Home | History | Annotate | Download | only in docs
      1 Block Implementation Specification
      2 
      3 Copyright 2008-2010 Apple, Inc.
      4 Permission is hereby granted, free of charge, to any person obtaining a copy
      5 of this software and associated documentation files (the "Software"), to deal
      6 in the Software without restriction, including without limitation the rights
      7 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      8 copies of the Software, and to permit persons to whom the Software is
      9 furnished to do so, subject to the following conditions:
     10 
     11 The above copyright notice and this permission notice shall be included in
     12 all copies or substantial portions of the Software.
     13 
     14 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     17 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     18 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     19 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     20 THE SOFTWARE.
     21 
     22 0. History
     23 
     24 2008/7/14  - created
     25 2008/8/21  - revised, C++
     26 2008/9/24  - add NULL isa field to __block storage
     27 2008/10/1  - revise block layout to use a static descriptor structure
     28 2008/10/6  - revise block layout to use an unsigned long int flags
     29 2008/10/28 - specify use of _Block_object_assign/dispose for all "Object" types in helper functions
     30 2008/10/30 - revise new layout to have invoke function in same place
     31 2008/10/30 - add __weak support
     32 
     33 2010/3/16  - rev for stret return, signature field
     34 2010/4/6   - improved wording
     35 
     36 This document describes the Apple ABI implementation specification of Blocks.
     37 
     38 The first shipping version of this ABI is found in Mac OS X 10.6, and shall be referred to as 10.6.ABI. As of 2010/3/16, the following describes the ABI contract with the runtime and the compiler, and, as necessary, will be referred to as ABI.2010.3.16.
     39 
     40 Since the Apple ABI references symbols from other elements of the system, any attempt to use this ABI on systems prior to SnowLeopard is undefined.
     41 
     42 1. High Level
     43 
     44 The ABI of blocks consist of their layout and the runtime functions required by the compiler.
     45 A Block consists of a structure of the following form:
     46 
     47 struct Block_literal_1 {
     48     void *isa; // initialized to &_NSConcreteStackBlock or &_NSConcreteGlobalBlock
     49     int flags;
     50     int reserved; 
     51     void (*invoke)(void *, ...);
     52     struct Block_descriptor_1 {
     53 	unsigned long int reserved;	// NULL
     54     	unsigned long int size;         // sizeof(struct Block_literal_1)
     55 	// optional helper functions
     56     	void (*copy_helper)(void *dst, void *src);     // IFF (1<<25)
     57     	void (*dispose_helper)(void *src);             // IFF (1<<25)
     58         // required ABI.2010.3.16
     59         const char *signature;                         // IFF (1<<30)
     60     } *descriptor;
     61     // imported variables
     62 };
     63 
     64 The following flags bits are in use thusly for a possible ABI.2010.3.16:
     65 
     66 enum {
     67     BLOCK_HAS_COPY_DISPOSE =  (1 << 25),
     68     BLOCK_HAS_CTOR =          (1 << 26), // helpers have C++ code
     69     BLOCK_IS_GLOBAL =         (1 << 28),
     70     BLOCK_HAS_STRET =         (1 << 29), // IFF BLOCK_HAS_SIGNATURE
     71     BLOCK_HAS_SIGNATURE =     (1 << 30), 
     72 };
     73 
     74 In 10.6.ABI the (1<<29) was usually set and was always ignored by the runtime - it had been a transitional marker that did not get deleted after the transition. This bit is now paired with (1<<30), and represented as the pair (3<<30), for the following combinations of valid bit settings, and their meanings.
     75 
     76 switch (flags & (3<<29)) {
     77   case (0<<29):      10.6.ABI, no signature field available
     78   case (1<<29):      10.6.ABI, no signature field available
     79   case (2<<29): ABI.2010.3.16, regular calling convention, presence of signature field
     80   case (3<<29): ABI.2010.3.16, stret calling convention, presence of signature field,
     81 }
     82 
     83 The signature field is not always populated.
     84 
     85 The following discussions are presented as 10.6.ABI otherwise.
     86 
     87 Block literals may occur within functions where the structure is created in stack local memory.  They may also appear as initialization expressions for Block variables of global or static local variables.
     88 
     89 When a Block literal expression is evaluated the stack based structure is initialized as follows:
     90 
     91 1) static descriptor structure is declared and initialized as follows:
     92 1a) the invoke function pointer is set to a function that takes the Block structure as its first argument and the rest of the arguments (if any) to the Block and executes the Block compound statement.
