1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis 2 * 3 * LibTomCrypt is a library that provides various cryptographic 4 * algorithms in a highly modular and flexible manner. 5 * 6 * The library is free for all purposes without any express 7 * guarantee it works. 8 * 9 * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com 10 */ 11 #include "tomcrypt.h" 12 13 /** 14 @file sha1.c 15 SHA1 code by Tom St Denis 16 */ 17 18 19 #ifdef SHA1 20 21 const struct ltc_hash_descriptor sha1_desc = 22 { 23 "sha1", 24 2, 25 20, 26 64, 27 28 /* OID */ 29 { 1, 3, 14, 3, 2, 26, }, 30 6, 31 32 &sha1_init, 33 &sha1_process, 34 &sha1_done, 35 &sha1_test, 36 NULL 37 }; 38 39 #define F0(x,y,z) (z ^ (x & (y ^ z))) 40 #define F1(x,y,z) (x ^ y ^ z) 41 #define F2(x,y,z) ((x & y) | (z & (x | y))) 42 #define F3(x,y,z) (x ^ y ^ z) 43 44 #ifdef LTC_CLEAN_STACK 45 static int _sha1_compress(hash_state *md, unsigned char *buf) 46 #else 47 static int sha1_compress(hash_state *md, unsigned char *buf) 48 #endif 49 { 50 ulong32 a,b,c,d,e,W[80],i; 51 #ifdef LTC_SMALL_CODE 52 ulong32 t; 53 #endif 54 55 /* copy the state into 512-bits into W[0..15] */ 56 for (i = 0; i < 16; i++) { 57 LOAD32H(W[i], buf + (4*i)); 58 } 59 60 /* copy state */ 61 a = md->sha1.state[0]; 62 b = md->sha1.state[1]; 63 c = md->sha1.state[2]; 64 d = md->sha1.state[3]; 65 e = md->sha1.state[4]; 66 67 /* expand it */ 68 for (i = 16; i < 80; i++) { 69 W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); 70 } 71 72 /* compress */ 73 /* round one */ 74 #define FF0(a,b,c,d,e,i) e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); b = ROLc(b, 30); 75 #define FF1(a,b,c,d,e,i) e = (ROLc(a, 5) + F1(b,c,d) + e + W[i] + 0x6ed9eba1UL); b = ROLc(b, 30); 76 #define FF2(a,b,c,d,e,i) e = (ROLc(a, 5) + F2(b,c,d) + e + W[i] + 0x8f1bbcdcUL); b = ROLc(b, 30); 77 #define FF3(a,b,c,d,e,i) e = (ROLc(a, 5) + F3(b,c,d) + e + W[i] + 0xca62c1d6UL); b = ROLc(b, 30); 78 79 #ifdef LTC_SMALL_CODE 80 81 for (i = 0; i < 20; ) { 82 FF0(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t; 83 } 84 85 for (; i < 40; ) { 86 FF1(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t; 87 } 88 89 for (; i < 60; ) { 90 FF2(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t; 91 } 92 93 for (; i < 80; ) { 94 FF3(a,b,c,d,e,i++); t = e; e = d; d = c; c = b; b = a; a = t; 95 } 96 97 #else 98 99 for (i = 0; i < 20; ) { 100 FF0(a,b,c,d,e,i++); 101 FF0(e,a,b,c,d,i++); 102 FF0(d,e,a,b,c,i++); 103 FF0(c,d,e,a,b,i++); 104 FF0(b,c,d,e,a,i++); 105 } 106 107 /* round two */ 108 for (; i < 40; ) { 109 FF1(a,b,c,d,e,i++); 110 FF1(e,a,b,c,d,i++); 111 FF1(d,e,a,b,c,i++); 112 FF1(c,d,e,a,b,i++); 113 FF1(b,c,d,e,a,i++); 114 } 115 116 /* round three */ 117 for (; i < 60; ) { 118 FF2(a,b,c,d,e,i++); 119 FF2(e,a,b,c,d,i++); 120 FF2(d,e,a,b,c,i++); 121 FF2(c,d,e,a,b,i++); 122 FF2(b,c,d,e,a,i++); 123 } 124 125 /* round four */ 126 for (; i < 80; ) { 127 FF3(a,b,c,d,e,i++); 128 FF3(e,a,b,c,d,i++); 129 FF3(d,e,a,b,c,i++); 130 FF3(c,d,e,a,b,i++); 131 FF3(b,c,d,e,a,i++); 132 } 133 #endif 134 135 #undef FF0 136 #undef FF1 137 #undef FF2 138 #undef FF3 139 140 /* store */ 141 md->sha1.state[0] = md->sha1.state[0] + a; 142 md->sha1.state[1] = md->sha1.state[1] + b; 143 md->sha1.state[2] = md->sha1.state[2] + c; 144 md->sha1.state[3] = md->sha1.state[3] + d; 145 md->sha1.state[4] = md->sha1.state[4] + e; 146 147 return CRYPT_OK; 148 } 149 150 #ifdef LTC_CLEAN_STACK 151 static int sha1_compress(hash_state *md, unsigned char *buf) 152 { 153 int