Home | History | Annotate | Download | only in utility
      1 /*
      2  * http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
      3  * Copyright Takuya OOURA, 1996-2001
      4  *
      5  * You may use, copy, modify and distribute this code for any purpose (include
      6  * commercial use) and without fee. Please refer to this package when you modify
      7  * this code.
      8  *
      9  * Changes:
     10  * Trivial type modifications by the WebRTC authors.
     11  */
     12 
     13 /*
     14 Fast Fourier/Cosine/Sine Transform
     15     dimension   :one
     16     data length :power of 2
     17     decimation  :frequency
     18     radix       :4, 2
     19     data        :inplace
     20     table       :use
     21 functions
     22     cdft: Complex Discrete Fourier Transform
     23     rdft: Real Discrete Fourier Transform
     24     ddct: Discrete Cosine Transform
     25     ddst: Discrete Sine Transform
     26     dfct: Cosine Transform of RDFT (Real Symmetric DFT)
     27     dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)
     28 function prototypes
     29     void cdft(int, int, float *, int *, float *);
     30     void rdft(int, int, float *, int *, float *);
     31     void ddct(int, int, float *, int *, float *);
     32     void ddst(int, int, float *, int *, float *);
     33     void dfct(int, float *, float *, int *, float *);
     34     void dfst(int, float *, float *, int *, float *);
     35 
     36 
     37 -------- Complex DFT (Discrete Fourier Transform) --------
     38     [definition]
     39         <case1>
     40             X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n
     41         <case2>
     42             X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n
     43         (notes: sum_j=0^n-1 is a summation from j=0 to n-1)
     44     [usage]
     45         <case1>
     46             ip[0] = 0; // first time only
     47             cdft(2*n, 1, a, ip, w);
     48         <case2>
     49             ip[0] = 0; // first time only
     50             cdft(2*n, -1, a, ip, w);
     51     [parameters]
     52         2*n            :data length (int)
     53                         n >= 1, n = power of 2
     54         a[0...2*n-1]   :input/output data (float *)
     55                         input data
     56                             a[2*j] = Re(x[j]),
     57                             a[2*j+1] = Im(x[j]), 0<=j<n
     58                         output data
     59                             a[2*k] = Re(X[k]),
     60                             a[2*k+1] = Im(X[k]), 0<=k<n
     61         ip[0...*]      :work area for bit reversal (int *)
     62                         length of ip >= 2+sqrt(n)
     63                         strictly,
     64                         length of ip >=
     65                             2+(1<<(int)(log(n+0.5)/log(2))/2).
     66                         ip[0],ip[1] are pointers of the cos/sin table.
     67         w[0...n/2-1]   :cos/sin table (float *)
     68                         w[],ip[] are initialized if ip[0] == 0.
     69     [remark]
     70         Inverse of
     71             cdft(2*n, -1, a, ip, w);
     72         is
     73             cdft(2*n, 1, a, ip, w);
     74             for (j = 0; j <= 2 * n - 1; j++) {
     75                 a[j] *= 1.0 / n;
     76             }
     77         .
     78 
     79 
     80 -------- Real DFT / Inverse of Real DFT --------
     81     [definition]
     82         <case1> RDFT
     83             R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2
     84             I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2
     85         <case2> IRDFT (excluding scale)
     86             a[k] = (R[0] + R[n/2]*cos(pi*k))/2 +
     87                    sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +
     88                    sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n
     89     [usage]
     90         <case1>
     91             ip[0] = 0; // first time only
     92             rdft(n, 1, a, ip, w);
     93         <case2>
     94             ip[0] = 0; // first time only
     95             rdft(n, -1, a, ip, w);
     96     [parameters]
     97         n              :data length (int)
     98                         n >= 2, n = power of 2
     99         a[0...n-1]     :input/output data (float *)
    100                         <case1>
    101                             output data
    102                                 a[2*k] = R[k], 0<=k<n/2
    103                                 a[2*k+1] = I[k], 0<k<n/2
    104                                 a[1] = R[n/2]
    105                         <case2>
    106                             input data
    107                                 a[2*j] = R[j], 0<=j<n/2
    108                                 a[2*j+1] = I[j], 0<j<n/2
    109                                 a[1] = R[n/2]
    110         ip[0...*]      :work area for bit reversal (int *)
    111                         length of ip >= 2+sqrt(n/2)
    112                         strictly,
    113                         length of ip >=
    114                             2+(1<<(int)(log(n/2+0.5)/log(2))/2).
    115                         ip[0],ip[1] are pointers of the cos/sin table.
    116         w[0...n/2-1]   :cos/sin table (float *)
    117                         w[],ip[] are initialized if ip[0] == 0.
    118     [remark]
    119         Inverse of
    120             rdft(n, 1, a, ip, w);
    121         is
    122             rdft(n, -1, a, ip, w);
    123             for (j = 0; j <= n - 1; j++) {
    124                 a[j] *= 2.0 / n;
    125             }
    126         .
    127 
    128 
    129 -------- DCT (Discrete Cosine Transform) / Inverse of DCT --------
    130     [definition]
    131         <case1> IDCT (excluding scale)
    132             C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n
    133         <case2> DCT
    134             C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n
    135     [usage]
    136         <case1>
    137             ip[0] = 0; // first time only
    138             ddct(n, 1, a, ip, w);
    139         <case2>
    140             ip[0] = 0; // first time only
    141             ddct(n, -1, a, ip, w);
    142     [parameters]
    143         n              :data length (int)
    144                         n >= 2, n = power of 2
    145         a[0...n-1]     :input/output data (float *)
    146                         output data
    147                             a[k] = C[k], 0<=k<n
    148         ip[0...*]      :work area for bit reversal (int *)
    149                         length of ip >= 2+sqrt(n/2)
    150                         strictly,
    151                         length of ip >=
    152                             2+(1<<(int)(log(n/2+0.5)/log(2))/2).
    153                         ip[0],ip[1] are pointers of the cos/sin table.
    154         w[0...n*5/4-1] :cos/sin table (float *)
    155                         w[],ip[] are initialized if ip[0] == 0.
    156     [remark]
    157         Inverse of
    158             ddct(n, -1, a, ip, w);
    159         is
    160             a[0] *= 0.5;
    161             ddct(n, 1, a, ip, w);
    162             for (j = 0; j <= n - 1; j++) {
    163                 a[j] *= 2.0 / n;
    164             }
    165         .
