Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 
      6 // Windows Timer Primer
      7 //
      8 // A good article:  http://www.ddj.com/windows/184416651
      9 // A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
     10 //
     11 // The default windows timer, GetSystemTimeAsFileTime is not very precise.
     12 // It is only good to ~15.5ms.
     13 //
     14 // QueryPerformanceCounter is the logical choice for a high-precision timer.
     15 // However, it is known to be buggy on some hardware.  Specifically, it can
     16 // sometimes "jump".  On laptops, QPC can also be very expensive to call.
     17 // It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
     18 // on laptops.  A unittest exists which will show the relative cost of various
     19 // timers on any system.
     20 //
     21 // The next logical choice is timeGetTime().  timeGetTime has a precision of
     22 // 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
     23 // applications on the system.  By default, precision is only 15.5ms.
     24 // Unfortunately, we don't want to call timeBeginPeriod because we don't
     25 // want to affect other applications.  Further, on mobile platforms, use of
     26 // faster multimedia timers can hurt battery life.  See the intel
     27 // article about this here:
     28 // http://softwarecommunity.intel.com/articles/eng/1086.htm
     29 //
     30 // To work around all this, we're going to generally use timeGetTime().  We
     31 // will only increase the system-wide timer if we're not running on battery
     32 // power.  Using timeBeginPeriod(1) is a requirement in order to make our
     33 // message loop waits have the same resolution that our time measurements
     34 // do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
     35 // there is nothing else to waken the Wait.
     36 
     37 #include "base/time.h"
     38 
     39 #pragma comment(lib, "winmm.lib")
     40 #include <windows.h>
     41 #include <mmsystem.h>
     42 
     43 #include "base/basictypes.h"
     44 #include "base/logging.h"
     45 #include "base/cpu.h"
     46 #include "base/memory/singleton.h"
     47 #include "base/synchronization/lock.h"
     48 
     49 using base::Time;
     50 using base::TimeDelta;
     51 using base::TimeTicks;
     52 
     53 namespace {
     54 
     55 // From MSDN, FILETIME "Contains a 64-bit value representing the number of
     56 // 100-nanosecond intervals since January 1, 1601 (UTC)."
     57 int64 FileTimeToMicroseconds(const FILETIME& ft) {
     58   // Need to bit_cast to fix alignment, then divide by 10 to convert
     59   // 100-nanoseconds to milliseconds. This only works on little-endian
     60   // machines.
     61   return bit_cast<int64, FILETIME>(ft) / 10;
     62 }
     63 
     64 void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
     65   DCHECK(us >= 0) << "Time is less than 0, negative values are not "
     66       "representable in FILETIME";
     67 
     68   // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
     69   // handle alignment problems. This only works on little-endian machines.
     70   *ft = bit_cast<FILETIME, int64>(us * 10);
     71 }
     72 
     73 int64 CurrentWallclockMicroseconds() {
     74   FILETIME ft;
     75   ::GetSystemTimeAsFileTime(&ft);
     76   return FileTimeToMicroseconds(ft);
     77 }
     78 
     79 // Time between resampling the un-granular clock for this API.  60 seconds.
     80 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
     81 
     82 int64 initial_time = 0;
     83 TimeTicks initial_ticks;
     84 
     85 void InitializeClock() {
     86   initial_ticks = TimeTicks::Now();
     87   initial_time = CurrentWallclockMicroseconds();
     88 }
     89 
     90 }  // namespace
     91 
     92 // Time -----------------------------------------------------------------------
     93 
     94 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
     95 // 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
     96 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
     97 // 1700, 1800, and 1900.
     98 // static
     99 const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
    100 
    101 bool Time::high_resolution_timer_enabled_ = false;
    102 
    103 // static
    104 Time Time::Now() {
    105   if (initial_time == 0)
    106     InitializeClock();
    107 
    108   // We implement time using the high-resolution timers so that we can get
    109   // timeouts which are smaller than 10-15ms.  If we just used
    110   // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
    111   //
    112   // To make this work, we initialize the clock (initial_time) and the
    113   // counter (initial_ctr).  To compute the initial time, we can check
    114   // the number of ticks that have elapsed, and compute the delta.
