Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MESSAGE_PUMP_WIN_H_
      6 #define BASE_MESSAGE_PUMP_WIN_H_
      7 #pragma once
      8 
      9 #include <windows.h>
     10 
     11 #include <list>
     12 
     13 #include "base/base_api.h"
     14 #include "base/basictypes.h"
     15 #include "base/message_pump.h"
     16 #include "base/observer_list.h"
     17 #include "base/time.h"
     18 #include "base/win/scoped_handle.h"
     19 
     20 namespace base {
     21 
     22 // MessagePumpWin serves as the base for specialized versions of the MessagePump
     23 // for Windows. It provides basic functionality like handling of observers and
     24 // controlling the lifetime of the message pump.
     25 class BASE_API MessagePumpWin : public MessagePump {
     26  public:
     27   // An Observer is an object that receives global notifications from the
     28   // UI MessageLoop.
     29   //
     30   // NOTE: An Observer implementation should be extremely fast!
     31   //
     32   class Observer {
     33    public:
     34     virtual ~Observer() {}
     35 
     36     // This method is called before processing a message.
     37     // The message may be undefined in which case msg.message is 0
     38     virtual void WillProcessMessage(const MSG& msg) = 0;
     39 
     40     // This method is called when control returns from processing a UI message.
     41     // The message may be undefined in which case msg.message is 0
     42     virtual void DidProcessMessage(const MSG& msg) = 0;
     43   };
     44 
     45   // Dispatcher is used during a nested invocation of Run to dispatch events.
     46   // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
     47   // dispatch events (or invoke TranslateMessage), rather every message is
     48   // passed to Dispatcher's Dispatch method for dispatch. It is up to the
     49   // Dispatcher to dispatch, or not, the event.
     50   //
     51   // The nested loop is exited by either posting a quit, or returning false
     52   // from Dispatch.
     53   class Dispatcher {
     54    public:
     55     virtual ~Dispatcher() {}
     56     // Dispatches the event. If true is returned processing continues as
     57     // normal. If false is returned, the nested loop exits immediately.
     58     virtual bool Dispatch(const MSG& msg) = 0;
     59   };
     60 
     61   MessagePumpWin() : have_work_(0), state_(NULL) {}
     62   virtual ~MessagePumpWin() {}
     63 
     64   // Add an Observer, which will start receiving notifications immediately.
     65   void AddObserver(Observer* observer);
     66 
     67   // Remove an Observer.  It is safe to call this method while an Observer is
     68   // receiving a notification callback.
     69   void RemoveObserver(Observer* observer);
     70 
     71   // Give a chance to code processing additional messages to notify the
     72   // message loop observers that another message has been processed.
     73   void WillProcessMessage(const MSG& msg);
     74   void DidProcessMessage(const MSG& msg);
     75 
     76   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
     77   void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
     78 
     79   // MessagePump methods:
     80   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
     81   virtual void Quit();
     82 
     83  protected:
     84   struct RunState {
     85     Delegate* delegate;
     86     Dispatcher* dispatcher;
     87 
     88     // Used to flag that the current Run() invocation should return ASAP.
     89     bool should_quit;
     90 
     91     // Used to count how many Run() invocations are on the stack.
     92     int run_depth;
     93   };
     94 
     95   virtual void DoRunLoop() = 0;
     96   int GetCurrentDelay() const;
     97 
     98   ObserverList<Observer> observers_;
     99 
    100   // The time at which delayed work should run.
    101   TimeTicks delayed_work_time_;
    102 
    103   // A boolean value used to indicate if there is a kMsgDoWork message pending
    104   // in the Windows Message queue.  There is at most one such message, and it
    105   // can drive execution of tasks when a native message pump is running.
    106   LONG have_work_;
    107 
    108   // State for the current invocation of Run.
    109   RunState* state_;
    110 };
    111 
    112 //-----------------------------------------------------------------------------
    113 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
    114 // MessageLoop instantiated with TYPE_UI.
    115 //
    116 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
    117 // a nearly infinite loop that peeks out messages, and then dispatches them.
    118 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
    119 // DoDelayedWork for pending timers. When there are no events to be serviced,
    120 // this pump goes into a wait state. In most cases, this message pump handles
    121 // all processing.
    122 //
    123 // However, when a task, or windows event, invokes on the stack a native dialog
    124 // box or such, that window typically provides a bare bones (native?) message
    125 // pump.  That bare-bones message pump generally supports little more than a
    126 // peek of the Windows message queue, followed by a dispatch of the peeked
    127 // message.  MessageLoop extends that bare-bones message pump to also service
    128 // Tasks, at the cost of some complexity.
