1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "rsContext.h" 18 #include "rsScriptC.h" 19 #include "rsMatrix4x4.h" 20 #include "rsMatrix3x3.h" 21 #include "rsMatrix2x2.h" 22 23 #include "rsdCore.h" 24 #include "rsdRuntime.h" 25 26 27 using namespace android; 28 using namespace android::renderscript; 29 30 31 static float SC_exp10(float v) { 32 return pow(10.f, v); 33 } 34 35 static float SC_fract(float v, int *iptr) { 36 int i = (int)floor(v); 37 iptr[0] = i; 38 return fmin(v - i, 0x1.fffffep-1f); 39 } 40 41 static float SC_log2(float v) { 42 return log10(v) / log10(2.f); 43 } 44 45 static float SC_mad(float v1, float v2, float v3) { 46 return v1 * v2 + v3; 47 } 48 49 #if 0 50 static float SC_pown(float v, int p) { 51 return powf(v, (float)p); 52 } 53 54 static float SC_powr(float v, float p) { 55 return powf(v, p); 56 } 57 #endif 58 59 float SC_rootn(float v, int r) { 60 return pow(v, 1.f / r); 61 } 62 63 float SC_rsqrt(float v) { 64 return 1.f / sqrtf(v); 65 } 66 67 float SC_sincos(float v, float *cosptr) { 68 *cosptr = cosf(v); 69 return sinf(v); 70 } 71 72 ////////////////////////////////////////////////////////////////////////////// 73 // Integer 74 ////////////////////////////////////////////////////////////////////////////// 75 76 77 static uint32_t SC_abs_i32(int32_t v) {return abs(v);} 78 static uint16_t SC_abs_i16(int16_t v) {return (uint16_t)abs(v);} 79 static uint8_t SC_abs_i8(int8_t v) {return (uint8_t)abs(v);} 80 81 static uint32_t SC_clz_u32(uint32_t v) {return __builtin_clz(v);} 82 static uint16_t SC_clz_u16(uint16_t v) {return (uint16_t)__builtin_clz(v);} 83 static uint8_t SC_clz_u8(uint8_t v) {return (uint8_t)__builtin_clz(v);} 84 static int32_t SC_clz_i32(int32_t v) {return (int32_t)__builtin_clz((uint32_t)v);} 85 static int16_t SC_clz_i16(int16_t v) {return (int16_t)__builtin_clz(v);} 86 static int8_t SC_clz_i8(int8_t v) {return (int8_t)__builtin_clz(v);} 87 88 static uint32_t SC_max_u32(uint32_t v, uint32_t v2) {return rsMax(v, v2);} 89 static uint16_t SC_max_u16(uint16_t v, uint16_t v2) {return rsMax(v, v2);} 90 static uint8_t SC_max_u8(uint8_t v, uint8_t v2) {return rsMax(v, v2);} 91 static int32_t SC_max_i32(int32_t v, int32_t v2) {return rsMax(v, v2);} 92 static int16_t SC_max_i16(int16_t v, int16_t v2) {return rsMax(v, v2);} 93 static int8_t SC_max_i8(int8_t v, int8_t v2) {return rsMax(v, v2);} 94 95 static uint32_t SC_min_u32(uint32_t v, uint32_t v2) {return rsMin(v, v2);} 96 static uint16_t SC_min_u16(uint16_t v, uint16_t v2) {return rsMin(v, v2);} 97 static uint8_t SC_min_u8(uint8_t v, uint8_t v2) {return rsMin(v, v2);} 98 static int32_t SC_min_i32(int32_t v, int32_t v2) {return rsMin(v, v2);} 99 static int16_t SC_min_i16(int16_t v, int16_t v2) {return rsMin(v, v2);} 100 static int8_t SC_min_i8(int8_t