1 /* 2 ****************************************************************************** 3 * 4 * Copyright (C) 2001-2009, International Business Machines 5 * Corporation and others. All Rights Reserved. 6 * 7 ****************************************************************************** 8 * file name: utrie.c 9 * encoding: US-ASCII 10 * tab size: 8 (not used) 11 * indentation:4 12 * 13 * created on: 2001oct20 14 * created by: Markus W. Scherer 15 * 16 * This is a common implementation of a "folded" trie. 17 * It is a kind of compressed, serializable table of 16- or 32-bit values associated with 18 * Unicode code points (0..0x10ffff). 19 */ 20 21 #ifdef UTRIE_DEBUG 22 # include <stdio.h> 23 #endif 24 25 #include "unicode/utypes.h" 26 #include "cmemory.h" 27 #include "utrie.h" 28 29 /* miscellaneous ------------------------------------------------------------ */ 30 31 #undef ABS 32 #define ABS(x) ((x)>=0 ? (x) : -(x)) 33 34 static U_INLINE UBool 35 equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { 36 while(length>0 && *s==*t) { 37 ++s; 38 ++t; 39 --length; 40 } 41 return (UBool)(length==0); 42 } 43 44 /* Building a trie ----------------------------------------------------------*/ 45 46 U_CAPI UNewTrie * U_EXPORT2 47 utrie_open(UNewTrie *fillIn, 48 uint32_t *aliasData, int32_t maxDataLength, 49 uint32_t initialValue, uint32_t leadUnitValue, 50 UBool latin1Linear) { 51 UNewTrie *trie; 52 int32_t i, j; 53 54 if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || 55 (latin1Linear && maxDataLength<1024) 56 ) { 57 return NULL; 58 } 59 60 if(fillIn!=NULL) { 61 trie=fillIn; 62 } else { 63 trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); 64 if(trie==NULL) { 65 return NULL; 66 } 67 } 68 uprv_memset(trie, 0, sizeof(UNewTrie)); 69 trie->isAllocated= (UBool)(fillIn==NULL); 70 71 if(aliasData!=NULL) { 72 trie->data=aliasData; 73 trie->isDataAllocated=FALSE; 74 } else { 75 trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); 76 if(trie->data==NULL) { 77 uprv_free(trie); 78 return NULL; 79 } 80 trie->isDataAllocated=TRUE; 81 } 82 83 /* preallocate and reset the first data block (block index 0) */ 84 j=UTRIE_DATA_BLOCK_LENGTH; 85 86 if(latin1Linear) { 87 /* preallocate and reset the first block (number 0) and Latin-1 (U+0000..U+00ff) after that */ 88 /* made sure above that maxDataLength>=1024 */ 89 90 /* set indexes to point to consecutive data blocks */ 91 i=0; 92 do { 93 /* do this at least for trie->index[0] even if that block is only partly used for Latin-1 */ 94 trie->index[i++]=j; 95 j+=UTRIE_DATA_BLOCK_LENGTH; 96 } while(i<(256>>UTRIE_SHIFT)); 97 } 98 99 /* reset the initially allocated blocks to the initial value */ 100 trie->dataLength=j; 101 while(j>0) { 102 trie->data[--j]=initialValue; 103 } 104 105 trie->leadUnitValue=leadUnitValue; 106 trie->indexLength=UTRIE_MAX_INDEX_LENGTH; 107 trie->dataCapacity=maxDataLength; 108 trie->isLatin1Linear=latin1Linear; 109 trie->isCompacted=FALSE; 110 return trie; 111 } 112 113 U_CAPI UNewTrie * U_EXPORT2 114 utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_t aliasDataCapacity) { 115 UNewTrie *trie; 116 UBool isDataAllocated; 117 118 /* do not clone if other is not valid or already compacted */ 119 if(other==NULL || other->data==NULL || other->isCompacted) { 120 return NULL; 121 } 122 123 /* clone data */ 124 if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { 125 isDataAllocated=FALSE; 126 } else { 127 aliasDataCapacity=other->dataCapacity; 128 aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); 129 if(aliasData==NULL) { 130 return NULL; 131 } 132 isDataAllocated=TRUE; 133 } 134 135 trie=utrie_open(fillIn, aliasData, aliasDataCapacity, 136 other->data[0], other->leadUnitValue, 137 other->isLatin1Linear); 138 if(trie==NULL) { 139 uprv_free(aliasData); 140 } else { 141 uprv_memcpy(trie->index, other->index, sizeof(trie->index)); 142 uprv_memcpy(trie->data, other->data, other->dataLength*4); 143 trie->dataLength=other->dataLength; 144 trie->isDataAllocated=isDataAllocated; 145 } 146 147 return trie; 148 } 149 150 U_CAPI void U_EXPORT2 151 utrie_close(UNewTrie *trie) { 152 if(trie!