    129 //
    130 // The basic structure of the extension (refered to as a sub-pump) is that a
    131 // special message, kMsgHaveWork, is repeatedly injected into the Windows
    132 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
    133 // made for an extended set of events, including the availability of Tasks to
    134 // run.
    135 //
    136 // After running a task, the special message kMsgHaveWork is again posted to
    137 // the Windows Message queue, ensuring a future time slice for processing a
    138 // future event.  To prevent flooding the Windows Message queue, care is taken
    139 // to be sure that at most one kMsgHaveWork message is EVER pending in the
    140 // Window's Message queue.
    141 //
    142 // There are a few additional complexities in this system where, when there are
    143 // no Tasks to run, this otherwise infinite stream of messages which drives the
    144 // sub-pump is halted.  The pump is automatically re-started when Tasks are
    145 // queued.
    146 //
    147 // A second complexity is that the presence of this stream of posted tasks may
    148 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
    149 // Such paint and timer events always give priority to a posted message, such as
    150 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
    151 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
    152 // is peeked, and before a replacement kMsgHaveWork is posted).
    153 //
    154 // NOTE: Although it may seem odd that messages are used to start and stop this
    155 // flow (as opposed to signaling objects, etc.), it should be understood that
    156 // the native message pump will *only* respond to messages.  As a result, it is
    157 // an excellent choice.  It is also helpful that the starter messages that are
    158 // placed in the queue when new task arrive also awakens DoRunLoop.
    159 //
    160 class BASE_API MessagePumpForUI : public MessagePumpWin {
    161  public:
    162   // The application-defined code passed to the hook procedure.
    163   static const int kMessageFilterCode = 0x5001;
    164 
    165   MessagePumpForUI();
    166   virtual ~MessagePumpForUI();
    167 
    168   // MessagePump methods:
    169   virtual void ScheduleWork();
    170   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    171 
    172   // Applications can call this to encourage us to process all pending WM_PAINT
    173   // messages.  This method will process all paint messages the Windows Message
    174   // queue can provide, up to some fixed number (to avoid any infinite loops).
    175   void PumpOutPendingPaintMessages();
    176 
    177  private:
    178   static LRESULT CALLBACK WndProcThunk(
    179       HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
    180   virtual void DoRunLoop();
    181   void InitMessageWnd();
    182   void WaitForWork();
    183   void HandleWorkMessage();
    184   void HandleTimerMessage();
    185   bool ProcessNextWindowsMessage();
    186   bool ProcessMessageHelper(const MSG& msg);
    187   bool ProcessPumpReplacementMessage();
    188 
    189   // A hidden message-only window.
    190   HWND message_hwnd_;
    191 };
    192 
    193 //-----------------------------------------------------------------------------
    194 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
    195 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
    196 // deal with Windows mesagges, and instead has a Run loop based on Completion
    197 // Ports so it is better suited for IO operations.
    198 //
    199 class BASE_API MessagePumpForIO : public MessagePumpWin {
    200  public:
    201   struct IOContext;
    202 
    203   // Clients interested in receiving OS notifications when asynchronous IO
    204   // operations complete should implement this interface and register themselves
    205   // with the message pump.
    206   //
    207   // Typical use #1:
    208   //   // Use only when there are no user's buffers involved on the actual IO,
    209   //   // so that all the cleanup can be done by the message pump.
    210   //   class MyFile : public IOHandler {
    211   //     MyFile() {
    212   //       ...
    213   //       context_ = new IOContext;
    214   //       context_->handler = this;
    215   //       message_pump->RegisterIOHandler(file_, this);
    216   //     }
    217   //     ~MyFile() {
    218   //       if (pending_) {
    219   //         // By setting the handler to NULL, we're asking for this context
    220   //         // to be deleted when received, without calling back to us.
    221   //         context_->handler = NULL;
    222   //       } else {
    223   //         delete context_;
    224   //      }
    225   //     }
    226   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    227   //                                DWORD error) {
    228   //         pending_ = false;
    229   //     }
    230   //     void DoSomeIo() {
    231   //       ...
    232   //       // The only buffer required for this operation is the overlapped
    233   //       // structure.
    234   //       ConnectNamedPipe(file_, &context_->overlapped);
    235   //       pending_ = true;
    236   //     }
    237   //     bool pending_;
    238   //     IOContext* context_;
    239   //     HANDLE file_;
    240   //   };
    241   //
    242   // Typical use #2:
    243   //   class MyFile : public IOHandler {
    244   //     MyFile() {
    245   //       ...