v, int8_t v2) {return rsMin(v, v2);} 101 102 ////////////////////////////////////////////////////////////////////////////// 103 // Float util 104 ////////////////////////////////////////////////////////////////////////////// 105 106 static float SC_clamp_f32(float amount, float low, float high) { 107 return amount < low ? low : (amount > high ? high : amount); 108 } 109 110 static float SC_degrees(float radians) { 111 return radians * (180.f / M_PI); 112 } 113 114 static float SC_max_f32(float v, float v2) { 115 return rsMax(v, v2); 116 } 117 118 static float SC_min_f32(float v, float v2) { 119 return rsMin(v, v2); 120 } 121 122 static float SC_mix_f32(float start, float stop, float amount) { 123 //LOGE("lerpf %f %f %f", start, stop, amount); 124 return start + (stop - start) * amount; 125 } 126 127 static float SC_radians(float degrees) { 128 return degrees * (M_PI / 180.f); 129 } 130 131 static float SC_step_f32(float edge, float v) { 132 if (v < edge) return 0.f; 133 return 1.f; 134 } 135 136 static float SC_sign_f32(float value) { 137 if (value > 0) return 1.f; 138 if (value < 0) return -1.f; 139 return value; 140 } 141 142 static void SC_MatrixLoadIdentity_4x4(Matrix4x4 *m) { 143 m->loadIdentity(); 144 } 145 static void SC_MatrixLoadIdentity_3x3(Matrix3x3 *m) { 146 m->loadIdentity(); 147 } 148 static void SC_MatrixLoadIdentity_2x2(Matrix2x2 *m) { 149 m->loadIdentity(); 150 } 151 152 static void SC_MatrixLoad_4x4_f(Matrix4x4 *m, const float *f) { 153 m->load(f); 154 } 155 static void SC_MatrixLoad_3x3_f(Matrix3x3 *m, const float *f) { 156 m->load(f); 157 } 158 static void SC_MatrixLoad_2x2_f(Matrix2x2 *m, const float *f) { 159 m->load(f); 160 } 161 162 static void SC_MatrixLoad_4x4_4x4(Matrix4x4 *m, const Matrix4x4 *s) { 163 m->load(s); 164 } 165 static void SC_MatrixLoad_4x4_3x3(Matrix4x4 *m, const Matrix3x3 *s) { 166 m->load(s); 167 } 168 static void SC_MatrixLoad_4x4_2x2(Matrix4x4 *m, const Matrix2x2 *s) { 169 m->load(s); 170 } 171 static void SC_MatrixLoad_3x3_3x3(Matrix3x3 *m, const Matrix3x3 *s) { 172 m->load(s); 173 } 174 static void SC_MatrixLoad_2x2_2x2(Matrix2x2 *m, const Matrix2x2 *s) { 175 m->load(s); 176 } 177 178 static void SC_MatrixLoadRotate(Matrix4x4 *m, float rot, float x, float y, float z) { 179 m->loadRotate(rot, x, y, z); 180 } 181 static void SC_MatrixLoadScale(Matrix4x4 *m, float x, float y, float z) { 182 m->loadScale(x, y, z); 183 } 184 static void SC_MatrixLoadTranslate(Matrix4x4 *m, float x, float y, float z) { 185 m->loadTranslate(x, y, z); 186 } 187 static void SC_MatrixRotate(Matrix4x4 *m, float rot, float x, float y, float z) { 188 m->rotate(rot, x, y, z); 189 } 190 static void SC_MatrixScale(Matrix4x4 *m, float x, float y, float z) { 191 m->scale(x, y, z); 192 } 193 static void SC_MatrixTranslate(Matrix4x4 *m, float x, float y, float z) { 194 m->translate(x, y, z); 195 } 196 197 static void SC_MatrixLoadMultiply_4x4_4x4_4x4(Matrix4x4 *m, const Matrix4x4 *lhs, const Matrix4x4 *rhs) { 198 m->loadMultiply(lhs, rhs); 199 } 200 static void SC_MatrixLoadMultiply_3x3_3x3_3x3(Matrix3x3 *m, const Matrix3x3 *lhs, const Matrix3x3 *rhs) { 201 m->loadMultiply(lhs, rhs); 202 } 203 static void SC_MatrixLoadMultiply_2x2_2x2_2x2(Matrix2x2 *m, const Matrix2x2 *lhs, const Matrix2x2 *rhs) { 204 m->loadMultiply(lhs, rhs); 205 } 206 207 static void SC_MatrixMultiply_4x4_4x4(Matrix4x4 *m, const Matrix4x4 *rhs) { 208 m->multiply(rhs); 209 } 210 static void SC_MatrixMultiply_3x3_3x3(Matrix3x3 *m, const Matrix3x3 *rhs) { 211 m->multiply(rhs); 212 } 213 static void SC_MatrixMultiply_2x2_2x2(Matrix2x2 *m, const Matrix2x2 *rhs) { 214 m->multiply(rhs); 215 } 216 217 static void SC_MatrixLoadOrtho(Matrix4x4 *m, float l, float r, float b, float t, float n, float f) { 218 m->loadOrtho(l, r, b, t, n, f); 219 } 220 static void SC_MatrixLoadFrustum(Matrix4x4 *m, float l, float r, float b, float t, float n, float f) { 221 m->loadFrustum(l, r, b, t, n, f); 222 } 223 static void SC_MatrixLoadPerspective(Matrix4x4 *m, float fovy, float aspect, float near, float far) { 224 m->loadPerspective(fovy, aspect, near, far); 225 } 226 227 static bool SC_MatrixInverse_4x4(Matrix4x4 *m) { 228 return m->inverse(); 229 } 230 static bool SC_MatrixInverseTranspose_4x4(Matrix4x4 *m) { 231 return m->inverseTranspose(); 232 } 233 static void SC_MatrixTranspose_4x4(Matrix4x4 *m) { 234 m->transpose(); 235 } 236 static void SC_MatrixTranspose_3x3(Matrix3x3 *m) { 237 m->transpose(); 238 } 239 static void SC_MatrixTranspose_2x2(Matrix2x2 *m) { 240 m->transpose(); 241 } 242 243 static float SC_randf(float max) { 244 float r = (float)rand(); 245 r *= max; 246 r /= RAND_MAX; 247 return r; 248 } 249 250 static float SC_randf2(float min, float max) { 251 float r = (float)rand(); 252 r /= RAND_MAX; 253 r = r * (max - min) + min; 254 return r; 255 } 256 257 static int SC_randi(int max) { 258 return (int)SC_randf(max); 259 } 260 261 static int SC_randi2(int min, int max) { 262 return (int)SC_randf2(min, max); 263 } 264 265 static float SC_frac(float v) { 266 int i = (int)floor(v); 267 return fmin(v - i, 0x1.fffffep-1f); 268 } 269 270 271 static int32_t SC_AtomicCas(volatile int32_t *ptr, int32_t expectedValue, int32_t newValue) { 272 int32_t prev; 273 274 do { 275 int32_t ret = android_atomic_release_cas(expectedValue, newValue, ptr); 276 if (!ret) { 277 // The android cas return 0 if it wrote the value. This means the 278 // previous value was the expected value and we can return. 279 return expectedValue; 280 } 281 // We didn't write the value and need to load the "previous" value. 