    115   //
    116   // To avoid any drift, we periodically resync the counters to the system
    117   // clock.
    118   while (true) {
    119     TimeTicks ticks = TimeTicks::Now();
    120 
    121     // Calculate the time elapsed since we started our timer
    122     TimeDelta elapsed = ticks - initial_ticks;
    123 
    124     // Check if enough time has elapsed that we need to resync the clock.
    125     if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
    126       InitializeClock();
    127       continue;
    128     }
    129 
    130     return Time(elapsed + Time(initial_time));
    131   }
    132 }
    133 
    134 // static
    135 Time Time::NowFromSystemTime() {
    136   // Force resync.
    137   InitializeClock();
    138   return Time(initial_time);
    139 }
    140 
    141 // static
    142 Time Time::FromFileTime(FILETIME ft) {
    143   return Time(FileTimeToMicroseconds(ft));
    144 }
    145 
    146 FILETIME Time::ToFileTime() const {
    147   FILETIME utc_ft;
    148   MicrosecondsToFileTime(us_, &utc_ft);
    149   return utc_ft;
    150 }
    151 
    152 // static
    153 void Time::EnableHighResolutionTimer(bool enable) {
    154   // Test for single-threaded access.
    155   static PlatformThreadId my_thread = PlatformThread::CurrentId();
    156   DCHECK(PlatformThread::CurrentId() == my_thread);
    157 
    158   if (high_resolution_timer_enabled_ == enable)
    159     return;
    160 
    161   high_resolution_timer_enabled_ = enable;
    162 }
    163 
    164 // static
    165 bool Time::ActivateHighResolutionTimer(bool activate) {
    166   if (!high_resolution_timer_enabled_)
    167     return false;
    168 
    169   // Using anything other than 1ms makes timers granular
    170   // to that interval.
    171   const int kMinTimerIntervalMs = 1;
    172   MMRESULT result;
    173   if (activate)
    174     result = timeBeginPeriod(kMinTimerIntervalMs);
    175   else
    176     result = timeEndPeriod(kMinTimerIntervalMs);
    177   return result == TIMERR_NOERROR;
    178 }
    179 
    180 // static
    181 Time Time::FromExploded(bool is_local, const Exploded& exploded) {
    182   // Create the system struct representing our exploded time. It will either be
    183   // in local time or UTC.
    184   SYSTEMTIME st;
    185   st.wYear = exploded.year;
    186   st.wMonth = exploded.month;
    187   st.wDayOfWeek = exploded.day_of_week;
    188   st.wDay = exploded.day_of_month;
    189   st.wHour = exploded.hour;
    190   st.wMinute = exploded.minute;
    191   st.wSecond = exploded.second;
    192   st.wMilliseconds = exploded.millisecond;
    193 
    194   // Convert to FILETIME.
    195   FILETIME ft;
    196   if (!SystemTimeToFileTime(&st, &ft)) {
    197     NOTREACHED() << "Unable to convert time";
    198     return Time(0);
    199   }
    200 
    201   // Ensure that it's in UTC.
    202   if (is_local) {
    203     FILETIME utc_ft;
    204     LocalFileTimeToFileTime(&ft, &utc_ft);
    205     return Time(FileTimeToMicroseconds(utc_ft));
    206   }
    207   return Time(FileTimeToMicroseconds(ft));
    208 }
    209 
    210 void Time::Explode(bool is_local, Exploded* exploded) const {
    211   // FILETIME in UTC.
    212   FILETIME utc_ft;
    213   MicrosecondsToFileTime(us_, &utc_ft);
    214 
    215   // FILETIME in local time if necessary.