     93 1b) the size field is set to the size of the following Block literal structure.
     94 1c) the copy_helper and dispose_helper function pointers are set to respective helper functions if they are required by the Block literal
     95 2) a stack (or global) Block literal data structure is created and initialized as follows:
     96 2a) the isa field is set to the address of the external _NSConcreteStackBlock, which is a block of uninitialized memory supplied in libSystem, or _NSConcreteGlobalBlock if this is a static or file level block literal.
     97 2) The flags field is set to zero unless there are variables imported into the block that need helper functions for program level Block_copy() and Block_release() operations, in which case the (1<<25) flags bit is set.
     98 
     99 
    100 As an example, the Block literal expression
    101    ^ { printf("hello world\n"); }
    102 would cause to be created on a 32-bit system:
    103 
    104 struct __block_literal_1 {
    105     void *isa;
    106     int flags;
    107     int reserved; 
    108     void (*invoke)(struct __block_literal_1 *);
    109     struct __block_descriptor_1 *descriptor;
    110 };
    111 
    112 void __block_invoke_1(struct __block_literal_1 *_block) {
    113     printf("hello world\n");
    114 }
    115 
    116 static struct __block_descriptor_1 {
    117     unsigned long int reserved;
    118     unsigned long int Block_size;
    119 } __block_descriptor_1 = { 0, sizeof(struct __block_literal_1), __block_invoke_1 };
    120 
    121 and where the block literal appeared
    122 
    123   struct __block_literal_1 _block_literal = {
    124 	&_NSConcreteStackBlock,
    125 	(1<<29), <uninitialized>,
    126 	__block_invoke_1,
    127 	&__block_descriptor_1
    128    };
    129 
    130 Blocks import other Block references, const copies of other variables, and variables marked __block.  In Objective-C variables may additionally be objects.
    131 
    132 When a Block literal expression used as the initial value of a global or static local variable it is initialized as follows:
    133   struct __block_literal_1 __block_literal_1 = {
    134 	&_NSConcreteGlobalBlock,
    135 	(1<<28)|(1<<29), <uninitialized>,
    136 	__block_invoke_1,
    137 	&__block_descriptor_1
    138    };
    139 that is, a different address is provided as the first value and a particular (1<<28) bit is set in the flags field, and otherwise it is the same as for stack based Block literals.  This is an optimization that can be used for any Block literal that imports no const or __block storage variables.
    140 
    141 
    142 2. Imported Variables
    143 
    144 Variables of "auto" storage class are imported as const copies.  Variables of "__block" storage class are imported as a pointer to an enclosing data structure.  Global variables are simply referenced and not considered as imported.
    145 
    146 2.1 Imported const copy variables
    147 
    148 Automatic storage variables not marked with __block are imported as const copies.
    149 
    150 The simplest example is that of importing a variable of type int.
    151 
    152    int x = 10;
    153    void (^vv)(void) = ^{ printf("x is %d\n", x); }
    154    x = 11;
    155    vv();
    156 
    157 would be compiled
    158 
    159 struct __block_literal_2 {
    160     void *isa;
    161     int flags;
    162     int reserved; 
    163     void (*invoke)(struct __block_literal_2 *);
    164     struct __block_descriptor_2 *descriptor;
    165     const int x;
    166 };
    167 
    168 void __block_invoke_2(struct __block_literal_2 *_block) {
    169     printf("x is %d\n", _block->x);
    170 }
    171 
    172 static struct __block_descriptor_2 {
    173     unsigned long int reserved;
    174     unsigned long int Block_size;
    175 } __block_descriptor_2 = { 0, sizeof(struct __block_literal_2) };
    176 
    177 and
    178 
    179   struct __block_literal_2 __block_literal_2 = {
    180 	&_NSConcreteStackBlock,
    181 	(1<<29), <uninitialized>,
    182 	__block_invoke_2,
    183 	&__block_descriptor_2,
    184         x
    185    };
    186 
    187 In summary, scalars, structures, unions, and function pointers are generally imported as const copies with no need for helper functions.
    188 
    189 2.2 Imported const copy of Block reference
    190 
    191 The first case where copy and dispose helper functions are required is for the case of when a block itself is imported.  In this case both a copy_helper function and a dispose_helper function are needed.  The copy_helper function is passed both the existing stack based pointer and the pointer to the new heap version and should call back into the runtime to actually do the copy operation on the imported fields within the block.  The runtime functions are all described in Section 5.0 Runtime Helper Functions.
