1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains both code to deal with invoking "external" functions, but 11 // also contains code that implements "exported" external functions. 12 // 13 // There are currently two mechanisms for handling external functions in the 14 // Interpreter. The first is to implement lle_* wrapper functions that are 15 // specific to well-known library functions which manually translate the 16 // arguments from GenericValues and make the call. If such a wrapper does 17 // not exist, and libffi is available, then the Interpreter will attempt to 18 // invoke the function using libffi, after finding its address. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "Interpreter.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Module.h" 25 #include "llvm/Config/config.h" // Detect libffi 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/DynamicLibrary.h" 28 #include "llvm/Target/TargetData.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/Mutex.h" 31 #include <csignal> 32 #include <cstdio> 33 #include <map> 34 #include <cmath> 35 #include <cstring> 36 37 #ifdef HAVE_FFI_CALL 38 #ifdef HAVE_FFI_H 39 #include <ffi.h> 40 #define USE_LIBFFI 41 #elif HAVE_FFI_FFI_H 42 #include <ffi/ffi.h> 43 #define USE_LIBFFI 44 #endif 45 #endif 46 47 using namespace llvm; 48 49 static ManagedStatic<sys::Mutex> FunctionsLock; 50 51 typedef GenericValue (*ExFunc)(FunctionType *, 52 const std::vector<GenericValue> &); 53 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 54 static std::map<std::string, ExFunc> FuncNames; 55 56 #ifdef USE_LIBFFI 57 typedef void (*RawFunc)(); 58 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 59 #endif 60 61 static Interpreter *TheInterpreter; 62 63 static char getTypeID(Type *Ty) { 64 switch (Ty->getTypeID()) { 65 case Type::VoidTyID: return 'V'; 66 case Type::IntegerTyID: 67 switch (cast<IntegerType>(Ty)->getBitWidth()) { 68 case 1: return 'o'; 69 case 8: return 'B'; 70 case 16: return 'S'; 71 case 32: return 'I'; 72 case 64: return 'L'; 73 default: return 'N'; 74 } 75 case Type::FloatTyID: return 'F'; 76 case Type::DoubleTyID: return 'D'; 77 case Type::PointerTyID: return 'P'; 78 case Type::FunctionTyID:return 'M'; 79 case Type::StructTyID: return 'T'; 80 case Type::ArrayTyID: return 'A'; 81 default: return 'U'; 82 } 83 } 84 85 // Try to find address of external function given a Function object. 86 // Please note, that interpreter doesn't know how to assemble a 87 // real call in general case (this is JIT job), that's why it assumes, 88 // that all external functions has the same (and pretty "general") signature. 89 // The typical example of such functions are "lle_X_" ones. 90 static ExFunc lookupFunction(const Function *F) { 91 // Function not found, look it up... start by figuring out what the 92 // composite function name should be. 93 std::string ExtName = "lle_"; 94 FunctionType *FT = F->getFunctionType(); 95 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) 96 ExtName += getTypeID(FT->getContainedType(i)); 97 ExtName + "_" + F->getNameStr(); 98 99 sys::ScopedLock Writer(*FunctionsLock); 100 ExFunc FnPtr = FuncNames[ExtName]; 101 if (FnPtr == 0) 102 FnPtr = FuncNames["lle_X_" + F->getNameStr()]; 103 if (FnPtr == 0) // Try calling a generic function... if it exists... 104 FnPtr = (ExFunc)(intptr_t) 105 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_"+F->getNameStr()); 106 if (FnPtr != 0) 107 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 108 return FnPtr; 109 } 110 111 #ifdef USE_LIBFFI 112 static ffi_type *ffiTypeFor(Type *Ty) { 113 switch (Ty->getTypeID()) { 114 case Type::VoidTyID: return &ffi_type_void; 115 case Type::IntegerTyID: 116 switch (cast<IntegerType>(Ty)->getBitWidth()) { 117 case 8: return &ffi_type_sint8; 118 case 16: return &ffi_type_sint16; 119 case 32: return &ffi_type_sint32; 120 case 64: return &ffi_type_sint64; 121 } 122 case Type::FloatTyID: return &ffi_type_float; 