1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "fast-dtoa.h" 31 32 #include "cached-powers.h" 33 #include "diy-fp.h" 34 #include "double.h" 35 36 namespace v8 { 37 namespace internal { 38 39 // The minimal and maximal target exponent define the range of w's binary 40 // exponent, where 'w' is the result of multiplying the input by a cached power 41 // of ten. 42 // 43 // A different range might be chosen on a different platform, to optimize digit 44 // generation, but a smaller range requires more powers of ten to be cached. 45 static const int kMinimalTargetExponent = -60; 46 static const int kMaximalTargetExponent = -32; 47 48 49 // Adjusts the last digit of the generated number, and screens out generated 50 // solutions that may be inaccurate. A solution may be inaccurate if it is 51 // outside the safe interval, or if we ctannot prove that it is closer to the 52 // input than a neighboring representation of the same length. 53 // 54 // Input: * buffer containing the digits of too_high / 10^kappa 55 // * the buffer's length 56 // * distance_too_high_w == (too_high - w).f() * unit 57 // * unsafe_interval == (too_high - too_low).f() * unit 58 // * rest = (too_high - buffer * 10^kappa).f() * unit 59 // * ten_kappa = 10^kappa * unit 60 // * unit = the common multiplier 61 // Output: returns true if the buffer is guaranteed to contain the closest 62 // representable number to the input. 63 // Modifies the generated digits in the buffer to approach (round towards) w. 64 static bool RoundWeed(Vector<char> buffer, 65 int length, 66 uint64_t distance_too_high_w, 67 uint64_t unsafe_interval, 68 uint64_t rest, 69 uint64_t ten_kappa, 70 uint64_t unit) { 71 uint64_t small_distance = distance_too_high_w - unit; 72 uint64_t big_distance = distance_too_high_w + unit; 73 // Let w_low = too_high - big_distance, and 74 // w_high = too_high - small_distance. 75 // Note: w_low < w < w_high 76 // 77 // The real w (* unit) must lie somewhere inside the interval 78 // ]w_low; w_high[ (often written as "(w_low; w_high)") 79 80 // Basically the buffer currently contains a number in the unsafe interval 81 // ]too_low; too_high[ with too_low < w < too_high 82 // 83 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 84 // ^v 1 unit ^ ^ ^ ^ 85 // boundary_high --------------------- . . . . 86 // ^v 1 unit . . . . 87 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . . 88 // . . ^ . . 89 // . big_distance . . . 90 // . . . . rest 91 // small_distance . . . . 92 // v . . . . 93 // w_high - - - - - - - - - - - - - - - - - - . . . . 94 // ^v 1 unit . . . . 95 // w ---------------------------------------- . . . . 96 // ^v 1 unit v . . . 97 // w_low - - - - - - - - - - - - - - - - - - - - - . . . 98 // . . v 99 // buffer --------------------------------------------------+-------+-------- 100 // . . 101 // safe_interval . 102 // v . 103 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . 104 // ^v 1 unit . 105 // boundary_low ------------------------- unsafe_interval 106 // ^v 1 unit v 107 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 108 // 109 // 110 // Note that the value of buffer could lie anywhere inside the range too_low 111 // to too_high. 112 // 113 // boundary_low, boundary_high and w are approximations of the real boundaries 114 // and v (the input number). They are guaranteed to be precise up to one unit. 115 // In fact the error is guaranteed to be strictly less than one unit. 116 // 117 // Anything that lies outside the unsafe interval is guaranteed not to round 118 // to v when read again. 119 // Anything that lies inside the safe interval is guaranteed to round to v 120 // when read again. 121 // If the number inside the buffer lies inside the unsafe interval but not 122 // inside the safe interval then we simply do not know and bail out (returning 123 // false). 124 // 125 // Similarly we have to take into account the imprecision of 'w' when finding 126 // the closest representation of 'w'. If we have two potential 127 // representations, and one is closer to both w_low and w_high, then we know 128 // it is closer to the actual value v. 129 // 130 // By generating the digits of too_high we got the largest (closest to 131 // too_high) buffer that is still in the unsafe interval. In the case where 132 // w_high < buffer < too_high we try to decrement the buffer. 133 // This way the buffer approaches (rounds towards) w. 134 // There are 3 conditions that stop the decrementation process: 135 // 1) the buffer is already below w_high 136 // 2) decrementing the buffer would make it leave the unsafe interval 137 // 3) decrementing the buffer would yield a number below w_high and farther 138 // away than the current number. In other words: 139 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high 140 // Instead of using the buffer directly we use its distance to too_high. 141 // Conceptually rest ~= too_high - buffer 142 // We need to do the following tests in this order to avoid over- and 143 // underflows. 