=NULL) { 153 if(trie->isDataAllocated) { 154 uprv_free(trie->data); 155 trie->data=NULL; 156 } 157 if(trie->isAllocated) { 158 uprv_free(trie); 159 } 160 } 161 } 162 163 U_CAPI uint32_t * U_EXPORT2 164 utrie_getData(UNewTrie *trie, int32_t *pLength) { 165 if(trie==NULL || pLength==NULL) { 166 return NULL; 167 } 168 169 *pLength=trie->dataLength; 170 return trie->data; 171 } 172 173 static int32_t 174 utrie_allocDataBlock(UNewTrie *trie) { 175 int32_t newBlock, newTop; 176 177 newBlock=trie->dataLength; 178 newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; 179 if(newTop>trie->dataCapacity) { 180 /* out of memory in the data array */ 181 return -1; 182 } 183 trie->dataLength=newTop; 184 return newBlock; 185 } 186 187 /** 188 * No error checking for illegal arguments. 189 * 190 * @return -1 if no new data block available (out of memory in data array) 191 * @internal 192 */ 193 static int32_t 194 utrie_getDataBlock(UNewTrie *trie, UChar32 c) { 195 int32_t indexValue, newBlock; 196 197 c>>=UTRIE_SHIFT; 198 indexValue=trie->index[c]; 199 if(indexValue>0) { 200 return indexValue; 201 } 202 203 /* allocate a new data block */ 204 newBlock=utrie_allocDataBlock(trie); 205 if(newBlock<0) { 206 /* out of memory in the data array */ 207 return -1; 208 } 209 trie->index[c]=newBlock; 210 211 /* copy-on-write for a block from a setRange() */ 212 uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_LENGTH); 213 return newBlock; 214 } 215 216 /** 217 * @return TRUE if the value was successfully set 218 */ 219 U_CAPI UBool U_EXPORT2 220 utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { 221 int32_t block; 222 223 /* valid, uncompacted trie and valid c? */ 224 if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { 225 return FALSE; 226 } 227 228 block=utrie_getDataBlock(trie, c); 229 if(block<0) { 230 return FALSE; 231 } 232 233 trie->data[block+(c&UTRIE_MASK)]=value; 234 return TRUE; 235 } 236 237 U_CAPI uint32_t U_EXPORT2 238 utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { 239 int32_t block; 240 241 /* valid, uncompacted trie and valid c? */ 242 if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { 243 if(pInBlockZero!=NULL) { 244 *pInBlockZero=TRUE; 245 } 246 return 0; 247 } 248 249 block=trie->index[c>>UTRIE_SHIFT]; 250 if(pInBlockZero!=NULL) { 251 *pInBlockZero= (UBool)(block==0); 252 } 253 254 return trie->data[ABS(block)+(c&UTRIE_MASK)]; 255 } 256 257 /** 258 * @internal 259 */ 260 static void 261 utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, 262 uint32_t value, uint32_t initialValue, UBool overwrite) { 263 uint32_t *pLimit; 264 265 pLimit=block+limit; 266 block+=start; 267 if(overwrite) { 268 while(block<pLimit) { 269 *block++=value; 270 } 271 } else { 272 while(block<pLimit) { 273 if(*block==initialValue) { 274 *block=value; 275 } 276 ++block; 277 } 278 } 279 } 280 281 U_CAPI UBool U_EXPORT2 282 utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, UBool overwrite) { 283 /* 284 * repeat value in [start..limit[ 285 * mark index values for repeat-data blocks by setting bit 31 of the index values 286 * fill around existing values if any, if(overwrite) 287 */ 288 uint32_t initialValue; 289 int32_t block, rest, repeatBlock; 290 291 /* valid, uncompacted trie and valid indexes? */ 292 if( trie==NULL || trie->isCompacted || 293 (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit 294 ) { 295 return FALSE; 296 } 297 if(start==limit) { 298 return TRUE; /* nothing to do */ 299 } 300 301 initialValue=trie->data[0]; 302 if(start&UTRIE_MASK) { 303 UChar32 nextStart; 304 305 /* set partial block at [start..following block boundary[ */ 306 block=utrie_getDataBlock(trie, start); 307 if(block<0) { 308 return FALSE; 309 } 310 311 nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; 312 if(nextStart<=limit) { 313 utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK_LENGTH, 314 value, initialValue, overwrite); 315 start=nextStart; 316 } else { 317 utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK, 318 value, initialValue, overwrite); 319 return TRUE; 320 } 321 } 322 323 /* number of positions in the last, partial block */ 324 rest=limit&UTRIE_MASK; 325 326 /* round down limit to a block boundary */ 327 limit&=~UTRIE_MASK; 328 329 /* iterate over all-value blocks */ 330 if(value==initialValue) { 331 repeatBlock=0; 332 } else { 333 repeatBlock=-1; 334 } 335 while(start<limit) { 336 /* get index value */ 337 block=trie->index[start>>UTRIE_SHIFT]; 338 if(block>0) { 339 /* already allocated, fill in value */ 340 utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, overwrite); 341 } else if(trie->data[-block]!