282 prev = *ptr; 283 284 // A race condition exists where the expected value could appear after our cas failed 285 // above. In this case loop until we have a legit previous value or the 286 // write passes. 287 } while (prev == expectedValue); 288 return prev; 289 } 290 291 292 static int32_t SC_AtomicInc(volatile int32_t *ptr) { 293 return android_atomic_inc(ptr); 294 } 295 296 static int32_t SC_AtomicDec(volatile int32_t *ptr) { 297 return android_atomic_dec(ptr); 298 } 299 300 static int32_t SC_AtomicAdd(volatile int32_t *ptr, int32_t value) { 301 return android_atomic_add(value, ptr); 302 } 303 304 static int32_t SC_AtomicSub(volatile int32_t *ptr, int32_t value) { 305 int32_t prev, status; 306 do { 307 prev = *ptr; 308 status = android_atomic_release_cas(prev, prev - value, ptr); 309 } while (__builtin_expect(status != 0, 0)); 310 return prev; 311 } 312 313 static int32_t SC_AtomicAnd(volatile int32_t *ptr, int32_t value) { 314 return android_atomic_and(value, ptr); 315 } 316 317 static int32_t SC_AtomicOr(volatile int32_t *ptr, int32_t value) { 318 return android_atomic_or(value, ptr); 319 } 320 321 static int32_t SC_AtomicXor(volatile int32_t *ptr, int32_t value) { 322 int32_t prev, status; 323 do { 324 prev = *ptr; 325 status = android_atomic_release_cas(prev, prev ^ value, ptr); 326 } while (__builtin_expect(status != 0, 0)); 327 return prev; 328 } 329 330 static int32_t SC_AtomicMin(volatile int32_t *ptr, int32_t value) { 331 int32_t prev, status; 332 do { 333 prev = *ptr; 334 int32_t n = rsMin(value, prev); 335 status = android_atomic_release_cas(prev, n, ptr); 336 } while (__builtin_expect(status != 0, 0)); 337 return prev; 338 } 339 340 static int32_t SC_AtomicMax(volatile int32_t *ptr, int32_t value) { 341 int32_t prev, status; 342 do { 343 prev = *ptr; 344 int32_t n = rsMax(value, prev); 345 status = android_atomic_release_cas(prev, n, ptr); 346 } while (__builtin_expect(status != 0, 0)); 347 return prev; 348 } 349 350 351 352 ////////////////////////////////////////////////////////////////////////////// 353 // Class implementation 354 ////////////////////////////////////////////////////////////////////////////// 355 356 // llvm name mangling ref 357 // <builtin-type> ::= v # void 358 // ::= b # bool 359 // ::= c # char 360 // ::= a # signed char 361 // ::= h # unsigned char 362 // ::= s # short 363 // ::= t # unsigned short 364 // ::= i # int 365 // ::= j # unsigned int 366 // ::= l # long 367 // ::= m # unsigned long 368 // ::= x # long long, __int64 369 // ::= y # unsigned long long, __int64 370 // ::= f # float 371 // ::= d # double 372 373 static RsdSymbolTable gSyms[] = { 374 { "_Z4acosf", (void *)&acosf, true }, 375 { "_Z5acoshf", (void *)&acoshf, true }, 376 { "_Z4asinf", (void *)&asinf, true }, 377 { "_Z5asinhf", (void *)&asinhf, true }, 378 { "_Z4atanf", (void *)&atanf, true }, 379 { "_Z5atan2ff", (void *)&atan2f, true }, 380 { "_Z5atanhf", (void *)&atanhf, true }, 381 { "_Z4cbrtf", (void *)&cbrtf, true }, 382 { "_Z4ceilf", (void *)&ceilf, true }, 383 { "_Z8copysignff", (void *)©signf, true }, 384 { "_Z3cosf", (void *)&cosf, true }, 385 { "_Z4coshf", (void *)&coshf, true }, 386 { "_Z4erfcf", (void *)&erfcf, true }, 387 { "_Z3erff", (void *)&erff, true }, 388 { "_Z3expf", (void *)&expf, true }, 389 { "_Z4exp2f", (void *)&exp2f, true }, 390 { "_Z5exp10f", (void *)&SC_exp10, true }, 391 { "_Z5expm1f", (void *)&expm1f, true }, 392 { "_Z4fabsf", (void *)&fabsf, true }, 393 { "_Z4fdimff", (void *)&fdimf, true }, 394 { "_Z5floorf", (void *)&floorf, true }, 395 { "_Z3fmafff", (void *)&fmaf, true }, 396 { "_Z4fmaxff", (void *)&fmaxf, true }, 397 { "_Z4fminff", (void *)&fminf, true }, // float fmin(float, float) 398 { "_Z4fmodff", (void *)&fmodf, true }, 399 { "_Z5fractfPf", (void *)&SC_fract, true }, 400 { "_Z5frexpfPi", (void *)&frexpf, true }, 401 { "_Z5hypotff", (void *)&hypotf, true }, 402 { "_Z5ilogbf", (void *)&ilogbf, true }, 403 { "_Z5ldexpfi", (void *)&ldexpf, true }, 404 { "_Z6lgammaf", (void *)&lgammaf, true }, 405 { "_Z6lgammafPi", (void *)&lgammaf_r, true }, 406 { "_Z3logf", (void *)&logf, true }, 407 { "_Z4log2f", (void *)&SC_log2, true }, 408 { "_Z5log10f", (void *)&log10f, true }, 409 { "_Z5log1pf", (void *)&log1pf, true }, 410 { "_Z4logbf", (void *)&logbf, true }, 411 { "_Z3madfff", (void *)&SC_mad, true }, 412 { "_Z4modffPf", (void *)&modff, true }, 413 //{ "_Z3nanj", (void *)&SC_nan, true }, 414 { "_Z9nextafterff", (void *)&nextafterf, true }, 415 { "_Z3powff", (void *)&powf, true }, 416 { "_Z9remainderff", (void *)&remainderf, true }, 417 { "_Z6remquoffPi", (void *)&remquof, true }, 418 { "_Z4rintf", (void *)&rintf, true }, 419 { "_Z5rootnfi", (void *)&SC_rootn, true }, 420 { "_Z5roundf", (void *)&roundf, true }, 421 { "_Z5rsqrtf", (void *)&SC_rsqrt, true }, 422 { "_Z3sinf", (void *)&sinf, true }, 423 { "_Z6sincosfPf", (void *)&SC_sincos, true }, 424 { "_Z4sinhf", (void *)&sinhf, true }, 425 { "_Z4sqrtf", (void *)&sqrtf, true }, 426 { "_Z3tanf", (void *)&tanf, true }, 427 { "_Z4tanhf", (void *)&tanhf, true }, 428 { "_Z6tgammaf", (void *)&tgammaf, true }, 429 { "_Z5truncf", (void *)&truncf, true }, 430 431 { "_Z3absi", (void *)&SC_abs_i32, true }, 432 { "_Z3abss", (void *)&SC_abs_i16, true }, 433 { "_Z3absc", (void *)&SC_abs_i8, true }, 434 { "_Z3clzj", (void *)&SC_clz_u32, true }, 435 { "_Z3clzt", (void *)&SC_clz_u16, true }, 436 { "_Z3clzh", (void *)&SC_clz_u8, true }, 437 { "_Z3clzi", (void *)&SC_clz_i32, true }, 438 { "_Z3clzs", (void *)&SC_clz_i16, true }, 439 { "_Z3clzc", (void *)&SC_clz_i8, true }, 440 { "_Z3maxjj", (void *)&SC_max_u32, true }, 441 { "_Z3maxtt", (void *)&SC_max_u16, true }, 442 { "_Z3maxhh", (void *)&SC_max_u8, true }, 443 { "_Z3maxii", (void *)&SC_max_i32, true }, 444 { "_Z3maxss", (void *)&SC_max_i16, true }, 445 { "_Z3maxcc", (void *)&SC_max_i8, true }, 446 { "_Z3minjj", (void *)&SC_min_u32, true }, 447 { "_Z3mintt", (void *)&SC_min_u16, true }, 448 { "_Z3minhh", (void *)&SC_min_u8, true }, 449 { "_Z3minii", (void *)&SC_min_i32, true }, 450 { "_Z3minss", (void *)&SC_min_i16, true }, 451 { "_Z3mincc", (void *)&SC_min_i8, true }, 452 453 { "_Z5clampfff", (void *)&SC_clamp_f32, true }, 454 { "_Z7degreesf", (void *)&SC_degrees, true }, 455 { "_Z3maxff", (void *)&SC_max_f32, true }, 456 { "_Z3minff", (void *)&SC_min_f32, true }, 457 { "_Z3mixfff", (void *)&SC_mix_f32, true }, 458 { "_Z7radiansf", (void *)&SC_radians, true }, 459 { "_Z4stepff", (void *)&SC_step_f32, true }, 460 //{ "smoothstep", (void *)&, true }, 461 { "_Z4signf", (void *)&SC_sign_f32, true }, 462 463 // matrix 464 { "_Z20rsMatrixLoadIdentityP12rs_matrix4x4", (void *)&SC_MatrixLoadIdentity_4x4, true }, 465 { "_Z20rsMatrixLoadIdentityP12rs_matrix3x3", (void *)&SC_MatrixLoadIdentity_3x3, true }, 466 { "_Z20rsMatrixLoadIdentityP12rs_matrix2x2", (void *)&SC_MatrixLoadIdentity_2x2, true }, 467 468 { "_Z12rsMatrixLoadP12rs_matrix4x4PKf", (void *)&SC_MatrixLoad_4x4_f, true }, 469 { "_Z12rsMatrixLoadP12rs_matrix3x3PKf", (void *)&SC_MatrixLoad_3x3_f, true }, 470 { "_Z12rsMatrixLoadP12rs_matrix2x2PKf", (void *)&SC_MatrixLoad_2x2_f, true }, 471 472 { "_Z12rsMatrixLoadP12rs_matrix4x4PKS_", (void *)&SC_MatrixLoad_4x4_4x4, true }, 473 { "_Z12rsMatrixLoadP12rs_matrix4x4PK12rs_matrix3x3", (void *)&SC_MatrixLoad_4x4_3x3, true }, 474 { "_Z12rsMatrixLoadP12rs_matrix4x4PK12rs_matrix2x2", (void *)&SC_MatrixLoad_4x4_2x2, true }, 475 { "_Z12rsMatrixLoadP12rs_matrix3x3PKS_", (void *)&SC_MatrixLoad_3x3_3x3, true }, 476 { "_Z12rsMatrixLoadP12rs_matrix2x2PKS_", (void *)&SC_MatrixLoad_2x2_2x2, true }, 477 478 { "_Z18rsMatrixLoadRotateP12rs_matrix4x4ffff", (void *)&SC_MatrixLoadRotate, true }, 479 { "_Z17rsMatrixLoadScaleP12rs_matrix4x4fff", (void *)&SC_MatrixLoadScale, true }, 480 { "_Z21rsMatrixLoadTranslateP12rs_matrix4x4fff", (void *)&SC_MatrixLoadTranslate, true }, 481 { "_Z14rsMatrixRotateP12rs_matrix4x4ffff", (void *)&SC_MatrixRotate, true }, 482 { "_Z13rsMatrixScaleP12rs_matrix4x4fff", (void *)&SC_MatrixScale, true }, 483 { "_Z17rsMatrixTranslateP12rs_matrix4x4fff", (void *)&SC_MatrixTranslate, true }, 484 485 { "_Z20rsMatrixLoadMultiplyP12rs_matrix4x4PKS_S2_", (void *)&SC_MatrixLoadMultiply_4x4_4x4_4x4, true }, 486 { "_Z16rsMatrixMultiplyP12rs_matrix4x4PKS_", (void *)&SC_MatrixMultiply_4x4_4x4, true }, 487 { "_Z20rsMatrixLoadMultiplyP12rs_matrix3x3PKS_S2_", (void *)&SC_MatrixLoadMultiply_3x3_3x3_3x3, true }, 488 { "_Z16rsMatrixMultiplyP12rs_matrix3x3PKS_", (void *)&SC_MatrixMultiply_3x3_3x3, true }, 489 { "_Z20rsMatrixLoadMultiplyP12rs_matrix2x2PKS_S2_", (void *)&SC_MatrixLoadMultiply_2x2_2x2_2x2, true }, 490 { "_Z16rsMatrixMultiplyP12rs_matrix2x2PKS_", (void *)&SC_MatrixMultiply_2x2_2x2, true }, 491 492 { "_Z17rsMatrixLoadOrthoP12rs_matrix4x4ffffff", (void *)&SC_MatrixLoadOrtho, true }, 493 { "_Z19rsMatrixLoadFrustumP12rs_matrix4x4ffffff", (void *)&SC_MatrixLoadFrustum, true }, 494 { "_Z23rsMatrixLoadPerspectiveP12rs_matrix4x4ffff", (void *)&SC_MatrixLoadPerspective, true }, 495 496 { "_Z15rsMatrixInverseP12rs_matrix4x4", (void *)&SC_MatrixInverse_4x4, true }, 497 { "_Z24rsMatrixInverseTransposeP12rs_matrix4x4", (void *)&SC_MatrixInverseTranspose_4x4, true }, 498 { "_Z17rsMatrixTransposeP12rs_matrix4x4", (void *)&SC_MatrixTranspose_4x4, true }, 499 { "_Z17rsMatrixTransposeP12rs_matrix4x4", (void *)&SC_MatrixTranspose_3x3, true }, 500 { "_Z17rsMatrixTransposeP12rs_matrix4x4", (void *)&SC_MatrixTranspose_2x2, true }, 501 502 // RS Math 503 { "_Z6rsRandi", (void *)&SC_randi, true }, 504 { "_Z6rsRandii", (void *)&SC_randi2, true }, 505 { "_Z6rsRandf", (void *)&SC_randf, true }, 506 { "_Z6rsRandff", (void *)&SC_randf2, true }, 507 { "_Z6rsFracf", (void *)&SC_frac, true }, 508 509 // Atomics 510 { "_Z11rsAtomicIncPVi", (void *)&SC_AtomicInc, true }, 511 { "_Z11rsAtomicIncPVj", (void *)&SC_AtomicInc, true }, 512 { "_Z11rsAtomicDecPVi", (void *)&SC_AtomicDec, true }, 513 { "_Z11rsAtomicDecPVj", (void *)&SC_AtomicDec, true }, 514 { "_Z11rsAtomicAddPVii", (void *)&SC_AtomicAdd, true }, 515 { "_Z11rsAtomicAddPVjj", (void *)&SC_AtomicAdd, true }, 516 { "_Z11rsAtomicSubPVii", (void *)&SC_AtomicSub, true }, 517 { "_Z11rsAtomicSubPVjj", (void *)&SC_AtomicSub, true }, 518 { "_Z11rsAtomicAndPVii", (void *)&SC_AtomicAnd, true }, 519 { "_Z11rsAtomicAndPVjj", (void *)&SC_AtomicAnd, true }, 520 { "_Z10rsAtomicOrPVii", (void *)&SC_AtomicOr, true }, 521 { "_Z10rsAtomicOrPVjj", (void *)&SC_AtomicOr, true }, 522 { "_Z11rsAtomicXorPVii", (void *)&SC_AtomicXor, true }, 523 { "_Z11rsAtomicXorPVjj", (void *)&SC_AtomicXor, true }, 524 { "_Z11rsAtomicMinPVii", (void *)&SC_AtomicMin, true }, 525 { "_Z11rsAtomicMinPVjj", (void *)&SC_AtomicMin, true }, 526 { "_Z11rsAtomicMaxPVii", (void *)&SC_AtomicMax, true }, 527 { "_Z11rsAtomicMaxPVjj", (void *)&SC_AtomicMax, true }, 528 { "_Z11rsAtomicCasPViii", (void *)&SC_AtomicCas, true }, 529 { "_Z11rsAtomicCasPVjjj", (void *)&SC_AtomicCas, true }, 530 531 { NULL, NULL, false } 532 }; 533 534 const RsdSymbolTable * rsdLookupSymbolMath(const char *sym) { 535 const RsdSymbolTable *syms = gSyms; 536 537 while (syms->mPtr) { 538 if (!strcmp(syms->mName, sym)) { 539 return syms; 540 } 541 syms++; 542 } 543 return NULL; 544 } 545 546