144 ASSERT(rest <= unsafe_interval); 145 while (rest < small_distance && // Negated condition 1 146 unsafe_interval - rest >= ten_kappa && // Negated condition 2 147 (rest + ten_kappa < small_distance || // buffer{-1} > w_high 148 small_distance - rest >= rest + ten_kappa - small_distance)) { 149 buffer[length - 1]--; 150 rest += ten_kappa; 151 } 152 153 // We have approached w+ as much as possible. We now test if approaching w- 154 // would require changing the buffer. If yes, then we have two possible 155 // representations close to w, but we cannot decide which one is closer. 156 if (rest < big_distance && 157 unsafe_interval - rest >= ten_kappa && 158 (rest + ten_kappa < big_distance || 159 big_distance - rest > rest + ten_kappa - big_distance)) { 160 return false; 161 } 162 163 // Weeding test. 164 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] 165 // Since too_low = too_high - unsafe_interval this is equivalent to 166 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] 167 // Conceptually we have: rest ~= too_high - buffer 168 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); 169 } 170 171 172 // Rounds the buffer upwards if the result is closer to v by possibly adding 173 // 1 to the buffer. If the precision of the calculation is not sufficient to 174 // round correctly, return false. 175 // The rounding might shift the whole buffer in which case the kappa is 176 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. 177 // 178 // If 2*rest > ten_kappa then the buffer needs to be round up. 179 // rest can have an error of +/- 1 unit. This function accounts for the 180 // imprecision and returns false, if the rounding direction cannot be 181 // unambiguously determined. 182 // 183 // Precondition: rest < ten_kappa. 184 static bool RoundWeedCounted(Vector<char> buffer, 185 int length, 186 uint64_t rest, 187 uint64_t ten_kappa, 188 uint64_t unit, 189 int* kappa) { 190 ASSERT(rest < ten_kappa); 191 // The following tests are done in a specific order to avoid overflows. They 192 // will work correctly with any uint64 values of rest < ten_kappa and unit. 193 // 194 // If the unit is too big, then we don't know which way to round. For example 195 // a unit of 50 means that the real number lies within rest +/- 50. If 196 // 10^kappa == 40 then there is no way to tell which way to round. 197 if (unit >= ten_kappa) return false; 198 // Even if unit is just half the size of 10^kappa we are already completely 199 // lost. (And after the previous test we know that the expression will not 200 // over/underflow.) 201 if (ten_kappa - unit <= unit) return false; 202 // If 2 * (rest + unit) <= 10^kappa we can safely round down. 203 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { 204 return true; 205 } 206 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. 207 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { 208 // Increment the last digit recursively until we find a non '9' digit. 209 buffer[length - 1]++; 210 for (int i = length - 1; i > 0; --i) { 211 if (buffer[i] != '0' + 10) break; 212 buffer[i] = '0'; 213 buffer[i - 1]++; 214 } 215 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the 216 // exception of the first digit all digits are now '0'. Simply switch the 217 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and 218 // the power (the kappa) is increased. 219 if (buffer[0] == '0' + 10) { 220 buffer[0] = '1'; 221 (*kappa) += 1; 222 } 223 return true; 224 } 225 return false; 226 } 227 228 229 static const uint32_t kTen4 = 10000; 230 static const uint32_t kTen5 = 100000; 231 static const uint32_t kTen6 = 1000000; 232 static const uint32_t kTen7 = 10000000; 233 static const uint32_t kTen8 = 100000000; 234 static const uint32_t kTen9 = 1000000000; 235 236 // Returns the biggest power of ten that is less than or equal than the given 237 // number. We furthermore receive the maximum number of bits 'number' has. 238 // If number_bits == 0 then 0^-1 is returned 239 // The number of bits must be <= 32. 240 // Precondition: number < (1 << (number_bits + 1)). 