=value && (block==0 || overwrite)) { 342 /* set the repeatBlock instead of the current block 0 or range block */ 343 if(repeatBlock>=0) { 344 trie->index[start>>UTRIE_SHIFT]=-repeatBlock; 345 } else { 346 /* create and set and fill the repeatBlock */ 347 repeatBlock=utrie_getDataBlock(trie, start); 348 if(repeatBlock<0) { 349 return FALSE; 350 } 351 352 /* set the negative block number to indicate that it is a repeat block */ 353 trie->index[start>>UTRIE_SHIFT]=-repeatBlock; 354 utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENGTH, value, initialValue, TRUE); 355 } 356 } 357 358 start+=UTRIE_DATA_BLOCK_LENGTH; 359 } 360 361 if(rest>0) { 362 /* set partial block at [last block boundary..limit[ */ 363 block=utrie_getDataBlock(trie, start); 364 if(block<0) { 365 return FALSE; 366 } 367 368 utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrite); 369 } 370 371 return TRUE; 372 } 373 374 static int32_t 375 _findSameIndexBlock(const int32_t *idx, int32_t indexLength, 376 int32_t otherBlock) { 377 int32_t block, i; 378 379 for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_BLOCK_COUNT) { 380 for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { 381 if(idx[block+i]!=idx[otherBlock+i]) { 382 break; 383 } 384 } 385 if(i==UTRIE_SURROGATE_BLOCK_COUNT) { 386 return block; 387 } 388 } 389 return indexLength; 390 } 391 392 /* 393 * Fold the normalization data for supplementary code points into 394 * a compact area on top of the BMP-part of the trie index, 395 * with the lead surrogates indexing this compact area. 396 * 397 * Duplicate the index values for lead surrogates: 398 * From inside the BMP area, where some may be overridden with folded values, 399 * to just after the BMP area, where they can be retrieved for 400 * code point lookups. 401 */ 402 static void 403 utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *pErrorCode) { 404 int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; 405 int32_t *idx; 406 uint32_t value; 407 UChar32 c; 408 int32_t indexLength, block; 409 #ifdef UTRIE_DEBUG 410 int countLeadCUWithData=0; 411 #endif 412 413 idx=trie->index; 414 415 /* copy the lead surrogate indexes into a temporary array */ 416 uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_COUNT); 417 418 /* 419 * set all values for lead surrogate code *units* to leadUnitValue 420 * so that, by default, runtime lookups will find no data for associated 421 * supplementary code points, unless there is data for such code points 422 * which will result in a non-zero folding value below that is set for 423 * the respective lead units 424 * 425 * the above saved the indexes for surrogate code *points* 426 * fill the indexes with simplified code from utrie_setRange32() 427 */ 428 if(trie->leadUnitValue==trie->data[0]) { 429 block=0; /* leadUnitValue==initialValue, use all-initial-value block */ 430 } else { 431 /* create and fill the repeatBlock */ 432 block=utrie_allocDataBlock(trie); 433 if(block<0) { 434 /* data table overflow */ 435 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; 436 return; 437 } 438 utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->leadUnitValue, trie->data[0], TRUE); 439 block=-block; /* negative block number to indicate that it is a repeat block */ 440 } 441 for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { 442 trie->index[c]=block; 443 } 444 445 /* 446 * Fold significant index values into the area just after the BMP indexes. 447 * In case the first lead surrogate has significant data, 448 * its index block must be used first (in which case the folding is a no-op). 449 * Later all folded index blocks are moved up one to insert the copied 450 * lead surrogate indexes. 451 */ 452 indexLength=UTRIE_BMP_INDEX_LENGTH; 453 454 /* search for any index (stage 1) entries for supplementary code points */ 455 for(c=0x10000; c<0x110000;) { 456 if(idx[c>>UTRIE_SHIFT]!