    192 
    193 An example:
    194 
    195    void (^existingBlock)(void) = ...;
    196    void (^vv)(void) = ^{ existingBlock(); }
    197    vv();
    198 
    199 struct __block_literal_3 {
    200    ...; // existing block
    201 };
    202 
    203 struct __block_literal_4 {
    204     void *isa;
    205     int flags;
    206     int reserved; 
    207     void (*invoke)(struct __block_literal_4 *);
    208     struct __block_literal_3 *const existingBlock;
    209 };
    210 
    211 void __block_invoke_4(struct __block_literal_2 *_block) {
    212    __block->existingBlock->invoke(__block->existingBlock);
    213 }
    214 
    215 void __block_copy_4(struct __block_literal_4 *dst, struct __block_literal_4 *src) {
    216      //_Block_copy_assign(&dst->existingBlock, src->existingBlock, 0);
    217      _Block_object_assign(&dst->existingBlock, src->existingBlock, BLOCK_FIELD_IS_BLOCK);
    218 }
    219 
    220 void __block_dispose_4(struct __block_literal_4 *src) {
    221      // was _Block_destroy
    222      _Block_object_dispose(src->existingBlock, BLOCK_FIELD_IS_BLOCK);
    223 }
    224 
    225 static struct __block_descriptor_4 {
    226     unsigned long int reserved;
    227     unsigned long int Block_size;
    228     void (*copy_helper)(struct __block_literal_4 *dst, struct __block_literal_4 *src);
    229     void (*dispose_helper)(struct __block_literal_4 *);
    230 } __block_descriptor_4 = {
    231 	0,
    232 	sizeof(struct __block_literal_4),
    233 	__block_copy_4,
    234 	__block_dispose_4,
    235 };
    236 
    237 and where it is used
    238 
    239   struct __block_literal_4 _block_literal = {
    240 	&_NSConcreteStackBlock,
    241 	(1<<25)|(1<<29), <uninitialized>
    242 	__block_invoke_4,
    243 	& __block_descriptor_4
    244         existingBlock,
    245    };
    246 
    247 2.2.1 Importing __attribute__((NSObject)) variables.
    248 
    249 GCC introduces __attribute__((NSObject)) on structure pointers to mean "this is an object".  This is useful because many low level data structures are declared as opaque structure pointers, e.g. CFStringRef, CFArrayRef, etc.  When used from C, however, these are still really objects and are the second case where that requires copy and dispose helper functions to be generated.  The copy helper functions generated by the compiler should use the _Block_object_assign runtime helper function and in the dispose helper the _Block_object_dispose runtime helper function should be called.
    250 
    251 For example, block xyzzy in the following
    252 
    253     struct Opaque *__attribute__((NSObject)) objectPointer = ...;
    254     ...
    255     void (^xyzzy)(void) = ^{  CFPrint(objectPointer); };
    256 
    257 would have helper functions
    258 
    259 void __block_copy_xyzzy(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
    260      _Block_object_assign(&dst->objectPointer, src-> objectPointer, BLOCK_FIELD_IS_OBJECT);
    261 }
    262 
    263 void __block_dispose_xyzzy(struct __block_literal_5 *src) {
    264      _Block_object_dispose(src->objectPointer, BLOCK_FIELD_IS_OBJECT);
    265 }
    266 
    267 generated.
    268 
    269 
    270 2.3 Imported __block marked variables.
    271 
    272 2.3.1 Layout of __block marked variables
    273 
    274 The compiler must embed variables that are marked __block in a specialized structure of the form:
    275 
    276 struct _block_byref_xxxx {
    277     void *isa;
    278     struct Block_byref *forwarding;
    279     int flags;   //refcount;
    280     int size;
    281     typeof(marked_variable) marked_variable;
    282 };
    283 
    284 Variables of certain types require helper functions for when Block_copy() and Block_release() are performed upon a referencing Block.  At the "C" level only variables that are of type Block or ones that have __attribute__((NSObject)) marked require helper functions.  In Objective-C objects require helper functions and in C++ stack based objects require helper functions. Variables that require helper functions use the form:
    285 
    286 struct _block_byref_xxxx {
    287     void *isa;
    288     struct _block_byref_xxxx *forwarding;
    289     int flags;   //refcount;
    290     int size;
    291     // helper functions called via Block_copy() and Block_release()
    292     void (*byref_keep)(void  *dst, void *src);
    293     void (*byref_dispose)(void *);
    294     typeof(marked_variable) marked_variable;
    295 };
    296 
    297 The structure is initialized such that
    298  a) the forwarding pointer is set to the beginning of its enclosing structure,
    299  b) the size field is initialized to the total size of the enclosing structure,
    300  c) the flags field is set to either 0 if no helper functions are needed or (1<<25) if they are,
    301  d) the helper functions are initialized (if present)
    302  e) the variable itself is set to its initial value.