241 static void BiggestPowerTen(uint32_t number, 242 int number_bits, 243 uint32_t* power, 244 int* exponent) { 245 switch (number_bits) { 246 case 32: 247 case 31: 248 case 30: 249 if (kTen9 <= number) { 250 *power = kTen9; 251 *exponent = 9; 252 break; 253 } // else fallthrough 254 case 29: 255 case 28: 256 case 27: 257 if (kTen8 <= number) { 258 *power = kTen8; 259 *exponent = 8; 260 break; 261 } // else fallthrough 262 case 26: 263 case 25: 264 case 24: 265 if (kTen7 <= number) { 266 *power = kTen7; 267 *exponent = 7; 268 break; 269 } // else fallthrough 270 case 23: 271 case 22: 272 case 21: 273 case 20: 274 if (kTen6 <= number) { 275 *power = kTen6; 276 *exponent = 6; 277 break; 278 } // else fallthrough 279 case 19: 280 case 18: 281 case 17: 282 if (kTen5 <= number) { 283 *power = kTen5; 284 *exponent = 5; 285 break; 286 } // else fallthrough 287 case 16: 288 case 15: 289 case 14: 290 if (kTen4 <= number) { 291 *power = kTen4; 292 *exponent = 4; 293 break; 294 } // else fallthrough 295 case 13: 296 case 12: 297 case 11: 298 case 10: 299 if (1000 <= number) { 300 *power = 1000; 301 *exponent = 3; 302 break; 303 } // else fallthrough 304 case 9: 305 case 8: 306 case 7: 307 if (100 <= number) { 308 *power = 100; 309 *exponent = 2; 310 break; 311 } // else fallthrough 312 case 6: 313 case 5: 314 case 4: 315 if (10 <= number) { 316 *power = 10; 317 *exponent = 1; 318 break; 319 } // else fallthrough 320 case 3: 321 case 2: 322 case 1: 323 if (1 <= number) { 324 *power = 1; 325 *exponent = 0; 326 break; 327 } // else fallthrough 328 case 0: 329 *power = 0; 330 *exponent = -1; 331 break; 332 default: 333 // Following assignments are here to silence compiler warnings. 334 *power = 0; 335 *exponent = 0; 336 UNREACHABLE(); 337 } 338 } 339 340 341 // Generates the digits of input number w. 342 // w is a floating-point number (DiyFp), consisting of a significand and an 343 // exponent. Its exponent is bounded by kMinimalTargetExponent and 344 // kMaximalTargetExponent. 345 // Hence -60 <= w.e() <= -32. 346 // 347 // Returns false if it fails, in which case the generated digits in the buffer 348 // should not be used. 349 // Preconditions: 350 // * low, w and high are correct up to 1 ulp (unit in the last place). That 351 // is, their error must be less than a unit of their last digits. 352 // * low.e() == w.e() == high.e() 353 // * low < w < high, and taking into account their error: low~ <= high~ 354 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 355 // Postconditions: returns false if procedure fails. 356 // otherwise: 357 // * buffer is not null-terminated, but len contains the number of digits. 358 // * buffer contains the shortest possible decimal digit-sequence 359 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the 360 // correct values of low and high (without their error). 361 // * if more than one decimal representation gives the minimal number of 362 // decimal digits then the one closest to W (where W is the correct value 363 // of w) is chosen. 364 // Remark: this procedure takes into account the imprecision of its input 365 // numbers. If the precision is not enough to guarantee all the postconditions 366 // then false is returned. This usually happens rarely (~0.5%). 367 // 368 // Say, for the sake of example, that 369 // w.e() == -48, and w.f() == 0x1234567890abcdef 370 // w's value can be computed by w.f() * 2^w.e() 371 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). 372 // -> w's integral part is 0x1234 373 // w's fractional part is therefore 0x567890abcdef. 374 // Printing w's integral part is easy (simply print 0x1234 in decimal). 375 // In order to print its fraction we repeatedly multiply the fraction by 10 and 376 // get each digit. Example the first digit after the point would be computed by 377 // (0x567890abcdef * 10) >> 48. -> 3 378 // The whole thing becomes slightly more complicated because we want to stop 379 // once we have enough digits. That is, once the digits inside the buffer 380 // represent 'w' we can stop. Everything inside the interval low - high 381 // represents w. However we have to pay attention to low, high and w's 382 // imprecision. 383 static bool DigitGen(DiyFp low, 384 DiyFp w, 385 DiyFp high, 386 Vector<char> buffer, 387 int* length, 388 int* kappa) { 389 ASSERT(low.e() == w.e() && w.e() == high.e()); 390 ASSERT(low.f() + 1 <= high.f() - 1); 391 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 392 // low, w and high are imprecise, but by less than one ulp (unit in the last 393 // place). 394 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that 395 // the new numbers are outside of the interval we want the final 396 // representation to lie in. 397 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield 398 // numbers that are certain to lie in the interval. We will use this fact 399 // later on. 400 // We will now start by generating the digits within the uncertain 401 // interval. Later we will weed out representations that lie outside the safe 402 // interval and thus _might_ lie outside the correct interval. 