    166 
    167 
    168 -------- DST (Discrete Sine Transform) / Inverse of DST --------
    169     [definition]
    170         <case1> IDST (excluding scale)
    171             S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n
    172         <case2> DST
    173             S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n
    174     [usage]
    175         <case1>
    176             ip[0] = 0; // first time only
    177             ddst(n, 1, a, ip, w);
    178         <case2>
    179             ip[0] = 0; // first time only
    180             ddst(n, -1, a, ip, w);
    181     [parameters]
    182         n              :data length (int)
    183                         n >= 2, n = power of 2
    184         a[0...n-1]     :input/output data (float *)
    185                         <case1>
    186                             input data
    187                                 a[j] = A[j], 0<j<n
    188                                 a[0] = A[n]
    189                             output data
    190                                 a[k] = S[k], 0<=k<n
    191                         <case2>
    192                             output data
    193                                 a[k] = S[k], 0<k<n
    194                                 a[0] = S[n]
    195         ip[0...*]      :work area for bit reversal (int *)
    196                         length of ip >= 2+sqrt(n/2)
    197                         strictly,
    198                         length of ip >=
    199                             2+(1<<(int)(log(n/2+0.5)/log(2))/2).
    200                         ip[0],ip[1] are pointers of the cos/sin table.
    201         w[0...n*5/4-1] :cos/sin table (float *)
    202                         w[],ip[] are initialized if ip[0] == 0.
    203     [remark]
    204         Inverse of
    205             ddst(n, -1, a, ip, w);
    206         is
    207             a[0] *= 0.5;
    208             ddst(n, 1, a, ip, w);
    209             for (j = 0; j <= n - 1; j++) {
    210                 a[j] *= 2.0 / n;
    211             }
    212         .
    213 
    214 
    215 -------- Cosine Transform of RDFT (Real Symmetric DFT) --------
    216     [definition]
    217         C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n
    218     [usage]
    219         ip[0] = 0; // first time only
    220         dfct(n, a, t, ip, w);
    221     [parameters]
    222         n              :data length - 1 (int)
    223                         n >= 2, n = power of 2
    224         a[0...n]       :input/output data (float *)
    225                         output data
    226                             a[k] = C[k], 0<=k<=n
    227         t[0...n/2]     :work area (float *)
    228         ip[0...*]      :work area for bit reversal (int *)
    229                         length of ip >= 2+sqrt(n/4)
    230                         strictly,
    231                         length of ip >=
    232                             2+(1<<(int)(log(n/4+0.5)/log(2))/2).
    233                         ip[0],ip[1] are pointers of the cos/sin table.
    234         w[0...n*5/8-1] :cos/sin table (float *)
    235                         w[],ip[] are initialized if ip[0] == 0.
    236     [remark]
    237         Inverse of
    238             a[0] *= 0.5;
    239             a[n] *= 0.5;
    240             dfct(n, a, t, ip, w);
    241         is
    242             a[0] *= 0.5;
    243             a[n] *= 0.5;
    244             dfct(n, a, t, ip, w);
    245             for (j = 0; j <= n; j++) {
    246                 a[j] *= 2.0 / n;
    247             }
    248         .
    249 
    250 
    251 -------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------
    252     [definition]
    253         S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n
    254     [usage]
    255         ip[0] = 0; // first time only
    256         dfst(n, a, t, ip, w);
    257     [parameters]
    258         n              :data length + 1 (int)
    259                         n >= 2, n = power of 2
    260         a[0...n-1]     :input/output data (float *)
    261                         output data
    262                             a[k] = S[k], 0<k<n
    263                         (a[0] is used for work area)
    264         t[0...n/2-1]   :work area (float *)
    265         ip[0...*]      :work area for bit reversal (int *)
    266                         length of ip >= 2+sqrt(n/4)
    267                         strictly,
    268                         length of ip >=
    269                             2+(1<<(int)(log(n/4+0.5)/log(2))/2).
    270                         ip[0],ip[1] are pointers of the cos/sin table.
    271         w[0...n*5/8-1] :cos/sin table (float *)
    272                         w[],ip[] are initialized if ip[0] == 0.
    273     [remark]
    274         Inverse of
    275             dfst(n, a, t, ip, w);
    276         is
    277             dfst(n, a, t, ip, w);
    278             for (j = 1; j <= n - 1; j++) {
    279                 a[j] *= 2.0 / n;
    280             }
    281         .
    282 
    283 
    284 Appendix :
    285     The cos/sin table is recalculated when the larger table required.
    286     w[] and ip[] are compatible with all routines.
    287 */
    288 
    289 void cdft(int n, int isgn, float *a, int *ip, float *w)
    290 {
    291     void makewt(int nw, int *ip, float *w);
    292     void bitrv2(int n, int *ip, float *a);
    293     void bitrv2conj(int n, int *ip, float *a);
    294     void cftfsub(int n, float *a, float *w);
    295     void cftbsub(int n, float *a, float *w);
    296 
    297     if (n > (ip[0] << 2)) {
    298         makewt(n >> 2, ip, w);
    299     }
    300     if (n > 4) {
    301         if (isgn >= 0) {
    302             bitrv2(n, ip + 2, a);
    303             cftfsub(n, a, w);
    304         } else {
    305             bitrv2conj(n, ip + 2, a);
