Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_BASICTYPES_H_
      6 #define BASE_BASICTYPES_H_
      7 #pragma once
      8 
      9 #include <limits.h>         // So we can set the bounds of our types
     10 #include <stddef.h>         // For size_t
     11 #include <string.h>         // for memcpy
     12 
     13 #include "base/port.h"    // Types that only need exist on certain systems
     14 
     15 #ifndef COMPILER_MSVC
     16 // stdint.h is part of C99 but MSVC doesn't have it.
     17 #include <stdint.h>         // For intptr_t.
     18 #endif
     19 
     20 typedef signed char         schar;
     21 typedef signed char         int8;
     22 typedef short               int16;
     23 // TODO: Remove these type guards.  These are to avoid conflicts with
     24 // obsolete/protypes.h in the Gecko SDK.
     25 #ifndef _INT32
     26 #define _INT32
     27 typedef int                 int32;
     28 #endif
     29 
     30 // The NSPR system headers define 64-bit as |long| when possible, except on
     31 // Mac OS X.  In order to not have typedef mismatches, we do the same on LP64.
     32 //
     33 // On Mac OS X, |long long| is used for 64-bit types for compatibility with
     34 // <inttypes.h> format macros even in the LP64 model.
     35 #if defined(__LP64__) && !defined(OS_MACOSX)
     36 typedef long                int64;
     37 #else
     38 typedef long long           int64;
     39 #endif
     40 
     41 // NOTE: unsigned types are DANGEROUS in loops and other arithmetical
     42 // places.  Use the signed types unless your variable represents a bit
     43 // pattern (eg a hash value) or you really need the extra bit.  Do NOT
     44 // use 'unsigned' to express "this value should always be positive";
     45 // use assertions for this.
     46 
     47 typedef unsigned char      uint8;
     48 typedef unsigned short     uint16;
     49 // TODO: Remove these type guards.  These are to avoid conflicts with
     50 // obsolete/protypes.h in the Gecko SDK.
     51 #ifndef _UINT32
     52 #define _UINT32
     53 typedef unsigned int       uint32;
     54 #endif
     55 
     56 // See the comment above about NSPR and 64-bit.
     57 #if defined(__LP64__) && !defined(OS_MACOSX)
     58 typedef unsigned long uint64;
     59 #else
     60 typedef unsigned long long uint64;
     61 #endif
     62 
     63 // A type to represent a Unicode code-point value. As of Unicode 4.0,
     64 // such values require up to 21 bits.
     65 // (For type-checking on pointers, make this explicitly signed,
     66 // and it should always be the signed version of whatever int32 is.)
     67 typedef signed int         char32;
     68 
     69 const uint8  kuint8max  = (( uint8) 0xFF);
     70 const uint16 kuint16max = ((uint16) 0xFFFF);
     71 const uint32 kuint32max = ((uint32) 0xFFFFFFFF);
     72 const uint64 kuint64max = ((uint64) GG_LONGLONG(0xFFFFFFFFFFFFFFFF));
     73 const  int8  kint8min   = ((  int8) 0x80);
     74 const  int8  kint8max   = ((  int8) 0x7F);
     75 const  int16 kint16min  = (( int16) 0x8000);
     76 const  int16 kint16max  = (( int16) 0x7FFF);
     77 const  int32 kint32min  = (( int32) 0x80000000);
     78 const  int32 kint32max  = (( int32) 0x7FFFFFFF);
     79 const  int64 kint64min  = (( int64) GG_LONGLONG(0x8000000000000000));
     80 const  int64 kint64max  = (( int64) GG_LONGLONG(0x7FFFFFFFFFFFFFFF));
     81 
     82 // A macro to disallow the copy constructor and operator= functions
     83 // This should be used in the private: declarations for a class
     84 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
     85   TypeName(const TypeName&);               \
     86   void operator=(const TypeName&)
     87 
     88 // An older, deprecated, politically incorrect name for the above.
     89 // NOTE: The usage of this macro was baned from our code base, but some
     90 // third_party libraries are yet using it.
     91 // TODO(tfarina): Figure out how to fix the usage of this macro in the
     92 // third_party libraries and get rid of it.
     93 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
     94 
     95 // A macro to disallow all the implicit constructors, namely the
     96 // default constructor, copy constructor and operator= functions.
     97 //
     98 // This should be used in the private: declarations for a class
     99 // that wants to prevent anyone from instantiating it. This is
    100 // especially useful for classes containing only static methods.
    101 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
    102   TypeName();                                    \
    103   DISALLOW_COPY_AND_ASSIGN(TypeName)
    104 
    105 // The arraysize(arr) macro returns the # of elements in an array arr.
    106 // The expression is a compile-time constant, and therefore can be
    107 // used in defining new arrays, for example.  If you use arraysize on
    108 // a pointer by mistake, you will get a compile-time error.
    109 //
    110 // One caveat is that arraysize() doesn't accept any array of an
    111 // anonymous type or a type defined inside a function.  In these rare
    112 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below.  This is
    113 // due to a limitation in C++'s template system.  The limitation might
    114 // eventually be removed, but it hasn't happened yet.