403 uint64_t unit = 1; 404 DiyFp too_low = DiyFp(low.f() - unit, low.e()); 405 DiyFp too_high = DiyFp(high.f() + unit, high.e()); 406 // too_low and too_high are guaranteed to lie outside the interval we want the 407 // generated number in. 408 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); 409 // We now cut the input number into two parts: the integral digits and the 410 // fractionals. We will not write any decimal separator though, but adapt 411 // kappa instead. 412 // Reminder: we are currently computing the digits (stored inside the buffer) 413 // such that: too_low < buffer * 10^kappa < too_high 414 // We use too_high for the digit_generation and stop as soon as possible. 415 // If we stop early we effectively round down. 416 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 417 // Division by one is a shift. 418 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); 419 // Modulo by one is an and. 420 uint64_t fractionals = too_high.f() & (one.f() - 1); 421 uint32_t divisor; 422 int divisor_exponent; 423 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 424 &divisor, &divisor_exponent); 425 *kappa = divisor_exponent + 1; 426 *length = 0; 427 // Loop invariant: buffer = too_high / 10^kappa (integer division) 428 // The invariant holds for the first iteration: kappa has been initialized 429 // with the divisor exponent + 1. And the divisor is the biggest power of ten 430 // that is smaller than integrals. 431 while (*kappa > 0) { 432 int digit = integrals / divisor; 433 buffer[*length] = '0' + digit; 434 (*length)++; 435 integrals %= divisor; 436 (*kappa)--; 437 // Note that kappa now equals the exponent of the divisor and that the 438 // invariant thus holds again. 439 uint64_t rest = 440 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 441 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) 442 // Reminder: unsafe_interval.e() == one.e() 443 if (rest < unsafe_interval.f()) { 444 // Rounding down (by not emitting the remaining digits) yields a number 445 // that lies within the unsafe interval. 446 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), 447 unsafe_interval.f(), rest, 448 static_cast<uint64_t>(divisor) << -one.e(), unit); 449 } 450 divisor /= 10; 451 } 452 453 // The integrals have been generated. We are at the point of the decimal 454 // separator. In the following loop we simply multiply the remaining digits by 455 // 10 and divide by one. We just need to pay attention to multiply associated 456 // data (like the interval or 'unit'), too. 457 // Note that the multiplication by 10 does not overflow, because w.e >= -60 458 // and thus one.e >= -60. 459 ASSERT(one.e() >= -60); 460 ASSERT(fractionals < one.f()); 461 ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 462 while (true) { 463 fractionals *= 10; 464 unit *= 10; 465 unsafe_interval.set_f(unsafe_interval.f() * 10); 466 // Integer division by one. 467 int digit = static_cast<int>(fractionals >> -one.e()); 468 buffer[*length] = '0' + digit; 469 (*length)++; 470 fractionals &= one.f() - 1; // Modulo by one. 471 (*kappa)--; 472 if (fractionals < unsafe_interval.f()) { 473 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, 474 unsafe_interval.f(), fractionals, one.f(), unit); 475 } 476 } 477 } 478 479 480 481 // Generates (at most) requested_digits of input number w. 482 // w is a floating-point number (DiyFp), consisting of a significand and an 483 // exponent. Its exponent is bounded by kMinimalTargetExponent and 484 // kMaximalTargetExponent. 485 // Hence -60 <= w.e() <= -32. 486 // 487 // Returns false if it fails, in which case the generated digits in the buffer 488 // should not be used. 489 // Preconditions: 490 // * w is correct up to 1 ulp (unit in the last place). That 491 // is, its error must be strictly less than a unit of its last digit. 492 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent 493 // 494 // Postconditions: returns false if procedure fails. 495 // otherwise: 496 // * buffer is not null-terminated, but length contains the number of 497 // digits. 498 // * the representation in buffer is the most precise representation of 499 // requested_digits digits. 500 // * buffer contains at most requested_digits digits of w. If there are less 501 // than requested_digits digits then some trailing '0's have been removed. 502 // * kappa is such that 503 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. 504 // 505 // Remark: This procedure takes into account the imprecision of its input 506 // numbers. If the precision is not enough to guarantee all the postconditions 507 // then false is returned. This usually happens rarely, but the failure-rate 508 // increases with higher requested_digits. 