123 case Type::DoubleTyID: return &ffi_type_double; 124 case Type::PointerTyID: return &ffi_type_pointer; 125 default: break; 126 } 127 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 128 report_fatal_error("Type could not be mapped for use with libffi."); 129 return NULL; 130 } 131 132 static void *ffiValueFor(Type *Ty, const GenericValue &AV, 133 void *ArgDataPtr) { 134 switch (Ty->getTypeID()) { 135 case Type::IntegerTyID: 136 switch (cast<IntegerType>(Ty)->getBitWidth()) { 137 case 8: { 138 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 139 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 140 return ArgDataPtr; 141 } 142 case 16: { 143 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 144 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 145 return ArgDataPtr; 146 } 147 case 32: { 148 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 149 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 150 return ArgDataPtr; 151 } 152 case 64: { 153 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 154 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 155 return ArgDataPtr; 156 } 157 } 158 case Type::FloatTyID: { 159 float *FloatPtr = (float *) ArgDataPtr; 160 *FloatPtr = AV.FloatVal; 161 return ArgDataPtr; 162 } 163 case Type::DoubleTyID: { 164 double *DoublePtr = (double *) ArgDataPtr; 165 *DoublePtr = AV.DoubleVal; 166 return ArgDataPtr; 167 } 168 case Type::PointerTyID: { 169 void **PtrPtr = (void **) ArgDataPtr; 170 *PtrPtr = GVTOP(AV); 171 return ArgDataPtr; 172 } 173 default: break; 174 } 175 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 176 report_fatal_error("Type value could not be mapped for use with libffi."); 177 return NULL; 178 } 179 180 static bool ffiInvoke(RawFunc Fn, Function *F, 181 const std::vector<GenericValue> &ArgVals, 182 const TargetData *TD, GenericValue &Result) { 183 ffi_cif cif; 184 FunctionType *FTy = F->getFunctionType(); 185 const unsigned NumArgs = F->arg_size(); 186 187 // TODO: We don't have type information about the remaining arguments, because 188 // this information is never passed into ExecutionEngine::runFunction(). 189 if (ArgVals.size() > NumArgs && F->isVarArg()) { 190 report_fatal_error("Calling external var arg function '" + F->getName() 191 + "' is not supported by the Interpreter."); 192 } 193 194 unsigned ArgBytes = 0; 195 196 std::vector<ffi_type*> args(NumArgs); 197 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 198 A != E; ++A) { 199 const unsigned ArgNo = A->getArgNo(); 200 Type *ArgTy = FTy->getParamType(ArgNo); 201 args[ArgNo] = ffiTypeFor(ArgTy); 202 ArgBytes += TD->getTypeStoreSize(ArgTy); 203 } 204 205 SmallVector<uint8_t, 128> ArgData; 206 ArgData.resize(ArgBytes); 207 uint8_t *ArgDataPtr = ArgData.data(); 208 SmallVector<void*, 16> values(NumArgs); 209 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 210 A != E; ++A) { 211 const unsigned ArgNo = A->getArgNo(); 212 Type *ArgTy = FTy->getParamType(ArgNo); 213 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 214 ArgDataPtr += TD->getTypeStoreSize(ArgTy); 215 } 216 217 Type *RetTy = FTy->getReturnType(); 218 ffi_type *rtype = ffiTypeFor(RetTy); 219 220 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { 221 SmallVector<uint8_t, 128> ret; 222 if (RetTy->getTypeID() != Type::VoidTyID) 223 ret.resize(TD->getTypeStoreSize(RetTy)); 224 ffi_call(&cif, Fn, ret.data(), values.data()); 225 switch (RetTy->getTypeID()) { 226 case Type::IntegerTyID: 227 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 228 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; 229 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; 230 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; 231 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; 232 } 233 break; 234 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; 235 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; 236 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; 237 default: break; 238 } 239 return true; 240 } 241 242 return false; 243 } 244 #endif // USE_LIBFFI 245 246 GenericValue Interpreter::callExternalFunction(Function *F, 247 const std::vector<GenericValue> &ArgVals) { 248 TheInterpreter = this; 249 250 FunctionsLock->acquire(); 251 252 // Do a lookup to see if the function is in our cache... this should just be a 253 // deferred annotation! 