=0) { 457 /* there is data, treat the full block for a lead surrogate */ 458 c&=~0x3ff; 459 460 #ifdef UTRIE_DEBUG 461 ++countLeadCUWithData; 462 /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(0xd7c0+(c>>10))); */ 463 #endif 464 465 /* is there an identical index block? */ 466 block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); 467 468 /* 469 * get a folded value for [c..c+0x400[ and, 470 * if different from the value for the lead surrogate code point, 471 * set it for the lead surrogate code unit 472 */ 473 value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); 474 if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { 475 if(!utrie_set32(trie, U16_LEAD(c), value)) { 476 /* data table overflow */ 477 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; 478 return; 479 } 480 481 /* if we did not find an identical index block... */ 482 if(block==indexLength) { 483 /* move the actual index (stage 1) entries from the supplementary position to the new one */ 484 uprv_memmove(idx+indexLength, 485 idx+(c>>UTRIE_SHIFT), 486 4*UTRIE_SURROGATE_BLOCK_COUNT); 487 indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; 488 } 489 } 490 c+=0x400; 491 } else { 492 c+=UTRIE_DATA_BLOCK_LENGTH; 493 } 494 } 495 #ifdef UTRIE_DEBUG 496 if(countLeadCUWithData>0) { 497 printf("supplementary data for %d lead surrogates\n", countLeadCUWithData); 498 } 499 #endif 500 501 /* 502 * index array overflow? 503 * This is to guarantee that a folding offset is of the form 504 * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. 505 * If the index is too large, then n>=1024 and more than 10 bits are necessary. 506 * 507 * In fact, it can only ever become n==1024 with completely unfoldable data and 508 * the additional block of duplicated values for lead surrogates. 509 */ 510 if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { 511 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 512 return; 513 } 514 515 /* 516 * make space for the lead surrogate index block and 517 * insert it between the BMP indexes and the folded ones 518 */ 519 uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, 520 idx+UTRIE_BMP_INDEX_LENGTH, 521 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); 522 uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, 523 leadIndexes, 524 4*UTRIE_SURROGATE_BLOCK_COUNT); 525 indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; 526 527 #ifdef UTRIE_DEBUG 528 printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", 529 UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); 530 #endif 531 532 trie->indexLength=indexLength; 533 } 534 535 /* 536 * Set a value in the trie index map to indicate which data block 537 * is referenced and which one is not. 538 * utrie_compact() will remove data blocks that are not used at all. 539 * Set 540 * - 0 if it is used 541 * - -1 if it is not used 542 */ 543 static void 544 _findUnusedBlocks(UNewTrie *trie) { 545 int32_t i; 546 547 /* fill the entire map with "not used" */ 548 uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)*4); 549 550 /* mark each block that _is_ used with 0 */ 551 for(i=0; i<trie->indexLength; ++i) { 552 trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; 553 } 554 555 /* never move the all-initial-value block 0 */ 556 trie->map[0]=0; 557 } 558 559 static int32_t 560 _findSameDataBlock(const uint32_t *data, int32_t dataLength, 561 int32_t otherBlock, int32_t step) { 562 int32_t block; 563 564 /* ensure that we do not even partially get past dataLength */ 565 dataLength-=UTRIE_DATA_BLOCK_LENGTH; 566 567 for(block=0; block<=dataLength; block+=step) { 568 if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { 569 return block; 570 } 571 } 572 return -1; 573 } 574 575 /* 576 * Compact a folded build-time trie. 577 * 578 * The compaction 579 * - removes blocks that are identical with earlier ones 580 * - overlaps adjacent blocks as much as possible (if overlap==TRUE) 581 * - moves blocks in steps of the data granularity 582 * - moves and overlaps blocks that overlap with multiple values in the overlap region 583 * 584 * It does not 585 * - try to move and overlap blocks that are not already adjacent 586 */ 587 static void 588 utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { 589 int32_t i, start, newStart, overlapStart; 590 591 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { 592 return; 593 } 594 595 /* valid, uncompacted trie? */ 596 if(trie==NULL) { 597 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 598 return; 599 } 600 if(trie->isCompacted) { 601 return; /* nothing left to do */ 602 } 603 604 /* compaction */ 605 606 /* initialize the index map with "block is used/unused" flags */ 607 _findUnusedBlocks(trie); 608 609 /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data */ 610 if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { 611 overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; 612 } else { 613 overlapStart=UTRIE_DATA_BLOCK_LENGTH; 614 } 615 616 newStart=UTRIE_DATA_BLOCK_LENGTH; 617 for(start=newStart; start<trie->dataLength;) { 