    306             cftbsub(n, a, w);
    307         }
    308     } else if (n == 4) {
    309         cftfsub(n, a, w);
    310     }
    311 }
    312 
    313 
    314 void rdft(int n, int isgn, float *a, int *ip, float *w)
    315 {
    316     void makewt(int nw, int *ip, float *w);
    317     void makect(int nc, int *ip, float *c);
    318     void bitrv2(int n, int *ip, float *a);
    319     void cftfsub(int n, float *a, float *w);
    320     void cftbsub(int n, float *a, float *w);
    321     void rftfsub(int n, float *a, int nc, float *c);
    322     void rftbsub(int n, float *a, int nc, float *c);
    323     int nw, nc;
    324     float xi;
    325 
    326     nw = ip[0];
    327     if (n > (nw << 2)) {
    328         nw = n >> 2;
    329         makewt(nw, ip, w);
    330     }
    331     nc = ip[1];
    332     if (n > (nc << 2)) {
    333         nc = n >> 2;
    334         makect(nc, ip, w + nw);
    335     }
    336     if (isgn >= 0) {
    337         if (n > 4) {
    338             bitrv2(n, ip + 2, a);
    339             cftfsub(n, a, w);
    340             rftfsub(n, a, nc, w + nw);
    341         } else if (n == 4) {
    342             cftfsub(n, a, w);
    343         }
    344         xi = a[0] - a[1];
    345         a[0] += a[1];
    346         a[1] = xi;
    347     } else {
    348         a[1] = 0.5f * (a[0] - a[1]);
    349         a[0] -= a[1];
    350         if (n > 4) {
    351             rftbsub(n, a, nc, w + nw);
    352             bitrv2(n, ip + 2, a);
    353             cftbsub(n, a, w);
    354         } else if (n == 4) {
    355             cftfsub(n, a, w);
    356         }
    357     }
    358 }
    359 
    360 
    361 void ddct(int n, int isgn, float *a, int *ip, float *w)
    362 {
    363     void makewt(int nw, int *ip, float *w);
    364     void makect(int nc, int *ip, float *c);
    365     void bitrv2(int n, int *ip, float *a);
    366     void cftfsub(int n, float *a, float *w);
    367     void cftbsub(int n, float *a, float *w);
    368     void rftfsub(int n, float *a, int nc, float *c);
    369     void rftbsub(int n, float *a, int nc, float *c);
    370     void dctsub(int n, float *a, int nc, float *c);
    371     int j, nw, nc;
    372     float xr;
    373 
    374     nw = ip[0];
    375     if (n > (nw << 2)) {
    376         nw = n >> 2;
    377         makewt(nw, ip, w);
    378     }
    379     nc = ip[1];
    380     if (n > nc) {
    381         nc = n;
    382         makect(nc, ip, w + nw);
    383     }
    384     if (isgn < 0) {
    385         xr = a[n - 1];
    386         for (j = n - 2; j >= 2; j -= 2) {
    387             a[j + 1] = a[j] - a[j - 1];
    388             a[j] += a[j - 1];
    389         }
    390         a[1] = a[0] - xr;
    391         a[0] += xr;
    392         if (n > 4) {
    393             rftbsub(n, a, nc, w + nw);
    394             bitrv2(n, ip + 2, a);
    395             cftbsub(n, a, w);
    396         } else if (n == 4) {
    397             cftfsub(n, a, w);
    398         }
    399     }
    400     dctsub(n, a, nc, w + nw);
    401     if (isgn >= 0) {
    402         if (n > 4) {
    403             bitrv2(n, ip + 2, a);
    404             cftfsub(n, a, w);
    405             rftfsub(n, a, nc, w + nw);
    406         } else if (n == 4) {
    407             cftfsub(n, a, w);
    408         }
    409         xr = a[0] - a[1];
    410         a[0] += a[1];
    411         for (j = 2; j < n; j += 2) {
    412             a[j - 1] = a[j] - a[j + 1];
    413             a[j] += a[j + 1];
    414         }
    415         a[n - 1] = xr;
    416     }
    417 }
    418 
    419 
    420 void ddst(int n, int isgn, float *a, int *ip, float *w)
    421 {
    422     void makewt(int nw, int *ip, float *w);
    423     void makect(int nc, int *ip, float *c);
    424     void bitrv2(int n, int *ip, float *a);
    425     void cftfsub(int n, float *a, float *w);
    426     void cftbsub(int n, float *a, float *w);
    427     void rftfsub(int n, float *a, int nc, float *c);
    428     void rftbsub(int n, float *a, int nc, float *c);
    429     void dstsub(int n, float *a, int nc, float *c);
    430     int j, nw, nc;
    431     float xr;
    432 
    433     nw = ip[0];
    434     if (n > (nw << 2)) {
    435         nw = n >> 2;
    436         makewt(nw, ip, w);
    437     }
    438     nc = ip[1];
    439     if (n > nc) {
    440         nc = n;
    441         makect(nc, ip, w + nw);
    442     }
    443     if (isgn < 0) {
    444         xr = a[n - 1];
    445         for (j = n - 2; j >= 2; j -= 2) {
    446             a[j + 1] = -a[j] - a[j - 1];
    447             a[j] -= a[j - 1];
    448         }
    449         a[1] = a[0] + xr;
    450         a[0] -= xr;
    451         if (n > 4) {
    452             rftbsub(n, a, nc, w + nw);
    453             bitrv2(n, ip + 2, a);
    454             cftbsub(n, a, w);
    455         } else if (n == 4) {
    456             cftfsub(n, a, w);
    457         }
    458     }
    459     dstsub(n, a, nc, w + nw);
    460     if (isgn >= 0) {
    461         if (n > 4) {
    462             bitrv2(n, ip + 2, a);
    463             cftfsub(n, a, w);
    464             rftfsub(n, a, nc, w + nw);
    465         } else if (n == 4) {
    466             cftfsub(n, a, w);
    467         }
    468         xr = a[0] - a[1];
    469         a[0] += a[1];
    470         for (j = 2; j < n; j += 2) {
    471             a[j - 1] = -a[j] - a[j + 1];
    472             a[j] -= a[j + 1];
    473         }
    474         a[n - 1] = -xr;
    475     }
    476 }
    477 
    478 
    479 void dfct(int n, float *a, float *t, int *ip, float *w)
    480 {
    481     void makewt(int nw, int *ip, float *w);
    482     void makect(int nc, int *ip, float *c);
    483     void bitrv2(int n, int *ip, float *a);
    484     void cftfsub(int n, float *a, float *w);