509 static bool DigitGenCounted(DiyFp w, 510 int requested_digits, 511 Vector<char> buffer, 512 int* length, 513 int* kappa) { 514 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); 515 ASSERT(kMinimalTargetExponent >= -60); 516 ASSERT(kMaximalTargetExponent <= -32); 517 // w is assumed to have an error less than 1 unit. Whenever w is scaled we 518 // also scale its error. 519 uint64_t w_error = 1; 520 // We cut the input number into two parts: the integral digits and the 521 // fractional digits. We don't emit any decimal separator, but adapt kappa 522 // instead. Example: instead of writing "1.2" we put "12" into the buffer and 523 // increase kappa by 1. 524 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); 525 // Division by one is a shift. 526 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); 527 // Modulo by one is an and. 528 uint64_t fractionals = w.f() & (one.f() - 1); 529 uint32_t divisor; 530 int divisor_exponent; 531 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), 532 &divisor, &divisor_exponent); 533 *kappa = divisor_exponent + 1; 534 *length = 0; 535 536 // Loop invariant: buffer = w / 10^kappa (integer division) 537 // The invariant holds for the first iteration: kappa has been initialized 538 // with the divisor exponent + 1. And the divisor is the biggest power of ten 539 // that is smaller than 'integrals'. 540 while (*kappa > 0) { 541 int digit = integrals / divisor; 542 buffer[*length] = '0' + digit; 543 (*length)++; 544 requested_digits--; 545 integrals %= divisor; 546 (*kappa)--; 547 // Note that kappa now equals the exponent of the divisor and that the 548 // invariant thus holds again. 549 if (requested_digits == 0) break; 550 divisor /= 10; 551 } 552 553 if (requested_digits == 0) { 554 uint64_t rest = 555 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; 556 return RoundWeedCounted(buffer, *length, rest, 557 static_cast<uint64_t>(divisor) << -one.e(), w_error, 558 kappa); 559 } 560 561 // The integrals have been generated. We are at the point of the decimal 562 // separator. In the following loop we simply multiply the remaining digits by 563 // 10 and divide by one. We just need to pay attention to multiply associated 564 // data (the 'unit'), too. 565 // Note that the multiplication by 10 does not overflow, because w.e >= -60 566 // and thus one.e >= -60. 567 ASSERT(one.e() >= -60); 568 ASSERT(fractionals < one.f()); 569 ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); 570 while (requested_digits > 0 && fractionals > w_error) { 571 fractionals *= 10; 572 w_error *= 10; 573 // Integer division by one. 574 int digit = static_cast<int>(fractionals >> -one.e()); 575 buffer[*length] = '0' + digit; 576 (*length)++; 577 requested_digits--; 578 fractionals &= one.f() - 1; // Modulo by one. 579 (*kappa)--; 580 } 581 if (requested_digits != 0) return false; 582 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, 583 kappa); 584 } 585 586 587 // Provides a decimal representation of v. 588 // Returns true if it succeeds, otherwise the result cannot be trusted. 589 // There will be *length digits inside the buffer (not null-terminated). 590 // If the function returns true then 591 // v == (double) (buffer * 10^decimal_exponent). 592 // The digits in the buffer are the shortest representation possible: no 593 // 0.09999999999999999 instead of 0.1. The shorter representation will even be 594 // chosen even if the longer one would be closer to v. 595 // The last digit will be closest to the actual v. That is, even if several 596 // digits might correctly yield 'v' when read again, the closest will be 597 // computed. 598 static bool Grisu3(double v, 599 Vector<char> buffer, 600 int* length, 601 int* decimal_exponent) { 602 DiyFp w = Double(v).AsNormalizedDiyFp(); 603 // boundary_minus and boundary_plus are the boundaries between v and its 604 // closest floating-point neighbors. Any number strictly between 605 // boundary_minus and boundary_plus will round to v when convert to a double. 606 // Grisu3 will never output representations that lie exactly on a boundary. 