618 /* 619 * start: index of first entry of current block 620 * newStart: index where the current block is to be moved 621 * (right after current end of already-compacted data) 622 */ 623 624 /* skip blocks that are not used */ 625 if(trie->map[start>>UTRIE_SHIFT]<0) { 626 /* advance start to the next block */ 627 start+=UTRIE_DATA_BLOCK_LENGTH; 628 629 /* leave newStart with the previous block! */ 630 continue; 631 } 632 633 /* search for an identical block */ 634 if( start>=overlapStart && 635 (i=_findSameDataBlock(trie->data, newStart, start, 636 overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_LENGTH)) 637 >=0 638 ) { 639 /* found an identical block, set the other block's index value for the current block */ 640 trie->map[start>>UTRIE_SHIFT]=i; 641 642 /* advance start to the next block */ 643 start+=UTRIE_DATA_BLOCK_LENGTH; 644 645 /* leave newStart with the previous block! */ 646 continue; 647 } 648 649 /* see if the beginning of this block can be overlapped with the end of the previous block */ 650 if(overlap && start>=overlapStart) { 651 /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ 652 for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; 653 i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start, i); 654 i-=UTRIE_DATA_GRANULARITY) {} 655 } else { 656 i=0; 657 } 658 659 if(i>0) { 660 /* some overlap */ 661 trie->map[start>>UTRIE_SHIFT]=newStart-i; 662 663 /* move the non-overlapping indexes to their new positions */ 664 start+=i; 665 for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { 666 trie->data[newStart++]=trie->data[start++]; 667 } 668 } else if(newStart<start) { 669 /* no overlap, just move the indexes to their new positions */ 670 trie->map[start>>UTRIE_SHIFT]=newStart; 671 for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { 672 trie->data[newStart++]=trie->data[start++]; 673 } 674 } else /* no overlap && newStart==start */ { 675 trie->map[start>>UTRIE_SHIFT]=start; 676 newStart+=UTRIE_DATA_BLOCK_LENGTH; 677 start=newStart; 678 } 679 } 680 681 /* now adjust the index (stage 1) table */ 682 for(i=0; i<trie->indexLength; ++i) { 683 trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; 684 } 685 686 #ifdef UTRIE_DEBUG 687 /* we saved some space */ 688 printf("compacting trie: count of 32-bit words %lu->%lu\n", 689 (long)trie->dataLength, (long)newStart); 690 #endif 691 692 trie->dataLength=newStart; 693 } 694 695 /* serialization ------------------------------------------------------------ */ 696 697 /* 698 * Default function for the folding value: 699 * Just store the offset (16 bits) if there is any non-initial-value entry. 700 * 701 * The offset parameter is never 0. 702 * Returning the offset itself is safe for UTRIE_SHIFT>=5 because 703 * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 704 * which fits into 16-bit trie values; 705 * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. 706 * 707 * Theoretically, it would be safer for all possible UTRIE_SHIFT including 708 * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS 709 * which would always result in a value of 0x40..0x43f 710 * (start/end 1k blocks of supplementary Unicode code points). 711 * However, this would be uglier, and would not work for some existing 712 * binary data file formats. 713 * 714 * Also, we do not plan to change UTRIE_SHIFT because it would change binary 715 * data file formats, and we would probably not make it smaller because of 716 * the then even larger BMP index length even for empty tries. 717 */ 718 static uint32_t U_CALLCONV 719 defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { 720 uint32_t value, initialValue; 721 UChar32 limit; 722 UBool inBlockZero; 723 724 initialValue=trie->data[0]; 725 limit=start+0x400; 726 while(start<limit) { 727 value=utrie_get32(trie, start, &inBlockZero); 728 if(inBlockZero) { 729 start+=UTRIE_DATA_BLOCK_LENGTH; 730 } else if(value!