    115 
    116 // This template function declaration is used in defining arraysize.
    117 // Note that the function doesn't need an implementation, as we only
    118 // use its type.
    119 template <typename T, size_t N>
    120 char (&ArraySizeHelper(T (&array)[N]))[N];
    121 
    122 // That gcc wants both of these prototypes seems mysterious. VC, for
    123 // its part, can't decide which to use (another mystery). Matching of
    124 // template overloads: the final frontier.
    125 #ifndef _MSC_VER
    126 template <typename T, size_t N>
    127 char (&ArraySizeHelper(const T (&array)[N]))[N];
    128 #endif
    129 
    130 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
    131 
    132 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
    133 // but can be used on anonymous types or types defined inside
    134 // functions.  It's less safe than arraysize as it accepts some
    135 // (although not all) pointers.  Therefore, you should use arraysize
    136 // whenever possible.
    137 //
    138 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
    139 // size_t.
    140 //
    141 // ARRAYSIZE_UNSAFE catches a few type errors.  If you see a compiler error
    142 //
    143 //   "warning: division by zero in ..."
    144 //
    145 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
    146 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
    147 //
    148 // The following comments are on the implementation details, and can
    149 // be ignored by the users.
    150 //
    151 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
    152 // the array) and sizeof(*(arr)) (the # of bytes in one array
    153 // element).  If the former is divisible by the latter, perhaps arr is
    154 // indeed an array, in which case the division result is the # of
    155 // elements in the array.  Otherwise, arr cannot possibly be an array,
    156 // and we generate a compiler error to prevent the code from
    157 // compiling.
    158 //
    159 // Since the size of bool is implementation-defined, we need to cast
    160 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
    161 // result has type size_t.
    162 //
    163 // This macro is not perfect as it wrongfully accepts certain
    164 // pointers, namely where the pointer size is divisible by the pointee
    165 // size.  Since all our code has to go through a 32-bit compiler,
    166 // where a pointer is 4 bytes, this means all pointers to a type whose
    167 // size is 3 or greater than 4 will be (righteously) rejected.
    168 
    169 #define ARRAYSIZE_UNSAFE(a) \
    170   ((sizeof(a) / sizeof(*(a))) / \
    171    static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
    172 
    173 
    174 // Use implicit_cast as a safe version of static_cast or const_cast
    175 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo
    176 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to
    177 // a const pointer to Foo).
    178 // When you use implicit_cast, the compiler checks that the cast is safe.
    179 // Such explicit implicit_casts are necessary in surprisingly many
    180 // situations where C++ demands an exact type match instead of an
    181 // argument type convertable to a target type.
    182 //
    183 // The From type can be inferred, so the preferred syntax for using
    184 // implicit_cast is the same as for static_cast etc.:
    185 //
    186 //   implicit_cast<ToType>(expr)
    187 //
    188 // implicit_cast would have been part of the C++ standard library,
    189 // but the proposal was submitted too late.  It will probably make
    190 // its way into the language in the future.
    191 template<typename To, typename From>
    192 inline To implicit_cast(From const &f) {
    193   return f;
    194 }
    195 
    196 // The COMPILE_ASSERT macro can be used to verify that a compile time
    197 // expression is true. For example, you could use it to verify the
    198 // size of a static array:
    199 //
    200 //   COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES,
    201 //                  content_type_names_incorrect_size);
    202 //
    203 // or to make sure a struct is smaller than a certain size:
    204 //
    205 //   COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
    206 //
    207 // The second argument to the macro is the name of the variable. If
    208 // the expression is false, most compilers will issue a warning/error
    209 // containing the name of the variable.
    210 
    211 template <bool>
    212 struct CompileAssert {
    213 };
    214 
    215 #undef COMPILE_ASSERT
    216 #define COMPILE_ASSERT(expr, msg) \
    217   typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
    218 
    219 // Implementation details of COMPILE_ASSERT:
    220 //
    221 // - COMPILE_ASSERT works by defining an array type that has -1
    222 //   elements (and thus is invalid) when the expression is false.
    223 //
    224 // - The simpler definition
    225 //
    226 //     #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1]
    227 //
    228 //   does not work, as gcc supports variable-length arrays whose sizes
    229 //   are determined at run-time (this is gcc's extension and not part
    230 //   of the C++ standard).  As a result, gcc fails to reject the
    231 //   following code with the simple definition:
    232 //
    233 //     int foo;
    234 //     COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is
    235 //                               // not a compile-time constant.
    236 //
    237 // - By using the type CompileAssert<(bool(expr))>, we ensures that
    238 //   expr is a compile-time constant.  (Template arguments must be
    239 //   determined at compile-time.)
    240 //
    241 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary
    242 //   to work around a bug in gcc 3.4.4 and 4.0.1.  If we had written
    243 //
    244 //     CompileAssert<bool(expr)>
    245 //
    246 //   instead, these compilers will refuse to compile
    247 //
    248 //     COMPILE_ASSERT(5 > 0, some_message);
    249 //
    250 //   (They seem to think the ">" in "5 > 0" marks the end of the
    251 //   template argument list.)