    485     void rftfsub(int n, float *a, int nc, float *c);
    486     void dctsub(int n, float *a, int nc, float *c);
    487     int j, k, l, m, mh, nw, nc;
    488     float xr, xi, yr, yi;
    489 
    490     nw = ip[0];
    491     if (n > (nw << 3)) {
    492         nw = n >> 3;
    493         makewt(nw, ip, w);
    494     }
    495     nc = ip[1];
    496     if (n > (nc << 1)) {
    497         nc = n >> 1;
    498         makect(nc, ip, w + nw);
    499     }
    500     m = n >> 1;
    501     yi = a[m];
    502     xi = a[0] + a[n];
    503     a[0] -= a[n];
    504     t[0] = xi - yi;
    505     t[m] = xi + yi;
    506     if (n > 2) {
    507         mh = m >> 1;
    508         for (j = 1; j < mh; j++) {
    509             k = m - j;
    510             xr = a[j] - a[n - j];
    511             xi = a[j] + a[n - j];
    512             yr = a[k] - a[n - k];
    513             yi = a[k] + a[n - k];
    514             a[j] = xr;
    515             a[k] = yr;
    516             t[j] = xi - yi;
    517             t[k] = xi + yi;
    518         }
    519         t[mh] = a[mh] + a[n - mh];
    520         a[mh] -= a[n - mh];
    521         dctsub(m, a, nc, w + nw);
    522         if (m > 4) {
    523             bitrv2(m, ip + 2, a);
    524             cftfsub(m, a, w);
    525             rftfsub(m, a, nc, w + nw);
    526         } else if (m == 4) {
    527             cftfsub(m, a, w);
    528         }
    529         a[n - 1] = a[0] - a[1];
    530         a[1] = a[0] + a[1];
    531         for (j = m - 2; j >= 2; j -= 2) {
    532             a[2 * j + 1] = a[j] + a[j + 1];
    533             a[2 * j - 1] = a[j] - a[j + 1];
    534         }
    535         l = 2;
    536         m = mh;
    537         while (m >= 2) {
    538             dctsub(m, t, nc, w + nw);
    539             if (m > 4) {
    540                 bitrv2(m, ip + 2, t);
    541                 cftfsub(m, t, w);
    542                 rftfsub(m, t, nc, w + nw);
    543             } else if (m == 4) {
    544                 cftfsub(m, t, w);
    545             }
    546             a[n - l] = t[0] - t[1];
    547             a[l] = t[0] + t[1];
    548             k = 0;
    549             for (j = 2; j < m; j += 2) {
    550                 k += l << 2;
    551                 a[k - l] = t[j] - t[j + 1];
    552                 a[k + l] = t[j] + t[j + 1];
    553             }
    554             l <<= 1;
    555             mh = m >> 1;
    556             for (j = 0; j < mh; j++) {
    557                 k = m - j;
    558                 t[j] = t[m + k] - t[m + j];
    559                 t[k] = t[m + k] + t[m + j];
    560             }
    561             t[mh] = t[m + mh];
    562             m = mh;
    563         }
    564         a[l] = t[0];
    565         a[n] = t[2] - t[1];
    566         a[0] = t[2] + t[1];
    567     } else {
    568         a[1] = a[0];
    569         a[2] = t[0];
    570         a[0] = t[1];
    571     }
    572 }
    573 
    574 
    575 void dfst(int n, float *a, float *t, int *ip, float *w)
    576 {
    577     void makewt(int nw, int *ip, float *w);
    578     void makect(int nc, int *ip, float *c);
    579     void bitrv2(int n, int *ip, float *a);
    580     void cftfsub(int n, float *a, float *w);
    581     void rftfsub(int n, float *a, int nc, float *c);
    582     void dstsub(int n, float *a, int nc, float *c);
    583     int j, k, l, m, mh, nw, nc;
    584     float xr, xi, yr, yi;
    585 
    586     nw = ip[0];
    587     if (n > (nw << 3)) {
    588         nw = n >> 3;
    589         makewt(nw, ip, w);
    590     }
    591     nc = ip[1];
    592     if (n > (nc << 1)) {
    593         nc = n >> 1;
    594         makect(nc, ip, w + nw);
    595     }
    596     if (n > 2) {
    597         m = n >> 1;
    598         mh = m >> 1;
    599         for (j = 1; j < mh; j++) {
    600             k = m - j;
    601             xr = a[j] + a[n - j];
    602             xi = a[j] - a[n - j];
    603             yr = a[k] + a[n - k];
    604             yi = a[k] - a[n - k];
    605             a[j] = xr;
    606             a[k] = yr;
    607             t[j] = xi + yi;
    608             t[k] = xi - yi;
    609         }
    610         t[0] = a[mh] - a[n - mh];
    611         a[mh] += a[n - mh];
    612         a[0] = a[m];
    613         dstsub(m, a, nc, w + nw);
    614         if (m > 4) {
    615             bitrv2(m, ip + 2, a);
    616             cftfsub(m, a, w);
    617             rftfsub(m, a, nc, w + nw);
    618         } else if (m == 4) {
    619             cftfsub(m, a, w);
    620         }
    621         a[n - 1] = a[1] - a[0];
    622         a[1] = a[0] + a[1];
    623         for (j = m - 2; j >= 2; j -= 2) {
    624             a[2 * j + 1] = a[j] - a[j + 1];
    625             a[2 * j - 1] = -a[j] - a[j + 1];
    626         }
    627         l = 2;
    628         m = mh;
    629         while (m >= 2) {
    630             dstsub(m, t, nc, w + nw);
    631             if (m > 4) {
    632                 bitrv2(m, ip + 2, t);
    633                 cftfsub(m, t, w);
    634                 rftfsub(m, t, nc, w + nw);
    635             } else if (m == 4) {
    636                 cftfsub(m, t, w);
    637             }
    638             a[n - l] = t[1] - t[0];
    639             a[l] = t[0] + t[1];
    640             k = 0;
    641             for (j = 2; j < m; j += 2) {
    642                 k += l << 2;
    643                 a[k - l] = -t[j] - t[j + 1];
    644                 a[k + l] = t[j] - t[j + 1];
    645             }
    646             l <<= 1;
    647             mh = m >> 1;
    648             for (j = 1; j < mh; j++) {
    649                 k = m - j;
    650                 t[j] = t[m + k] + t[m + j];
    651                 t[k] = t[m + k] - t[m + j];
    652             }
    653             t[0] = t[m + mh];
    654             m = mh;
