LST to Universal Time.
   1377         UDate newTime = lstToUT( lst );
   1378 
   1379         deltaT = newTime - fTime;
   1380         setTime(newTime);
   1381         U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n",
   1382             count, deltaT, angle, lst, pos.ascension, pos.declination));
   1383     }
   1384     while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
   1385 
   1386     // Calculate the correction due to refraction and the object's angular diameter
   1387     double cosD  = ::cos(pos.declination);
   1388     double psi   = ::acos(sin(fLatitude) / cosD);
   1389     double x     = diameter / 2 + refraction;
   1390     double y     = ::asin(sin(x) / ::sin(psi));
   1391     long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
   1392 
   1393     return fTime + (rise ? -delta : delta);
   1394 }
   1395 											   /**
   1396  * Return the obliquity of the ecliptic (the angle between the ecliptic
   1397  * and the earth's equator) at the current time.  This varies due to
   1398  * the precession of the earth's axis.
   1399  *
   1400  * @return  the obliquity of the ecliptic relative to the equator,
   1401  *          measured in radians.
   1402  */
   1403 double CalendarAstronomer::eclipticObliquity() {
   1404     if (isINVALID(eclipObliquity)) {
   1405         const double epoch = 2451545.0;     // 2000 AD, January 1.5
   1406 
   1407         double T = (getJulianDay() - epoch) / 36525;
   1408 
   1409         eclipObliquity = 23.439292
   1410             - 46.815/3600 * T
   1411             - 0.0006/3600 * T*T
   1412             + 0.00181/3600 * T*T*T;
   1413 
   1414         eclipObliquity *= DEG_RAD;
   1415     }
   1416     return eclipObliquity;
   1417 }
   1418 
   1419 
   1420 //-------------------------------------------------------------------------
   1421 // Private data
   1422 //-------------------------------------------------------------------------
   1423 void CalendarAstronomer::clearCache() {
   1424     const double INVALID = uprv_getNaN();
   1425 
   1426     julianDay       = INVALID;
   1427     julianCentury   = INVALID;
   1428     sunLongitude    = INVALID;
   1429     meanAnomalySun  = INVALID;
   1430     moonLongitude   = INVALID;
   1431     moonEclipLong   = INVALID;
   1432     meanAnomalyMoon = INVALID;
   1433     eclipObliquity  = INVALID;
   1434     siderealTime    = INVALID;
   1435     siderealT0      = INVALID;
   1436     moonPositionSet = FALSE;
   1437 }
   1438 
   1439 //private static void out(String s) {
   1440 //    System.out.println(s);
   1441 //}
   1442 
   1443 //private static String deg(double rad) {
   1444 //    return Double.toString(rad * RAD_DEG);
   1445 //}
   1446 
   1447 //private static String hours(long ms) {
   1448 //    return Double.toString((double)ms / HOUR_MS) + " hours";
   1449 //}
   1450 
   1451 /**
   1452  * @internal
   1453  * @deprecated ICU 2.4. This class may be removed or modified.
   1454  */
   1455 /*UDate CalendarAstronomer::local(UDate localMillis) {
   1456   // TODO - srl ?
   1457   TimeZone *tz = TimeZone::createDefault();
   1458   int32_t rawOffset;
   1459   int32_t dstOffset;
   1460   UErrorCode status = U_ZERO_ERROR;
   1461   tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
   1462   delete tz;
   1463   return localMillis - rawOffset;
   1464 }*/
   1465 
   1466 // Debugging functions
   1467 UnicodeString CalendarAstronomer::Ecliptic::toString() const
   1468 {
   1469 #ifdef U_DEBUG_ASTRO
   1470     char tmp[800];
   1471     sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
   1472     return UnicodeString(tmp, "");
   1473 #else
   1474     return UnicodeString();
   1475 #endif
   1476 }
   1477 
   1478 UnicodeString CalendarAstronomer::Equatorial::toString() const
   1479 {
   1480 #ifdef U_DEBUG_ASTRO
   1481     char tmp[400];
   1482     sprintf(tmp, "%f,%f",
   1483         (ascension*RAD_DEG), (declination*RAD_DEG));
   1484     return UnicodeString(tmp, "");
   1485 #else
   1486     return UnicodeString();
   1487 #endif
   1488 }
   1489 
   1490 UnicodeString CalendarAstronomer::Horizon::toString() const
   1491 {
   1492 #ifdef U_DEBUG_ASTRO
   1493     char tmp[800];
   1494     sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
   1495     return UnicodeString(tmp, "");
   1496 #else
   1497     return UnicodeString();
   1498 #endif
   1499 }
   1500 
   1501 
   1502 //  static private String radToHms(double angle) {
   1503 //    int hrs = (int) (angle*RAD_HOUR);
   1504 //    int min = (int)((angle*RAD_HOUR - hrs) * 60);
   1505 //    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
   1506 
   1507 //    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
   1508 //  }
   1509 
   1510 //  static private String radToDms(double angle) {
   1511 //    int deg = (int) (angle*RAD_DEG);
   1512 //    int min = (int)((angle*RAD_DEG - deg) * 60);
   1513 //    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
   1514 
   1515 //    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
   1516 //  }
   1517 
   1518 // =============== Calendar Cache ================
   1519 
   1520 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
   1521     ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
   1522     if(cache == NULL) {
   1523         status = U_MEMORY_ALLOCATION_ERROR;
   1524     } else {
   1525         *cache = new CalendarCache(32, status);
   1526         if(U_FAILURE(status)) {
   1527             delete *cache;
   1528             *cache = NULL;
   1529         }
   1530     }
   1531 }
   1532 
   1533 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
   1534     int32_t res;
   1535 
   1536     if(U_FAILURE(status)) {
   1537         return 0;
   1538     }
   1539     umtx_lock(&ccLock);
   1540 
   1541     if(*cache == NULL) {
   1542         createCache(cache, status);
   1543         if(U_FAILURE(status)) {
   1544             umtx_unlock(&ccLock);
   1545             return 0;
   1546         }
   1547     }
   1548 
   1549     res = uhash_igeti((*cache)->fTable, key);
   1550     U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
   1551 
   1552     umtx_unlock(&ccLock);
   1553     return res;
   1554 }
   1555 
   1556 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
   1557     if(U_FAILURE(status)) {
   1558         return;
   1559     }
   1560     umtx_lock(&ccLock);
   1561 
   1562     if(*cache == NULL) {
   1563         createCache(cache, status);
   1564         if(U_FAILURE(status)) {
   1565             umtx_unlock(&ccLock);
   1566             return;
   1567         }
   1568     }
   1569 
   1570     uhash_iputi((*cache)->fTable, key, value, &status);
   1571     U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
   1572 
   1573     umtx_unlock(&ccLock);
   1574 }
   1575 
   1576 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
   1577     fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
   1578     U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
   1579 }
   1580 
   1581 CalendarCache::~CalendarCache() {
   1582     if(fTable != NULL) {
   1583         U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
   1584         uhash_close(fTable);
   1585     }
   1586 }
   1587 
   1588 U_NAMESPACE_END
   1589 
   1590 #endif //  !UCONFIG_NO_FORMATTING
   1591