=initialValue) { 731 return (uint32_t)offset; 732 } else { 733 ++start; 734 } 735 } 736 return 0; 737 } 738 739 U_CAPI int32_t U_EXPORT2 740 utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, 741 UNewTrieGetFoldedValue *getFoldedValue, 742 UBool reduceTo16Bits, 743 UErrorCode *pErrorCode) { 744 UTrieHeader *header; 745 uint32_t *p; 746 uint16_t *dest16; 747 int32_t i, length; 748 uint8_t* data = NULL; 749 750 /* argument check */ 751 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { 752 return 0; 753 } 754 755 if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { 756 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; 757 return 0; 758 } 759 if(getFoldedValue==NULL) { 760 getFoldedValue=defaultGetFoldedValue; 761 } 762 763 data = (uint8_t*)dt; 764 /* fold and compact if necessary, also checks that indexLength is within limits */ 765 if(!trie->isCompacted) { 766 /* compact once without overlap to improve folding */ 767 utrie_compact(trie, FALSE, pErrorCode); 768 769 /* fold the supplementary part of the index array */ 770 utrie_fold(trie, getFoldedValue, pErrorCode); 771 772 /* compact again with overlap for minimum data array length */ 773 utrie_compact(trie, TRUE, pErrorCode); 774 775 trie->isCompacted=TRUE; 776 if(U_FAILURE(*pErrorCode)) { 777 return 0; 778 } 779 } 780 781 /* is dataLength within limits? */ 782 if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLength) >= UTRIE_MAX_DATA_LENGTH) { 783 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 784 } 785 786 length=sizeof(UTrieHeader)+2*trie->indexLength; 787 if(reduceTo16Bits) { 788 length+=2*trie->dataLength; 789 } else { 790 length+=4*trie->dataLength; 791 } 792 793 if(length>capacity) { 794 return length; /* preflighting */ 795 } 796 797 #ifdef UTRIE_DEBUG 798 printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n", 799 (long)trie->indexLength, (long)trie->dataLength, (long)length); 800 #endif 801 802 /* set the header fields */ 803 header=(UTrieHeader *)data; 804 data+=sizeof(UTrieHeader); 805 806 header->signature=0x54726965; /* "Trie" */ 807 header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT); 808 809 if(!reduceTo16Bits) { 810 header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; 811 } 812 if(trie->isLatin1Linear) { 813 header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; 814 } 815 816 header->indexLength=trie->indexLength; 817 header->dataLength=trie->dataLength; 818 819 /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ 820 if(reduceTo16Bits) { 821 /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after adding indexLength */ 822 p=(uint32_t *)trie->index; 823 dest16=(uint16_t *)data; 824 for(i=trie->indexLength; i>0; --i) { 825 *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); 826 } 827 828 /* write 16-bit data values */ 829 p=trie->data; 830 for(i=trie->dataLength; i>0; --i) { 831 *dest16++=(uint16_t)*p++; 832 } 833 } else { 834 /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ 835 p=(uint32_t *)trie->index; 836 dest16=(uint16_t *)data; 837 for(i=trie->indexLength; i>0; --i) { 838 *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); 839 } 840 841 /* write 32-bit data values */ 842 uprv_memcpy(dest16, trie->data, 4*trie->dataLength); 843 } 844 845 return length; 846 } 847 848 /* inverse to defaultGetFoldedValue() */ 849 U_CAPI int32_t U_EXPORT2 850 utrie_defaultGetFoldingOffset(uint32_t data) { 851 return (int32_t)data; 852 } 853 854 U_CAPI int32_t U_EXPORT2 855 utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pErrorCode) { 856 const UTrieHeader *header; 857 const uint16_t *p16; 858 uint32_t options; 859 860 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { 861 return -1; 862 } 863 864 /* enough data for a trie header? */ 865 if(length<sizeof(UTrieHeader)) { 866 *pErrorCode=U_INVALID_FORMAT_ERROR; 867 return -1; 868 } 869 870 /* check the signature */ 871 header=(const UTrieHeader *)data; 872 if(header->signature!=0x54726965) { 873 *pErrorCode=U_INVALID_FORMAT_ERROR; 874 return -1; 875 } 876 877 /* get the options and check the shift values */ 878 options=header->options; 879 if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || 880 ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT 881 ) { 882 *pErrorCode=U_INVALID_FORMAT_ERROR; 883 return -1; 884 } 885 trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); 886 887 /* get the length values */ 888 trie->indexLength=header->indexLength; 889 trie->dataLength=header->dataLength; 890 891 length-=(int32_t)sizeof(UTrieHeader); 892 893 /* enough data for the index? */ 894 if(length<2*trie->indexLength) { 895 *pErrorCode=U_INVALID_FORMAT_ERROR; 896 return -1; 897 } 898 p16=(const uint16_t *)(header+1); 899 trie->index=p16; 900 p16+=trie->indexLength; 901 length-=2*trie->indexLength; 902 903 /* get the data */ 904 if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { 905 if(length<4*trie->dataLength) { 906 *pErrorCode=U_INVALID_FORMAT_ERROR; 907 return -1; 908 } 909 trie->data32=(const uint32_t *)p16; 910 trie->initialValue=trie->data32[0]; 911 length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLength; 912 } else { 913 if(length<2*trie->dataLength) { 914 *pErrorCode=U_INVALID_FORMAT_ERROR; 915 return -1; 916 } 917 918 /* the "data16" data is used via the index pointer */ 919 trie->data32=NULL; 920 trie->initialValue=trie->index[trie->indexLength]; 921 length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLength; 922 } 923 924 trie->getFoldingOffset=utrie_defaultGetFoldingOffset; 925 926 return length; 927 } 928 929 U_CAPI int32_t U_EXPORT2 930 utrie_unserializeDummy(UTrie *trie, 931 void *data, int32_t length, 932 uint32_t initialValue, uint32_t leadUnitValue, 933 UBool make16BitTrie, 934 UErrorCode *pErrorCode) { 935 uint16_t *p16; 936 int32_t actualLength, latin1Length, i, limit; 937 uint16_t block; 938 939 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { 940 return -1; 941 } 942 943 /* calculate the actual size of the dummy trie data */ 944 945 /* max(Latin-1, block 0) */ 946 latin1Length= UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH; 947 948 trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; 949 trie->dataLength=latin1Length; 950 if(leadUnitValue!=initialValue) { 951 trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; 952 } 953 954 actualLength=trie->indexLength*2; 955 if(make16BitTrie) { 956 actualLength+=trie->dataLength*2; 957 } else { 958 actualLength+=trie->dataLength*4; 959 } 960 961 /* enough space for the dummy trie? */ 962 if(length<actualLength) { 963 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; 964 return actualLength; 965 } 966 967 trie->isLatin1Linear=TRUE; 968 trie->initialValue=initialValue; 969 970 /* fill the index and data arrays */ 971 p16=(uint16_t *)data; 972 trie->index=p16; 973 974 if(make16BitTrie) { 975 /* indexes to block 0 */ 976 block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); 977 limit=trie->indexLength; 978 for(i=0; i<limit; ++i) { 979 p16[i]=block; 980 } 981 982 if(leadUnitValue!=initialValue) { 983 /* indexes for lead surrogate code units to the block after Latin-1 */ 984 block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); 985 i=0xd800>>UTRIE_SHIFT; 986 limit=0xdc00>>UTRIE_SHIFT; 987 for(; i<limit; ++i) { 988 p16[i]=block; 989 } 990 } 991 992 trie->data32=NULL; 993 994 /* Latin-1 data */ 995 p16+=trie->indexLength; 996 for(i=0; i<latin1Length; ++i) { 997 p16[i]=(uint16_t)initialValue; 998 } 999 1000 /* data for lead surrogate code units */ 1001 if(leadUnitValue!=initialValue) { 1002 limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; 1003 for(/* i=latin1Length */; i<limit; ++i) { 1004 p16[i]=(uint16_t)leadUnitValue; 1005 } 1006 } 1007 } else { 1008 uint32_t *p32; 1009 1010 /* indexes to block 0 */ 1011 uprv_memset(p16, 0, trie->indexLength*2); 1012 1013 if(leadUnitValue!=initialValue) { 1014 /* indexes for lead surrogate code units to the block after Latin-1 */ 1015 block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); 1016 i=0xd800>>UTRIE_SHIFT; 1017 limit=0xdc00>>UTRIE_SHIFT; 1018 for(; i<limit; ++i) { 1019 p16[i]=block; 1020 } 1021 } 1022 1023 trie->data32=p32=(uint32_t *)(p16+trie->indexLength); 1024 1025 /* Latin-1 data */ 1026 for(i=0; i<latin1Length; ++i) { 1027 p32[i]=initialValue; 1028 } 1029 1030 /* data for lead surrogate code units */ 1031 if(leadUnitValue!=initialValue) { 1032 limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; 1033 for(/* i=latin1Length */; i<limit; ++i) { 1034 p32[i]=leadUnitValue; 1035 } 1036 } 1037 } 1038 1039 trie->getFoldingOffset=utrie_defaultGetFoldingOffset; 1040 1041 return actualLength; 1042 } 1043 1044 /* enumeration -------------------------------------------------------------- */ 1045 1046 /* default UTrieEnumValue() returns the input value itself */ 1047 static uint32_t U_CALLCONV 1048 enumSameValue(const void *context, uint32_t value) { 1049 return value; 1050 } 1051 1052 /** 1053 * Enumerate all ranges of code points with the same relevant values. 1054 * The values are transformed from the raw trie entries by the enumValue function. 