    655         }
    656         a[l] = t[0];
    657     }
    658     a[0] = 0;
    659 }
    660 
    661 
    662 /* -------- initializing routines -------- */
    663 
    664 
    665 #include <math.h>
    666 
    667 void makewt(int nw, int *ip, float *w)
    668 {
    669     void bitrv2(int n, int *ip, float *a);
    670     int j, nwh;
    671     float delta, x, y;
    672 
    673     ip[0] = nw;
    674     ip[1] = 1;
    675     if (nw > 2) {
    676         nwh = nw >> 1;
    677         delta = (float)atan(1.0f) / nwh;
    678         w[0] = 1;
    679         w[1] = 0;
    680         w[nwh] = (float)cos(delta * nwh);
    681         w[nwh + 1] = w[nwh];
    682         if (nwh > 2) {
    683             for (j = 2; j < nwh; j += 2) {
    684                 x = (float)cos(delta * j);
    685                 y = (float)sin(delta * j);
    686                 w[j] = x;
    687                 w[j + 1] = y;
    688                 w[nw - j] = y;
    689                 w[nw - j + 1] = x;
    690             }
    691             bitrv2(nw, ip + 2, w);
    692         }
    693     }
    694 }
    695 
    696 
    697 void makect(int nc, int *ip, float *c)
    698 {
    699     int j, nch;
    700     float delta;
    701 
    702     ip[1] = nc;
    703     if (nc > 1) {
    704         nch = nc >> 1;
    705         delta = (float)atan(1.0f) / nch;
    706         c[0] = (float)cos(delta * nch);
    707         c[nch] = 0.5f * c[0];
    708         for (j = 1; j < nch; j++) {
    709             c[j] = 0.5f * (float)cos(delta * j);
    710             c[nc - j] = 0.5f * (float)sin(delta * j);
    711         }
    712     }
    713 }
    714 
    715 
    716 /* -------- child routines -------- */
    717 
    718 
    719 void bitrv2(int n, int *ip, float *a)
    720 {
    721     int j, j1, k, k1, l, m, m2;
    722     float xr, xi, yr, yi;
    723 
    724     ip[0] = 0;
    725     l = n;
    726     m = 1;
    727     while ((m << 3) < l) {
    728         l >>= 1;
    729         for (j = 0; j < m; j++) {
    730             ip[m + j] = ip[j] + l;
    731         }
    732         m <<= 1;
    733     }
    734     m2 = 2 * m;
    735     if ((m << 3) == l) {
    736         for (k = 0; k < m; k++) {
    737             for (j = 0; j < k; j++) {
    738                 j1 = 2 * j + ip[k];
    739                 k1 = 2 * k + ip[j];
    740                 xr = a[j1];
    741                 xi = a[j1 + 1];
    742                 yr = a[k1];
    743                 yi = a[k1 + 1];
    744                 a[j1] = yr;
    745                 a[j1 + 1] = yi;
    746                 a[k1] = xr;
    747                 a[k1 + 1] = xi;
    748                 j1 += m2;
    749                 k1 += 2 * m2;
    750                 xr = a[j1];
    751                 xi = a[j1 + 1];
    752                 yr = a[k1];
    753                 yi = a[k1 + 1];
    754                 a[j1] = yr;
    755                 a[j1 + 1] = yi;
    756                 a[k1] = xr;
    757                 a[k1 + 1] = xi;
    758                 j1 += m2;
    759                 k1 -= m2;
    760                 xr = a[j1];
    761                 xi = a[j1 + 1];
    762                 yr = a[k1];
    763                 yi = a[k1 + 1];
    764                 a[j1] = yr;
    765                 a[j1 + 1] = yi;
    766                 a[k1] = xr;
    767                 a[k1 + 1] = xi;
    768                 j1 += m2;
    769                 k1 += 2 * m2;
    770                 xr = a[j1];
    771                 xi = a[j1 + 1];
    772                 yr = a[k1];
    773                 yi = a[k1 + 1];
    774                 a[j1] = yr;
    775                 a[j1 + 1] = yi;
    776                 a[k1] = xr;
    777                 a[k1 + 1] = xi;
    778             }
    779             j1 = 2 * k + m2 + ip[k];
    780             k1 = j1 + m2;
    781             xr = a[j1];
    782             xi = a[j1 + 1];
    783             yr = a[k1];
    784             yi = a[k1 + 1];
    785             a[j1] = yr;
    786             a[j1 + 1] = yi;
    787             a[k1] = xr;
    788             a[k1 + 1] = xi;
    789         }
    790     } else {
    791         for (k = 1; k < m; k++) {
    792             for (j = 0; j < k; j++) {
    793                 j1 = 2 * j + ip[k];
    794                 k1 = 2 * k + ip[j];
    795                 xr = a[j1];
    796                 xi = a[j1 + 1];
    797                 yr = a[k1];
    798                 yi = a[k1 + 1];
    799                 a[j1] = yr;
    800                 a[j1 + 1] = yi;
    801                 a[k1] = xr;
    802                 a[k1 + 1] = xi;
    803                 j1 += m2;
    804                 k1 += m2;
    805                 xr = a[j1];
    806                 xi = a[j1 + 1];
    807                 yr = a[k1];
    808                 yi = a[k1 + 1];
    809                 a[j1] = yr;
    810                 a[j1 + 1] = yi;
    811                 a[k1] = xr;
    812                 a[k1 + 1] = xi;
    813             }
    814         }
    815     }
    816 }
    817 
    818 
    819 void bitrv2conj(int n, int *ip, float *a)
    820 {
    821     int j, j1, k, k1, l, m, m2;
    822     float xr, xi, yr, yi;
    823 
    824     ip[0] = 0;
    825     l = n;
    826     m = 1;
    827     while ((m << 3) < l) {
    828         l >>= 1;
    829         for (j = 0; j < m; j++) {
    830             ip[m + j] = ip[j] + l;
    831         }
    832         m <<= 1;
    833     }
    834     m2 = 2 * m;
    835     if ((m << 3) == l) {
    836         for (k = 0; k < m; k++) {
    837             for (j = 0; j < k; j++) {
    838                 j1 = 2 * j + ip[k];
    839                 k1 = 2 * k + ip[j];
    840                 xr = a[j1];
    841                 xi = -a[j1 + 1];
    842                 yr = a[k1];
    843                 yi = -a[k1 + 1];