    246   //       message_pump->RegisterIOHandler(file_, this);
    247   //     }
    248   //     // Plus some code to make sure that this destructor is not called
    249   //     // while there are pending IO operations.
    250   //     ~MyFile() {
    251   //     }
    252   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    253   //                                DWORD error) {
    254   //       ...
    255   //       delete context;
    256   //     }
    257   //     void DoSomeIo() {
    258   //       ...
    259   //       IOContext* context = new IOContext;
    260   //       // This is not used for anything. It just prevents the context from
    261   //       // being considered "abandoned".
    262   //       context->handler = this;
    263   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
    264   //     }
    265   //     HANDLE file_;
    266   //   };
    267   //
    268   // Typical use #3:
    269   // Same as the previous example, except that in order to deal with the
    270   // requirement stated for the destructor, the class calls WaitForIOCompletion
    271   // from the destructor to block until all IO finishes.
    272   //     ~MyFile() {
    273   //       while(pending_)
    274   //         message_pump->WaitForIOCompletion(INFINITE, this);
    275   //     }
    276   //
    277   class IOHandler {
    278    public:
    279     virtual ~IOHandler() {}
    280     // This will be called once the pending IO operation associated with
    281     // |context| completes. |error| is the Win32 error code of the IO operation
    282     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
    283     // on error.
    284     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    285                                DWORD error) = 0;
    286   };
    287 
    288   // An IOObserver is an object that receives IO notifications from the
    289   // MessagePump.
    290   //
    291   // NOTE: An IOObserver implementation should be extremely fast!
    292   class IOObserver {
    293    public:
    294     IOObserver() {}
    295 
    296     virtual void WillProcessIOEvent() = 0;
    297     virtual void DidProcessIOEvent() = 0;
    298 
    299    protected:
    300     virtual ~IOObserver() {}
    301   };
    302 
    303   // The extended context that should be used as the base structure on every
    304   // overlapped IO operation. |handler| must be set to the registered IOHandler
    305   // for the given file when the operation is started, and it can be set to NULL
    306   // before the operation completes to indicate that the handler should not be
    307   // called anymore, and instead, the IOContext should be deleted when the OS
    308   // notifies the completion of this operation. Please remember that any buffers
    309   // involved with an IO operation should be around until the callback is
    310   // received, so this technique can only be used for IO that do not involve
    311   // additional buffers (other than the overlapped structure itself).
    312   struct IOContext {
    313     OVERLAPPED overlapped;
    314     IOHandler* handler;
    315   };
    316 
    317   MessagePumpForIO();
    318   virtual ~MessagePumpForIO() {}
    319 
    320   // MessagePump methods:
    321   virtual void ScheduleWork();
    322   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    323 
    324   // Register the handler to be used when asynchronous IO for the given file
    325   // completes. The registration persists as long as |file_handle| is valid, so
    326   // |handler| must be valid as long as there is pending IO for the given file.
    327   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
    328 
    329   // Waits for the next IO completion that should be processed by |filter|, for
    330   // up to |timeout| milliseconds. Return true if any IO operation completed,
    331   // regardless of the involved handler, and false if the timeout expired. If
    332   // the completion port received any message and the involved IO handler
    333   // matches |filter|, the callback is called before returning from this code;
    334   // if the handler is not the one that we are looking for, the callback will
    335   // be postponed for another time, so reentrancy problems can be avoided.
    336   // External use of this method should be reserved for the rare case when the
    337   // caller is willing to allow pausing regular task dispatching on this thread.
    338   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
    339 
    340   void AddIOObserver(IOObserver* obs);
    341   void RemoveIOObserver(IOObserver* obs);
    342 
    343  private:
    344   struct IOItem {
    345     IOHandler* handler;
    346     IOContext* context;
    347     DWORD bytes_transfered;
    348     DWORD error;
    349   };
    350 
    351   virtual void DoRunLoop();
    352   void WaitForWork();
    353   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
    354   bool GetIOItem(DWORD timeout, IOItem* item);
    355   bool ProcessInternalIOItem(const IOItem& item);
    356   void WillProcessIOEvent();
    357   void DidProcessIOEvent();
    358 
    359   // The completion port associated with this thread.
    360   win::ScopedHandle port_;
    361   // This list will be empty almost always. It stores IO completions that have
    362   // not been delivered yet because somebody was doing cleanup.
    363   std::list<IOItem> completed_io_;
    364 
    365   ObserverList<IOObserver> io_observers_;
    366 };
    367 
    368 }  // namespace base
    369 
    370 #endif  // BASE_MESSAGE_PUMP_WIN_H_
    371