254 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 255 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 256 : FI->second) { 257 FunctionsLock->release(); 258 return Fn(F->getFunctionType(), ArgVals); 259 } 260 261 #ifdef USE_LIBFFI 262 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 263 RawFunc RawFn; 264 if (RF == RawFunctions->end()) { 265 RawFn = (RawFunc)(intptr_t) 266 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); 267 if (!RawFn) 268 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); 269 if (RawFn != 0) 270 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 271 } else { 272 RawFn = RF->second; 273 } 274 275 FunctionsLock->release(); 276 277 GenericValue Result; 278 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result)) 279 return Result; 280 #endif // USE_LIBFFI 281 282 if (F->getName() == "__main") 283 errs() << "Tried to execute an unknown external function: " 284 << *F->getType() << " __main\n"; 285 else 286 report_fatal_error("Tried to execute an unknown external function: " + 287 F->getName()); 288 #ifndef USE_LIBFFI 289 errs() << "Recompiling LLVM with --enable-libffi might help.\n"; 290 #endif 291 return GenericValue(); 292 } 293 294 295 //===----------------------------------------------------------------------===// 296 // Functions "exported" to the running application... 297 // 298 299 // Visual Studio warns about returning GenericValue in extern "C" linkage 300 #ifdef _MSC_VER 301 #pragma warning(disable : 4190) 302 #endif 303 304 extern "C" { // Don't add C++ manglings to llvm mangling :) 305 306 // void atexit(Function*) 307 GenericValue lle_X_atexit(FunctionType *FT, 308 const std::vector<GenericValue> &Args) { 309 assert(Args.size() == 1); 310 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 311 GenericValue GV; 312 GV.IntVal = 0; 313 return GV; 314 } 315 316 // void exit(int) 317 GenericValue lle_X_exit(FunctionType *FT, 318 const std::vector<GenericValue> &Args) { 319 TheInterpreter->exitCalled(Args[0]); 320 return GenericValue(); 321 } 322 323 // void abort(void) 324 GenericValue lle_X_abort(FunctionType *FT, 325 const std::vector<GenericValue> &Args) { 326 //FIXME: should we report or raise here? 327 //report_fatal_error("Interpreted program raised SIGABRT"); 328 raise (SIGABRT); 329 return GenericValue(); 330 } 331 332 // int sprintf(char *, const char *, ...) - a very rough implementation to make 333 // output useful. 334 GenericValue lle_X_sprintf(FunctionType *FT, 335 const std::vector<GenericValue> &Args) { 336 char *OutputBuffer = (char *)GVTOP(Args[0]); 337 const char *FmtStr = (const char *)GVTOP(Args[1]); 338 unsigned ArgNo = 2; 339 340 // printf should return # chars printed. This is completely incorrect, but 341 // close enough for now. 342 GenericValue GV; 343 GV.IntVal = APInt(32, strlen(FmtStr)); 344 while (1) { 345 switch (*FmtStr) { 346 case 0: return GV; // Null terminator... 347 default: // Normal nonspecial character 348 sprintf(OutputBuffer++, "%c", *FmtStr++); 349 break; 350 case '\\': { // Handle escape codes 351 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 352 FmtStr += 2; OutputBuffer += 2; 353 break; 354 } 355 case '%': { // Handle format specifiers 356 char FmtBuf[100] = "", Buffer[1000] = ""; 357 char *FB = FmtBuf; 358 *FB++ = *FmtStr++; 359 char Last = *FB++ = *FmtStr++; 360 unsigned HowLong = 0; 361 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 362 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 363 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 