    844                 a[j1] = yr;
    845                 a[j1 + 1] = yi;
    846                 a[k1] = xr;
    847                 a[k1 + 1] = xi;
    848                 j1 += m2;
    849                 k1 += 2 * m2;
    850                 xr = a[j1];
    851                 xi = -a[j1 + 1];
    852                 yr = a[k1];
    853                 yi = -a[k1 + 1];
    854                 a[j1] = yr;
    855                 a[j1 + 1] = yi;
    856                 a[k1] = xr;
    857                 a[k1 + 1] = xi;
    858                 j1 += m2;
    859                 k1 -= m2;
    860                 xr = a[j1];
    861                 xi = -a[j1 + 1];
    862                 yr = a[k1];
    863                 yi = -a[k1 + 1];
    864                 a[j1] = yr;
    865                 a[j1 + 1] = yi;
    866                 a[k1] = xr;
    867                 a[k1 + 1] = xi;
    868                 j1 += m2;
    869                 k1 += 2 * m2;
    870                 xr = a[j1];
    871                 xi = -a[j1 + 1];
    872                 yr = a[k1];
    873                 yi = -a[k1 + 1];
    874                 a[j1] = yr;
    875                 a[j1 + 1] = yi;
    876                 a[k1] = xr;
    877                 a[k1 + 1] = xi;
    878             }
    879             k1 = 2 * k + ip[k];
    880             a[k1 + 1] = -a[k1 + 1];
    881             j1 = k1 + m2;
    882             k1 = j1 + m2;
    883             xr = a[j1];
    884             xi = -a[j1 + 1];
    885             yr = a[k1];
    886             yi = -a[k1 + 1];
    887             a[j1] = yr;
    888             a[j1 + 1] = yi;
    889             a[k1] = xr;
    890             a[k1 + 1] = xi;
    891             k1 += m2;
    892             a[k1 + 1] = -a[k1 + 1];
    893         }
    894     } else {
    895         a[1] = -a[1];
    896         a[m2 + 1] = -a[m2 + 1];
    897         for (k = 1; k < m; k++) {
    898             for (j = 0; j < k; j++) {
    899                 j1 = 2 * j + ip[k];
    900                 k1 = 2 * k + ip[j];
    901                 xr = a[j1];
    902                 xi = -a[j1 + 1];
    903                 yr = a[k1];
    904                 yi = -a[k1 + 1];
    905                 a[j1] = yr;
    906                 a[j1 + 1] = yi;
    907                 a[k1] = xr;
    908                 a[k1 + 1] = xi;
    909                 j1 += m2;
    910                 k1 += m2;
    911                 xr = a[j1];
    912                 xi = -a[j1 + 1];
    913                 yr = a[k1];
    914                 yi = -a[k1 + 1];
    915                 a[j1] = yr;
    916                 a[j1 + 1] = yi;
    917                 a[k1] = xr;
    918                 a[k1 + 1] = xi;
    919             }
    920             k1 = 2 * k + ip[k];
    921             a[k1 + 1] = -a[k1 + 1];
    922             a[k1 + m2 + 1] = -a[k1 + m2 + 1];
    923         }
    924     }
    925 }
    926 
    927 
    928 void cftfsub(int n, float *a, float *w)
    929 {
    930     void cft1st(int n, float *a, float *w);
    931     void cftmdl(int n, int l, float *a, float *w);
    932     int j, j1, j2, j3, l;
    933     float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
    934 
    935     l = 2;
    936     if (n > 8) {
    937         cft1st(n, a, w);
    938         l = 8;
    939         while ((l << 2) < n) {
    940             cftmdl(n, l, a, w);
    941             l <<= 2;
    942         }
    943     }
    944     if ((l << 2) == n) {
    945         for (j = 0; j < l; j += 2) {
    946             j1 = j + l;
    947             j2 = j1 + l;
    948             j3 = j2 + l;
    949             x0r = a[j] + a[j1];
    950             x0i = a[j + 1] + a[j1 + 1];
    951             x1r = a[j] - a[j1];
    952             x1i = a[j + 1] - a[j1 + 1];
    953             x2r = a[j2] + a[j3];
    954             x2i = a[j2 + 1] + a[j3 + 1];
    955             x3r = a[j2] - a[j3];
    956             x3i = a[j2 + 1] - a[j3 + 1];
    957             a[j] = x0r + x2r;
    958             a[j + 1] = x0i + x2i;
    959             a[j2] = x0r - x2r;
    960             a[j2 + 1] = x0i - x2i;
    961             a[j1] = x1r - x3i;
    962             a[j1 + 1] = x1i + x3r;
    963             a[j3] = x1r + x3i;
    964             a[j3 + 1] = x1i - x3r;
    965         }
    966     } else {
    967         for (j = 0; j < l; j += 2) {
    968             j1 = j + l;
    969             x0r = a[j] - a[j1];
    970             x0i = a[j + 1] - a[j1 + 1];
    971             a[j] += a[j1];
    972             a[j + 1] += a[j1 + 1];
    973             a[j1] = x0r;
    974             a[j1 + 1] = x0i;
    975         }
    976     }
    977 }
    978 
    979 
    980 void cftbsub(int n, float *a, float *w)
    981 {
    982     void cft1st(int n, float *a, float *w);
    983     void cftmdl(int n, int l, float *a, float *w);
    984     int j, j1, j2, j3, l;
    985     float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
    986 
    987     l = 2;
    988     if (n > 8) {
    989         cft1st(n, a, w);
    990         l = 8;
    991         while ((l << 2) < n) {
    992             cftmdl(n, l, a, w);
    993             l <<= 2;
    994         }
    995     }
    996     if ((l << 2) == n) {
    997         for (j = 0; j < l; j += 2) {
    998             j1 = j + l;
    999             j2 = j1 + l;
   1000             j3 = j2 + l;
   1001             x0r = a[j] + a[j1];
   1002             x0i = -a[j + 1] - a[j1 + 1];
   1003             x1r = a[j] - a[j1];
   1004             x1i = -a[j + 1] + a[j1 + 1];
   1005             x2r = a[j2] + a[j3];
   1006             x2i = a[j2 + 1] + a[j3 + 1];
   1007             x3r = a[j2] - a[j3];
   1008             x3i = a[j2 + 1] - a[j3 + 1];
   1009             a[j] = x0r + x2r;
   1010             a[j + 1] = x0i - x2i;
   1011             a[j2] = x0r - x2r;