    216   BOOL success = TRUE;
    217   FILETIME ft;
    218   if (is_local)
    219     success = FileTimeToLocalFileTime(&utc_ft, &ft);
    220   else
    221     ft = utc_ft;
    222 
    223   // FILETIME in SYSTEMTIME (exploded).
    224   SYSTEMTIME st;
    225   if (!success || !FileTimeToSystemTime(&ft, &st)) {
    226     NOTREACHED() << "Unable to convert time, don't know why";
    227     ZeroMemory(exploded, sizeof(exploded));
    228     return;
    229   }
    230 
    231   exploded->year = st.wYear;
    232   exploded->month = st.wMonth;
    233   exploded->day_of_week = st.wDayOfWeek;
    234   exploded->day_of_month = st.wDay;
    235   exploded->hour = st.wHour;
    236   exploded->minute = st.wMinute;
    237   exploded->second = st.wSecond;
    238   exploded->millisecond = st.wMilliseconds;
    239 }
    240 
    241 // TimeTicks ------------------------------------------------------------------
    242 namespace {
    243 
    244 // We define a wrapper to adapt between the __stdcall and __cdecl call of the
    245 // mock function, and to avoid a static constructor.  Assigning an import to a
    246 // function pointer directly would require setup code to fetch from the IAT.
    247 DWORD timeGetTimeWrapper() {
    248   return timeGetTime();
    249 }
    250 
    251 DWORD (*tick_function)(void) = &timeGetTimeWrapper;
    252 
    253 // Accumulation of time lost due to rollover (in milliseconds).
    254 int64 rollover_ms = 0;
    255 
    256 // The last timeGetTime value we saw, to detect rollover.
    257 DWORD last_seen_now = 0;
    258 
    259 // Lock protecting rollover_ms and last_seen_now.
    260 // Note: this is a global object, and we usually avoid these. However, the time
    261 // code is low-level, and we don't want to use Singletons here (it would be too
    262 // easy to use a Singleton without even knowing it, and that may lead to many
    263 // gotchas). Its impact on startup time should be negligible due to low-level
    264 // nature of time code.
    265 base::Lock rollover_lock;
    266 
    267 // We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
    268 // because it returns the number of milliseconds since Windows has started,
    269 // which will roll over the 32-bit value every ~49 days.  We try to track
    270 // rollover ourselves, which works if TimeTicks::Now() is called at least every
    271 // 49 days.
    272 TimeDelta RolloverProtectedNow() {
    273   base::AutoLock locked(rollover_lock);
    274   // We should hold the lock while calling tick_function to make sure that
    275   // we keep last_seen_now stay correctly in sync.
    276   DWORD now = tick_function();
    277   if (now < last_seen_now)
    278     rollover_ms += 0x100000000I64;  // ~49.7 days.
    279   last_seen_now = now;
    280   return TimeDelta::FromMilliseconds(now + rollover_ms);
    281 }
    282 
    283 // Overview of time counters:
    284 // (1) CPU cycle counter. (Retrieved via RDTSC)
    285 // The CPU counter provides the highest resolution time stamp and is the least
    286 // expensive to retrieve. However, the CPU counter is unreliable and should not
    287 // be used in production. Its biggest issue is that it is per processor and it
    288 // is not synchronized between processors. Also, on some computers, the counters
    289 // will change frequency due to thermal and power changes, and stop in some
    290 // states.
    291 //
    292 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
    293 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
    294 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
    295 // (with some help from ACPI).
    296 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
    297 // in the worst case, it gets the counter from the rollover interrupt on the
    298 // programmable interrupt timer. In best cases, the HAL may conclude that the
    299 // RDTSC counter runs at a constant frequency, then it uses that instead. On
    300 // multiprocessor machines, it will try to verify the values returned from
    301 // RDTSC on each processor are consistent with each other, and apply a handful
    302 // of workarounds for known buggy hardware. In other words, QPC is supposed to
    303 // give consistent result on a multiprocessor computer, but it is unreliable in
    304 // reality due to bugs in BIOS or HAL on some, especially old computers.