364 Last != 'p' && Last != 's' && Last != '%') { 365 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 366 Last = *FB++ = *FmtStr++; 367 } 368 *FB = 0; 369 370 switch (Last) { 371 case '%': 372 memcpy(Buffer, "%", 2); break; 373 case 'c': 374 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 375 break; 376 case 'd': case 'i': 377 case 'u': case 'o': 378 case 'x': case 'X': 379 if (HowLong >= 1) { 380 if (HowLong == 1 && 381 TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && 382 sizeof(long) < sizeof(int64_t)) { 383 // Make sure we use %lld with a 64 bit argument because we might be 384 // compiling LLI on a 32 bit compiler. 385 unsigned Size = strlen(FmtBuf); 386 FmtBuf[Size] = FmtBuf[Size-1]; 387 FmtBuf[Size+1] = 0; 388 FmtBuf[Size-1] = 'l'; 389 } 390 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 391 } else 392 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 393 break; 394 case 'e': case 'E': case 'g': case 'G': case 'f': 395 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 396 case 'p': 397 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 398 case 's': 399 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 400 default: 401 errs() << "<unknown printf code '" << *FmtStr << "'!>"; 402 ArgNo++; break; 403 } 404 size_t Len = strlen(Buffer); 405 memcpy(OutputBuffer, Buffer, Len + 1); 406 OutputBuffer += Len; 407 } 408 break; 409 } 410 } 411 return GV; 412 } 413 414 // int printf(const char *, ...) - a very rough implementation to make output 415 // useful. 416 GenericValue lle_X_printf(FunctionType *FT, 417 const std::vector<GenericValue> &Args) { 418 char Buffer[10000]; 419 std::vector<GenericValue> NewArgs; 420 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 421 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 422 GenericValue GV = lle_X_sprintf(FT, NewArgs); 423 outs() << Buffer; 424 return GV; 425 } 426 427 // int sscanf(const char *format, ...); 428 GenericValue lle_X_sscanf(FunctionType *FT, 429 const std::vector<GenericValue> &args) { 430 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 431 432 char *Args[10]; 433 for (unsigned i = 0; i < args.size(); ++i) 434 Args[i] = (char*)GVTOP(args[i]); 435 436 GenericValue GV; 437 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 438 Args[5], Args[6], Args[7], Args[8], Args[9])); 439 return GV; 440 } 441 442 // int scanf(const char *format, ...); 443 GenericValue lle_X_scanf(FunctionType *FT, 444 const std::vector<GenericValue> &args) { 445 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 446 447 char *Args[10]; 448 for (unsigned i = 0; i < args.size(); ++i) 449 Args[i] = (char*)GVTOP(args[i]); 450 451 GenericValue GV; 452 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 453 Args[5], Args[6], Args[7], Args[8], Args[9])); 454 return GV; 455 } 456 457 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make 458 // output useful. 459 GenericValue lle_X_fprintf(FunctionType *FT, 460 const std::vector<GenericValue> &Args) { 461 assert(Args.size() >= 2); 462 char Buffer[10000]; 463 std::vector<GenericValue> NewArgs; 464 NewArgs.push_back(PTOGV(Buffer)); 465 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 466 GenericValue GV = lle_X_sprintf(FT, NewArgs); 467 468 fputs(Buffer, (FILE *) GVTOP(Args[0])); 469 return GV; 470 } 471 472 } // End extern "C" 473 474 // Done with externals; turn the warning back on 475 #ifdef _MSC_VER 476 #pragma warning(default: 4190) 477 #endif 478 479 480 void Interpreter::initializeExternalFunctions() { 481 sys::ScopedLock Writer(*FunctionsLock); 482 FuncNames["lle_X_atexit"] = lle_X_atexit; 483 FuncNames["lle_X_exit"] = lle_X_exit; 484 FuncNames["lle_X_abort"] = lle_X_abort; 485 486 FuncNames["lle_X_printf"] = lle_X_printf; 487 FuncNames["lle_X_sprintf"] = lle_X_sprintf; 488 FuncNames["lle_X_sscanf"] = lle_X_sscanf; 489 FuncNames["lle_X_scanf"] = lle_X_scanf; 490 FuncNames["lle_X_fprintf"] = lle_X_fprintf; 491 } 492