   1012             a[j2 + 1] = x0i + x2i;
   1013             a[j1] = x1r - x3i;
   1014             a[j1 + 1] = x1i - x3r;
   1015             a[j3] = x1r + x3i;
   1016             a[j3 + 1] = x1i + x3r;
   1017         }
   1018     } else {
   1019         for (j = 0; j < l; j += 2) {
   1020             j1 = j + l;
   1021             x0r = a[j] - a[j1];
   1022             x0i = -a[j + 1] + a[j1 + 1];
   1023             a[j] += a[j1];
   1024             a[j + 1] = -a[j + 1] - a[j1 + 1];
   1025             a[j1] = x0r;
   1026             a[j1 + 1] = x0i;
   1027         }
   1028     }
   1029 }
   1030 
   1031 
   1032 void cft1st(int n, float *a, float *w)
   1033 {
   1034     int j, k1, k2;
   1035     float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
   1036     float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
   1037 
   1038     x0r = a[0] + a[2];
   1039     x0i = a[1] + a[3];
   1040     x1r = a[0] - a[2];
   1041     x1i = a[1] - a[3];
   1042     x2r = a[4] + a[6];
   1043     x2i = a[5] + a[7];
   1044     x3r = a[4] - a[6];
   1045     x3i = a[5] - a[7];
   1046     a[0] = x0r + x2r;
   1047     a[1] = x0i + x2i;
   1048     a[4] = x0r - x2r;
   1049     a[5] = x0i - x2i;
   1050     a[2] = x1r - x3i;
   1051     a[3] = x1i + x3r;
   1052     a[6] = x1r + x3i;
   1053     a[7] = x1i - x3r;
   1054     wk1r = w[2];
   1055     x0r = a[8] + a[10];
   1056     x0i = a[9] + a[11];
   1057     x1r = a[8] - a[10];
   1058     x1i = a[9] - a[11];
   1059     x2r = a[12] + a[14];
   1060     x2i = a[13] + a[15];
   1061     x3r = a[12] - a[14];
   1062     x3i = a[13] - a[15];
   1063     a[8] = x0r + x2r;
   1064     a[9] = x0i + x2i;
   1065     a[12] = x2i - x0i;
   1066     a[13] = x0r - x2r;
   1067     x0r = x1r - x3i;
   1068     x0i = x1i + x3r;
   1069     a[10] = wk1r * (x0r - x0i);
   1070     a[11] = wk1r * (x0r + x0i);
   1071     x0r = x3i + x1r;
   1072     x0i = x3r - x1i;
   1073     a[14] = wk1r * (x0i - x0r);
   1074     a[15] = wk1r * (x0i + x0r);
   1075     k1 = 0;
   1076     for (j = 16; j < n; j += 16) {
   1077         k1 += 2;
   1078         k2 = 2 * k1;
   1079         wk2r = w[k1];
   1080         wk2i = w[k1 + 1];
   1081         wk1r = w[k2];
   1082         wk1i = w[k2 + 1];
   1083         wk3r = wk1r - 2 * wk2i * wk1i;
   1084         wk3i = 2 * wk2i * wk1r - wk1i;
   1085         x0r = a[j] + a[j + 2];
   1086         x0i = a[j + 1] + a[j + 3];
   1087         x1r = a[j] - a[j + 2];
   1088         x1i = a[j + 1] - a[j + 3];
   1089         x2r = a[j + 4] + a[j + 6];
   1090         x2i = a[j + 5] + a[j + 7];
   1091         x3r = a[j + 4] - a[j + 6];
   1092         x3i = a[j + 5] - a[j + 7];
   1093         a[j] = x0r + x2r;
   1094         a[j + 1] = x0i + x2i;
   1095         x0r -= x2r;
   1096         x0i -= x2i;
   1097         a[j + 4] = wk2r * x0r - wk2i * x0i;
   1098         a[j + 5] = wk2r * x0i + wk2i * x0r;
   1099         x0r = x1r - x3i;
   1100         x0i = x1i + x3r;
   1101         a[j + 2] = wk1r * x0r - wk1i * x0i;
   1102         a[j + 3] = wk1r * x0i + wk1i * x0r;
   1103         x0r = x1r + x3i;
   1104         x0i = x1i - x3r;
   1105         a[j + 6] = wk3r * x0r - wk3i * x0i;
   1106         a[j + 7] = wk3r * x0i + wk3i * x0r;
   1107         wk1r = w[k2 + 2];
   1108         wk1i = w[k2 + 3];
   1109         wk3r = wk1r - 2 * wk2r * wk1i;
   1110         wk3i = 2 * wk2r * wk1r - wk1i;
   1111         x0r = a[j + 8] + a[j + 10];
   1112         x0i = a[j + 9] + a[j + 11];
   1113         x1r = a[j + 8] - a[j + 10];
   1114         x1i = a[j + 9] - a[j + 11];
   1115         x2r = a[j + 12] + a[j + 14];
   1116         x2i = a[j + 13] + a[j + 15];
   1117         x3r = a[j + 12] - a[j + 14];
   1118         x3i = a[j + 13] - a[j + 15];
   1119         a[j + 8] = x0r + x2r;
   1120         a[j + 9] = x0i + x2i;
   1121         x0r -= x2r;
   1122         x0i -= x2i;
   1123         a[j + 12] = -wk2i * x0r - wk2r * x0i;
   1124         a[j + 13] = -wk2i * x0i + wk2r * x0r;
   1125         x0r = x1r - x3i;
   1126         x0i = x1i + x3r;
   1127         a[j + 10] = wk1r * x0r - wk1i * x0i;
   1128         a[j + 11] = wk1r * x0i + wk1i * x0r;
   1129         x0r = x1r + x3i;
   1130         x0i = x1i - x3r;
   1131         a[j + 14] = wk3r * x0r - wk3i * x0i;
   1132         a[j + 15] = wk3r * x0i + wk3i * x0r;
   1133     }
   1134 }
   1135 
   1136 
   1137 void cftmdl(int n, int l, float *a, float *w)
   1138 {
   1139     int j, j1, j2, j3, k, k1, k2, m, m2;
   1140     float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
   1141     float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
   1142 
   1143     m = l << 2;
   1144     for (j = 0; j < l; j += 2) {
   1145         j1 = j + l;
   1146         j2 = j1 + l;
   1147         j3 = j2 + l;
   1148         x0r = a[j] + a[j1];
   1149         x0i = a[j + 1] + a[j1 + 1];
   1150         x1r = a[j] - a[j1];
   1151         x1i = a[j + 1] - a[j1 + 1];
   1152         x2r = a[j2] + a[j3];
   1153         x2i = a[j2 + 1] + a[j3 + 1];
   1154         x3r = a[j2] - a[j3];
   1155         x3i = a[j2 + 1] - a[j3 + 1];
   1156         a[j] = x0r + x2r;
   1157         a[j + 1] = x0i + x2i;
   1158         a[j2] = x0r - x2r;
   1159         a[j2 + 1] = x0i - x2i;
   1160         a[j1] = x1r - x3i;
   1161         a[j1 + 1] = x1i + x3r;
   1162         a[j3] = x1r + x3i;
   1163         a[j3 + 1] = x1i - x3r;
   1164     }
   1165     wk1r = w[2];
   1166     for (j = m; j < l + m; j += 2) {
   1167         j1 = j + l;
   1168         j2 = j1 + l;
   1169         j3 = j2 + l;
   1170         x0r = a[j] + a[j1];
   1171         x0i = a[j + 1] + a[j1 + 1];
   1172         x1r = a[j] - a[j1];
   1173         x1i = a[j + 1] - a[j1 + 1];
   1174         x2r = a[j2] + a[j3];
   1175         x2i = a[j2 + 1] + a[j3 + 1];
   1176         x3r = a[j2] - a[j3];
   1177         x3i = a[j2 + 1] - a[j3 + 1];
   1178         a[j] = x0r + x2r;