607 DiyFp boundary_minus, boundary_plus; 608 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); 609 ASSERT(boundary_plus.e() == w.e()); 610 DiyFp ten_mk; // Cached power of ten: 10^-k 611 int mk; // -k 612 int ten_mk_minimal_binary_exponent = 613 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 614 int ten_mk_maximal_binary_exponent = 615 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 616 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 617 ten_mk_minimal_binary_exponent, 618 ten_mk_maximal_binary_exponent, 619 &ten_mk, &mk); 620 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + 621 DiyFp::kSignificandSize) && 622 (kMaximalTargetExponent >= w.e() + ten_mk.e() + 623 DiyFp::kSignificandSize)); 624 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 625 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 626 627 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 628 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 629 // off by a small amount. 630 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 631 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 632 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 633 DiyFp scaled_w = DiyFp::Times(w, ten_mk); 634 ASSERT(scaled_w.e() == 635 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); 636 // In theory it would be possible to avoid some recomputations by computing 637 // the difference between w and boundary_minus/plus (a power of 2) and to 638 // compute scaled_boundary_minus/plus by subtracting/adding from 639 // scaled_w. However the code becomes much less readable and the speed 640 // enhancements are not terriffic. 641 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); 642 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); 643 644 // DigitGen will generate the digits of scaled_w. Therefore we have 645 // v == (double) (scaled_w * 10^-mk). 646 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an 647 // integer than it will be updated. For instance if scaled_w == 1.23 then 648 // the buffer will be filled with "123" und the decimal_exponent will be 649 // decreased by 2. 650 int kappa; 651 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, 652 buffer, length, &kappa); 653 *decimal_exponent = -mk + kappa; 654 return result; 655 } 656 657 658 // The "counted" version of grisu3 (see above) only generates requested_digits 659 // number of digits. This version does not generate the shortest representation, 660 // and with enough requested digits 0.1 will at some point print as 0.9999999... 661 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and 662 // therefore the rounding strategy for halfway cases is irrelevant. 663 static bool Grisu3Counted(double v, 664 int requested_digits, 665 Vector<char> buffer, 666 int* length, 667 int* decimal_exponent) { 668 DiyFp w = Double(v).AsNormalizedDiyFp(); 669 DiyFp ten_mk; // Cached power of ten: 10^-k 670 int mk; // -k 671 int ten_mk_minimal_binary_exponent = 672 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); 673 int ten_mk_maximal_binary_exponent = 674 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); 675 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( 676 ten_mk_minimal_binary_exponent, 677 ten_mk_maximal_binary_exponent, 678 &ten_mk, &mk); 679 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + 680 DiyFp::kSignificandSize) && 681 (kMaximalTargetExponent >= w.e() + ten_mk.e() + 682 DiyFp::kSignificandSize)); 683 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a 684 // 64 bit significand and ten_mk is thus only precise up to 64 bits. 685 686 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated 687 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now 688 // off by a small amount. 689 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. 690 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then 691 // (f-1) * 2^e < w*10^k < (f+1) * 2^e 692 DiyFp scaled_w = DiyFp::Times(w, ten_mk); 693 694 // We now have (double) (scaled_w * 10^-mk). 695 // DigitGen will generate the first requested_digits digits of scaled_w and 696 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It 697 // will not always be exactly the same since DigitGenCounted only produces a 698 // limited number of digits.) 699 int kappa; 700 bool result = DigitGenCounted(scaled_w, requested_digits, 701 buffer, length, &kappa); 702 *decimal_exponent = -mk + kappa; 703 return result; 704 } 705 706 707 bool FastDtoa(double v, 708 FastDtoaMode mode, 709 int requested_digits, 710 Vector<char> buffer, 711 int* length, 712 int* decimal_point) { 713 ASSERT(v > 0); 714 ASSERT(!Double(v).IsSpecial()); 715 716 bool result = false; 717 int decimal_exponent = 0; 718 switch (mode) { 719 case FAST_DTOA_SHORTEST: 720 result = Grisu3(v, buffer, length, &decimal_exponent); 721 break; 722 case FAST_DTOA_PRECISION: 723 result = Grisu3Counted(v, requested_digits, 724 buffer, length, &decimal_exponent); 725 break; 726 default: 727 UNREACHABLE(); 728 } 729 if (result) { 730 *decimal_point = *length + decimal_exponent; 731 buffer[*length] = '\0'; 732 } 733 return result; 734 } 735 736 } } // namespace v8::internal 737