    305 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
    306 // it should be used with caution.
    307 //
    308 // (3) System time. The system time provides a low-resolution (typically 10ms
    309 // to 55 milliseconds) time stamp but is comparatively less expensive to
    310 // retrieve and more reliable.
    311 class HighResNowSingleton {
    312  public:
    313   static HighResNowSingleton* GetInstance() {
    314     return Singleton<HighResNowSingleton>::get();
    315   }
    316 
    317   bool IsUsingHighResClock() {
    318     return ticks_per_microsecond_ != 0.0;
    319   }
    320 
    321   void DisableHighResClock() {
    322     ticks_per_microsecond_ = 0.0;
    323   }
    324 
    325   TimeDelta Now() {
    326     if (IsUsingHighResClock())
    327       return TimeDelta::FromMicroseconds(UnreliableNow());
    328 
    329     // Just fallback to the slower clock.
    330     return RolloverProtectedNow();
    331   }
    332 
    333   int64 GetQPCDriftMicroseconds() {
    334     if (!IsUsingHighResClock())
    335       return 0;
    336 
    337     return abs((UnreliableNow() - ReliableNow()) - skew_);
    338   }
    339 
    340  private:
    341   HighResNowSingleton()
    342     : ticks_per_microsecond_(0.0),
    343       skew_(0) {
    344     InitializeClock();
    345 
    346     // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
    347     // unreliable.  Fallback to low-res clock.
    348     base::CPU cpu;
    349     if (cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15)
    350       DisableHighResClock();
    351   }
    352 
    353   // Synchronize the QPC clock with GetSystemTimeAsFileTime.
    354   void InitializeClock() {
    355     LARGE_INTEGER ticks_per_sec = {0};
    356     if (!QueryPerformanceFrequency(&ticks_per_sec))
    357       return;  // Broken, we don't guarantee this function works.
    358     ticks_per_microsecond_ = static_cast<float>(ticks_per_sec.QuadPart) /
    359       static_cast<float>(Time::kMicrosecondsPerSecond);
    360 
    361     skew_ = UnreliableNow() - ReliableNow();
    362   }
    363 
    364   // Get the number of microseconds since boot in an unreliable fashion.
    365   int64 UnreliableNow() {
    366     LARGE_INTEGER now;
    367     QueryPerformanceCounter(&now);
    368     return static_cast<int64>(now.QuadPart / ticks_per_microsecond_);
    369   }
    370 
    371   // Get the number of microseconds since boot in a reliable fashion.
    372   int64 ReliableNow() {
    373     return RolloverProtectedNow().InMicroseconds();
    374   }
    375 
    376   // Cached clock frequency -> microseconds. This assumes that the clock
    377   // frequency is faster than one microsecond (which is 1MHz, should be OK).
    378   float ticks_per_microsecond_;  // 0 indicates QPF failed and we're broken.
    379   int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
    380 
    381   friend struct DefaultSingletonTraits<HighResNowSingleton>;
    382 };
    383 
    384 }  // namespace
    385 
    386 // static
    387 TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
    388     TickFunctionType ticker) {
    389   TickFunctionType old = tick_function;
    390   tick_function = ticker;
    391   return old;
    392 }
    393 
    394 // static
    395 TimeTicks TimeTicks::Now() {
    396   return TimeTicks() + RolloverProtectedNow();
    397 }
    398 
    399 // static
    400 TimeTicks TimeTicks::HighResNow() {
    401   return TimeTicks() + HighResNowSingleton::GetInstance()->Now();
    402 }
    403 
    404 // static
    405 int64 TimeTicks::GetQPCDriftMicroseconds() {
    406   return HighResNowSingleton::GetInstance()->GetQPCDriftMicroseconds();
    407 }
    408 
    409 // static
    410 bool TimeTicks::IsHighResClockWorking() {
    411   return HighResNowSingleton::GetInstance()->IsUsingHighResClock();
    412 }
    413