1055 */ 1056 U_CAPI void U_EXPORT2 1057 utrie_enum(const UTrie *trie, 1058 UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *context) { 1059 const uint32_t *data32; 1060 const uint16_t *idx; 1061 1062 uint32_t value, prevValue, initialValue; 1063 UChar32 c, prev; 1064 int32_t l, i, j, block, prevBlock, nullBlock, offset; 1065 1066 /* check arguments */ 1067 if(trie==NULL || trie->index==NULL || enumRange==NULL) { 1068 return; 1069 } 1070 if(enumValue==NULL) { 1071 enumValue=enumSameValue; 1072 } 1073 1074 idx=trie->index; 1075 data32=trie->data32; 1076 1077 /* get the enumeration value that corresponds to an initial-value trie data entry */ 1078 initialValue=enumValue(context, trie->initialValue); 1079 1080 if(data32==NULL) { 1081 nullBlock=trie->indexLength; 1082 } else { 1083 nullBlock=0; 1084 } 1085 1086 /* set variables for previous range */ 1087 prevBlock=nullBlock; 1088 prev=0; 1089 prevValue=initialValue; 1090 1091 /* enumerate BMP - the main loop enumerates data blocks */ 1092 for(i=0, c=0; c<=0xffff; ++i) { 1093 if(c==0xd800) { 1094 /* skip lead surrogate code _units_, go to lead surr. code _points_ */ 1095 i=UTRIE_BMP_INDEX_LENGTH; 1096 } else if(c==0xdc00) { 1097 /* go back to regular BMP code points */ 1098 i=c>>UTRIE_SHIFT; 1099 } 1100 1101 block=idx[i]<<UTRIE_INDEX_SHIFT; 1102 if(block==prevBlock) { 1103 /* the block is the same as the previous one, and filled with value */ 1104 c+=UTRIE_DATA_BLOCK_LENGTH; 1105 } else if(block==nullBlock) { 1106 /* this is the all-initial-value block */ 1107 if(prevValue!=initialValue) { 1108 if(prev<c) { 1109 if(!enumRange(context, prev, c, prevValue)) { 1110 return; 1111 } 1112 } 1113 prevBlock=nullBlock; 1114 prev=c; 1115 prevValue=initialValue; 1116 } 1117 c+=UTRIE_DATA_BLOCK_LENGTH; 1118 } else { 1119 prevBlock=block; 1120 for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { 1121 value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); 1122 if(value!=prevValue) { 1123 if(prev<c) { 1124 if(!enumRange(context, prev, c, prevValue)) { 1125 return; 1126 } 1127 } 1128 if(j>0) { 1129 /* the block is not filled with all the same value */ 1130 prevBlock=-1; 1131 } 1132 prev=c; 1133 prevValue=value; 1134 } 1135 ++c; 1136 } 1137 } 1138 } 1139 1140 /* enumerate supplementary code points */ 1141 for(l=0xd800; l<0xdc00;) { 1142 /* lead surrogate access */ 1143 offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; 1144 if(offset==nullBlock) { 1145 /* no entries for a whole block of lead surrogates */ 1146 if(prevValue!=initialValue) { 1147 if(prev<c) { 1148 if(!enumRange(context, prev, c, prevValue)) { 1149 return; 1150 } 1151 } 1152 prevBlock=nullBlock; 1153 prev=c; 1154 prevValue=initialValue; 1155 } 1156 1157 l+=UTRIE_DATA_BLOCK_LENGTH; 1158 c+=UTRIE_DATA_BLOCK_LENGTH<<10; 1159 continue; 1160 } 1161 1162 value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRIE_MASK)]; 1163 1164 /* enumerate trail surrogates for this lead surrogate */ 1165 offset=trie->getFoldingOffset(value); 1166 if(offset<=0) { 1167 /* no data for this lead surrogate */ 1168 if(prevValue!=initialValue) { 1169 if(prev<c) { 1170 if(!enumRange(context, prev, c, prevValue)) { 1171 return; 1172 } 1173 } 1174 prevBlock=nullBlock; 1175 prev=c; 1176 prevValue=initialValue; 1177 } 1178 1179 /* nothing else to do for the supplementary code points for this lead surrogate */ 1180 c+=0x400; 1181 } else { 1182 /* enumerate code points for this lead surrogate */ 1183 i=offset; 1184 offset+=UTRIE_SURROGATE_BLOCK_COUNT; 1185 do { 1186 /* copy of most of the body of the BMP loop */ 1187 block=idx[i]<<UTRIE_INDEX_SHIFT; 1188 if(block==prevBlock) { 1189 /* the block is the same as the previous one, and filled with value */ 1190 c+=UTRIE_DATA_BLOCK_LENGTH; 1191 } else if(block==nullBlock) { 1192 /* this is the all-initial-value block */ 1193 if(prevValue!=initialValue) { 1194 if(prev<c) { 1195 if(!enumRange(context, prev, c, prevValue)) { 1196 return; 1197 } 1198 } 1199 prevBlock=nullBlock; 1200 prev=c; 1201 prevValue=initialValue; 1202 } 1203 c+=UTRIE_DATA_BLOCK_LENGTH; 1204 } else { 1205 prevBlock=block; 1206 for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { 1207 value=enumValue(context, data32!=NULL ? data32[block+j] : idx[block+j]); 1208 if(value!=prevValue) { 1209 if(prev<c) { 1210 if(!enumRange(context, prev, c, prevValue)) { 1211 return; 1212 } 1213 } 1214 if(j>0) { 1215 /* the block is not filled with all the same value */ 1216 prevBlock=-1; 1217 } 1218 prev=c; 1219 prevValue=value; 1220 } 1221 ++c; 1222 } 1223 } 1224 } while(++i<offset); 1225 } 1226 1227 ++l; 1228 } 1229 1230 /* deliver last range */ 1231 enumRange(context, prev, c, prevValue); 1232 } 1233