    252 //
    253 // - The array size is (bool(expr) ? 1 : -1), instead of simply
    254 //
    255 //     ((expr) ? 1 : -1).
    256 //
    257 //   This is to avoid running into a bug in MS VC 7.1, which
    258 //   causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1.
    259 
    260 
    261 // MetatagId refers to metatag-id that we assign to
    262 // each metatag <name, value> pair..
    263 typedef uint32 MetatagId;
    264 
    265 // Argument type used in interfaces that can optionally take ownership
    266 // of a passed in argument.  If TAKE_OWNERSHIP is passed, the called
    267 // object takes ownership of the argument.  Otherwise it does not.
    268 enum Ownership {
    269   DO_NOT_TAKE_OWNERSHIP,
    270   TAKE_OWNERSHIP
    271 };
    272 
    273 // bit_cast<Dest,Source> is a template function that implements the
    274 // equivalent of "*reinterpret_cast<Dest*>(&source)".  We need this in
    275 // very low-level functions like the protobuf library and fast math
    276 // support.
    277 //
    278 //   float f = 3.14159265358979;
    279 //   int i = bit_cast<int32>(f);
    280 //   // i = 0x40490fdb
    281 //
    282 // The classical address-casting method is:
    283 //
    284 //   // WRONG
    285 //   float f = 3.14159265358979;            // WRONG
    286 //   int i = * reinterpret_cast<int*>(&f);  // WRONG
    287 //
    288 // The address-casting method actually produces undefined behavior
    289 // according to ISO C++ specification section 3.10 -15 -.  Roughly, this
    290 // section says: if an object in memory has one type, and a program
    291 // accesses it with a different type, then the result is undefined
    292 // behavior for most values of "different type".
    293 //
    294 // This is true for any cast syntax, either *(int*)&f or
    295 // *reinterpret_cast<int*>(&f).  And it is particularly true for
    296 // conversions betweeen integral lvalues and floating-point lvalues.
    297 //
    298 // The purpose of 3.10 -15- is to allow optimizing compilers to assume
    299 // that expressions with different types refer to different memory.  gcc
    300 // 4.0.1 has an optimizer that takes advantage of this.  So a
    301 // non-conforming program quietly produces wildly incorrect output.
    302 //
    303 // The problem is not the use of reinterpret_cast.  The problem is type
    304 // punning: holding an object in memory of one type and reading its bits
    305 // back using a different type.
    306 //
    307 // The C++ standard is more subtle and complex than this, but that
    308 // is the basic idea.
    309 //
    310 // Anyways ...
    311 //
    312 // bit_cast<> calls memcpy() which is blessed by the standard,
    313 // especially by the example in section 3.9 .  Also, of course,
    314 // bit_cast<> wraps up the nasty logic in one place.
    315 //
    316 // Fortunately memcpy() is very fast.  In optimized mode, with a
    317 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
    318 // code with the minimal amount of data movement.  On a 32-bit system,
    319 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
    320 // compiles to two loads and two stores.
    321 //
    322 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
    323 //
    324 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy
    325 // is likely to surprise you.
    326 
    327 template <class Dest, class Source>
    328 inline Dest bit_cast(const Source& source) {
    329   // Compile time assertion: sizeof(Dest) == sizeof(Source)
    330   // A compile error here means your Dest and Source have different sizes.
    331   typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1];
    332 
    333   Dest dest;
    334   memcpy(&dest, &source, sizeof(dest));
    335   return dest;
    336 }
    337 
    338 // Used to explicitly mark the return value of a function as unused. If you are
    339 // really sure you don't want to do anything with the return value of a function
    340 // that has been marked WARN_UNUSED_RESULT, wrap it with this. Example:
    341 //
    342 //   scoped_ptr<MyType> my_var = ...;
    343 //   if (TakeOwnership(my_var.get()) == SUCCESS)
    344 //     ignore_result(my_var.release());
    345 //
    346 template<typename T>
    347 inline void ignore_result(const T& ignored) {
    348 }
    349 
    350 // The following enum should be used only as a constructor argument to indicate
    351 // that the variable has static storage class, and that the constructor should
    352 // do nothing to its state.  It indicates to the reader that it is legal to
    353 // declare a static instance of the class, provided the constructor is given
    354 // the base::LINKER_INITIALIZED argument.  Normally, it is unsafe to declare a
    355 // static variable that has a constructor or a destructor because invocation
    356 // order is undefined.  However, IF the type can be initialized by filling with
    357 // zeroes (which the loader does for static variables), AND the destructor also
    358 // does nothing to the storage, AND there are no virtual methods, then a
    359 // constructor declared as
    360 //       explicit MyClass(base::LinkerInitialized x) {}
    361 // and invoked as
    362 //       static MyClass my_variable_name(base::LINKER_INITIALIZED);
    363 namespace base {
    364 enum LinkerInitialized { LINKER_INITIALIZED };
    365 }  // base
    366 
    367 #endif  // BASE_BASICTYPES_H_
    368