err; 154 err = _sha1_compress(md, buf); 155 burn_stack(sizeof(ulong32) * 87); 156 return err; 157 } 158 #endif 159 160 /** 161 Initialize the hash state 162 @param md The hash state you wish to initialize 163 @return CRYPT_OK if successful 164 */ 165 int sha1_init(hash_state * md) 166 { 167 LTC_ARGCHK(md != NULL); 168 md->sha1.state[0] = 0x67452301UL; 169 md->sha1.state[1] = 0xefcdab89UL; 170 md->sha1.state[2] = 0x98badcfeUL; 171 md->sha1.state[3] = 0x10325476UL; 172 md->sha1.state[4] = 0xc3d2e1f0UL; 173 md->sha1.curlen = 0; 174 md->sha1.length = 0; 175 return CRYPT_OK; 176 } 177 178 /** 179 Process a block of memory though the hash 180 @param md The hash state 181 @param in The data to hash 182 @param inlen The length of the data (octets) 183 @return CRYPT_OK if successful 184 */ 185 HASH_PROCESS(sha1_process, sha1_compress, sha1, 64) 186 187 /** 188 Terminate the hash to get the digest 189 @param md The hash state 190 @param out [out] The destination of the hash (20 bytes) 191 @return CRYPT_OK if successful 192 */ 193 int sha1_done(hash_state * md, unsigned char *out) 194 { 195 int i; 196 197 LTC_ARGCHK(md != NULL); 198 LTC_ARGCHK(out != NULL); 199 200 if (md->sha1.curlen >= sizeof(md->sha1.buf)) { 201 return CRYPT_INVALID_ARG; 202 } 203 204 /* increase the length of the message */ 205 md->sha1.length += md->sha1.curlen * 8; 206 207 /* append the '1' bit */ 208 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80; 209 210 /* if the length is currently above 56 bytes we append zeros 211 * then compress. Then we can fall back to padding zeros and length 212 * encoding like normal. 213 */ 214 if (md->sha1.curlen > 56) { 215 while (md->sha1.curlen < 64) { 216 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0; 217 } 218 sha1_compress(md, md->sha1.buf); 219 md->sha1.curlen = 0; 220 } 221 222 /* pad upto 56 bytes of zeroes */ 223 while (md->sha1.curlen < 56) { 224 md->sha1.buf[md->sha1.curlen++] = (unsigned char)0; 225 } 226 227 /* store length */ 228 STORE64H(md->sha1.length, md->sha1.buf+56); 229 sha1_compress(md, md->sha1.buf); 230 231 /* copy output */ 232 for (i = 0; i < 5; i++) { 233 STORE32H(md->sha1.state[i], out+(4*i)); 234 } 235 #ifdef LTC_CLEAN_STACK 236 zeromem(md, sizeof(hash_state)); 237 #endif 238 return CRYPT_OK; 239 } 240 241 /** 242 Self-test the hash 243 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled 244 */ 245 int sha1_test(void) 246 { 247 #ifndef LTC_TEST 248 return CRYPT_NOP; 249 #else 250 static const struct { 251 char *msg; 252 unsigned char hash[20]; 253 } tests[] = { 254 { "abc", 255 { 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 256 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c, 257 0x9c, 0xd0, 0xd8, 0x9d } 258 }, 259 { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 260 { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 261 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 262 0xE5, 0x46, 0x70, 0xF1 } 263 } 264 }; 265 266 int i; 267 unsigned char tmp[20]; 268 hash_state md; 269 270 for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) { 271 sha1_init(&md); 272 sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)strlen(tests[i].msg)); 273 sha1_done(&md, tmp); 274 if (XMEMCMP(tmp, tests[i].hash, 20) != 0) { 275 return CRYPT_FAIL_TESTVECTOR; 276 } 277 } 278 return CRYPT_OK; 279 #endif 280 } 281 282 #endif 283 284 285 286 /* $Source: /cvs/libtom/libtomcrypt/src/hashes/sha1.c,v $ */ 287 /* $Revision: 1.8 $ */ 288 /* $Date: 2006/11/01 09:28:17 $ */ 289