   1179         a[j + 1] = x0i + x2i;
   1180         a[j2] = x2i - x0i;
   1181         a[j2 + 1] = x0r - x2r;
   1182         x0r = x1r - x3i;
   1183         x0i = x1i + x3r;
   1184         a[j1] = wk1r * (x0r - x0i);
   1185         a[j1 + 1] = wk1r * (x0r + x0i);
   1186         x0r = x3i + x1r;
   1187         x0i = x3r - x1i;
   1188         a[j3] = wk1r * (x0i - x0r);
   1189         a[j3 + 1] = wk1r * (x0i + x0r);
   1190     }
   1191     k1 = 0;
   1192     m2 = 2 * m;
   1193     for (k = m2; k < n; k += m2) {
   1194         k1 += 2;
   1195         k2 = 2 * k1;
   1196         wk2r = w[k1];
   1197         wk2i = w[k1 + 1];
   1198         wk1r = w[k2];
   1199         wk1i = w[k2 + 1];
   1200         wk3r = wk1r - 2 * wk2i * wk1i;
   1201         wk3i = 2 * wk2i * wk1r - wk1i;
   1202         for (j = k; j < l + k; j += 2) {
   1203             j1 = j + l;
   1204             j2 = j1 + l;
   1205             j3 = j2 + l;
   1206             x0r = a[j] + a[j1];
   1207             x0i = a[j + 1] + a[j1 + 1];
   1208             x1r = a[j] - a[j1];
   1209             x1i = a[j + 1] - a[j1 + 1];
   1210             x2r = a[j2] + a[j3];
   1211             x2i = a[j2 + 1] + a[j3 + 1];
   1212             x3r = a[j2] - a[j3];
   1213             x3i = a[j2 + 1] - a[j3 + 1];
   1214             a[j] = x0r + x2r;
   1215             a[j + 1] = x0i + x2i;
   1216             x0r -= x2r;
   1217             x0i -= x2i;
   1218             a[j2] = wk2r * x0r - wk2i * x0i;
   1219             a[j2 + 1] = wk2r * x0i + wk2i * x0r;
   1220             x0r = x1r - x3i;
   1221             x0i = x1i + x3r;
   1222             a[j1] = wk1r * x0r - wk1i * x0i;
   1223             a[j1 + 1] = wk1r * x0i + wk1i * x0r;
   1224             x0r = x1r + x3i;
   1225             x0i = x1i - x3r;
   1226             a[j3] = wk3r * x0r - wk3i * x0i;
   1227             a[j3 + 1] = wk3r * x0i + wk3i * x0r;
   1228         }
   1229         wk1r = w[k2 + 2];
   1230         wk1i = w[k2 + 3];
   1231         wk3r = wk1r - 2 * wk2r * wk1i;
   1232         wk3i = 2 * wk2r * wk1r - wk1i;
   1233         for (j = k + m; j < l + (k + m); j += 2) {
   1234             j1 = j + l;
   1235             j2 = j1 + l;
   1236             j3 = j2 + l;
   1237             x0r = a[j] + a[j1];
   1238             x0i = a[j + 1] + a[j1 + 1];
   1239             x1r = a[j] - a[j1];
   1240             x1i = a[j + 1] - a[j1 + 1];
   1241             x2r = a[j2] + a[j3];
   1242             x2i = a[j2 + 1] + a[j3 + 1];
   1243             x3r = a[j2] - a[j3];
   1244             x3i = a[j2 + 1] - a[j3 + 1];
   1245             a[j] = x0r + x2r;
   1246             a[j + 1] = x0i + x2i;
   1247             x0r -= x2r;
   1248             x0i -= x2i;
   1249             a[j2] = -wk2i * x0r - wk2r * x0i;
   1250             a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
   1251             x0r = x1r - x3i;
   1252             x0i = x1i + x3r;
   1253             a[j1] = wk1r * x0r - wk1i * x0i;
   1254             a[j1 + 1] = wk1r * x0i + wk1i * x0r;
   1255             x0r = x1r + x3i;
   1256             x0i = x1i - x3r;
   1257             a[j3] = wk3r * x0r - wk3i * x0i;
   1258             a[j3 + 1] = wk3r * x0i + wk3i * x0r;
   1259         }
   1260     }
   1261 }
   1262 
   1263 
   1264 void rftfsub(int n, float *a, int nc, float *c)
   1265 {
   1266     int j, k, kk, ks, m;
   1267     float wkr, wki, xr, xi, yr, yi;
   1268 
   1269     m = n >> 1;
   1270     ks = 2 * nc / m;
   1271     kk = 0;
   1272     for (j = 2; j < m; j += 2) {
   1273         k = n - j;
   1274         kk += ks;
   1275         wkr = 0.5f - c[nc - kk];
   1276         wki = c[kk];
   1277         xr = a[j] - a[k];
   1278         xi = a[j + 1] + a[k + 1];
   1279         yr = wkr * xr - wki * xi;
   1280         yi = wkr * xi + wki * xr;
   1281         a[j] -= yr;
   1282         a[j + 1] -= yi;
   1283         a[k] += yr;
   1284         a[k + 1] -= yi;
   1285     }
   1286 }
   1287 
   1288 
   1289 void rftbsub(int n, float *a, int nc, float *c)
   1290 {
   1291     int j, k, kk, ks, m;
   1292     float wkr, wki, xr, xi, yr, yi;
   1293 
   1294     a[1] = -a[1];
   1295     m = n >> 1;
   1296     ks = 2 * nc / m;
   1297     kk = 0;
   1298     for (j = 2; j < m; j += 2) {
   1299         k = n - j;
   1300         kk += ks;
   1301         wkr = 0.5f - c[nc - kk];
   1302         wki = c[kk];
   1303         xr = a[j] - a[k];
   1304         xi = a[j + 1] + a[k + 1];
   1305         yr = wkr * xr + wki * xi;
   1306         yi = wkr * xi - wki * xr;
   1307         a[j] -= yr;
   1308         a[j + 1] = yi - a[j + 1];
   1309         a[k] += yr;
   1310         a[k + 1] = yi - a[k + 1];
   1311     }
   1312     a[m + 1] = -a[m + 1];
   1313 }
   1314 
   1315 
   1316 void dctsub(int n, float *a, int nc, float *c)
   1317 {
   1318     int j, k, kk, ks, m;
   1319     float wkr, wki, xr;
   1320 
   1321     m = n >> 1;
   1322     ks = nc / n;
   1323     kk = 0;
   1324     for (j = 1; j < m; j++) {
   1325         k = n - j;
   1326         kk += ks;
   1327         wkr = c[kk] - c[nc - kk];
   1328         wki = c[kk] + c[nc - kk];
   1329         xr = wki * a[j] - wkr * a[k];
   1330         a[j] = wkr * a[j] + wki * a[k];
   1331         a[k] = xr;
   1332     }
   1333     a[m] *= c[0];
   1334 }
   1335 
   1336 
   1337 void dstsub(int n, float *a, int nc, float *c)
   1338 {
   1339     int j, k, kk, ks, m;
   1340     float wkr, wki, xr;
   1341 
   1342     m = n >> 1;
   1343     ks = nc / n;
   1344     kk = 0;
   1345     for (j = 1; j < m; j++) {
   1346         k = n - j;
   1347         kk += ks;
   1348         wkr = c[kk] - c[nc - kk];
   1349         wki = c[kk] + c[nc - kk];
   1350         xr = wki * a[k] - wkr * a[j];
   1351         a[k] = wkr * a[k] + wki * a[j];
   1352         a[j] = xr;
   1353     }
   1354     a[m] *= c[0];
   1355 }
   1356 
   1357