    303  f) the isa field is set to NULL
    304 
    305 2.3.2 Access to __block variables from within its lexical scope.
    306 
    307 In order to "move" the variable to the heap upon a copy_helper operation the compiler must rewrite access to such a variable to be indirect through the structures forwarding pointer.  For example:
    308 
    309   int __block i = 10;
    310   i = 11;
    311 
    312 would be rewritten to be:
    313 
    314   struct _block_byref_i {
    315     void *isa;
    316     struct _block_byref_i *forwarding;
    317     int flags;   //refcount;
    318     int size;
    319     int captured_i;
    320   } i = { NULL, &i, 0, sizeof(struct _block_byref_i), 10 };
    321 
    322   i.forwarding->captured_i = 11;
    323 
    324 In the case of a Block reference variable being marked __block the helper code generated must use the _Block_object_assign and _Block_object_dispose routines supplied by the runtime to make the copies.  For example:
    325 
    326    __block void (voidBlock)(void) = blockA;
    327    voidBlock = blockB;
    328 
    329 would translate into
    330 
    331 struct _block_byref_voidBlock {
    332     void *isa;
    333     struct _block_byref_voidBlock *forwarding;
    334     int flags;   //refcount;
    335     int size;
    336     void (*byref_keep)(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src);
    337     void (*byref_dispose)(struct _block_byref_voidBlock *);
    338     void (^captured_voidBlock)(void);
    339 };
    340 
    341 void _block_byref_keep_helper(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
    342     //_Block_copy_assign(&dst->captured_voidBlock, src->captured_voidBlock, 0);
    343     _Block_object_assign(&dst->captured_voidBlock, src->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);
    344 }
    345 
    346 void _block_byref_dispose_helper(struct _block_byref_voidBlock *param) {
    347     //_Block_destroy(param->captured_voidBlock, 0);
    348     _Block_object_dispose(param->captured_voidBlock, BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER)}
    349 
    350 and
    351   struct _block_byref_voidBlock voidBlock = {( .forwarding=&voidBlock, .flags=(1<<25), .size=sizeof(struct _block_byref_voidBlock *),
    352       .byref_keep=_block_byref_keep_helper, .byref_dispose=_block_byref_dispose_helper,
    353       .captured_voidBlock=blockA )};
    354 
    355   voidBlock.forwarding->captured_voidBlock = blockB;
    356   
    357 
    358 2.3.3 Importing __block variables into Blocks
    359 
    360 A Block that uses a __block variable in its compound statement body must import the variable and emit copy_helper and dispose_helper helper functions that, in turn, call back into the runtime to actually copy or release the byref data block using the functions _Block_object_assign and _Block_object_dispose.
    361 
    362 For example:
    363 
    364    int __block i = 2;
    365    functioncall(^{ i = 10; });
    366 
    367 would translate to
    368 
    369 struct _block_byref_i {
    370     void *isa;  // set to NULL
    371     struct _block_byref_voidBlock *forwarding;
    372     int flags;   //refcount;
    373     int size;
    374     void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
    375     void (*byref_dispose)(struct _block_byref_i *);
    376     int captured_i;
    377 };
    378 
    379 
    380 struct __block_literal_5 {
    381     void *isa;
    382     int flags;
    383     int reserved; 
    384     void (*invoke)(struct __block_literal_5 *);
    385     struct __block_descriptor_5 *descriptor;
    386     struct _block_byref_i *i_holder;
    387 };
    388 
    389 void __block_invoke_5(struct __block_literal_5 *_block) {
    390    _block->forwarding->captured_i = 10;
    391 }
    392 
    393 void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
    394      //_Block_byref_assign_copy(&dst->captured_i, src->captured_i);
    395      _Block_object_assign(&dst->captured_i, src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
    396 }
    397 
    398 void __block_dispose_5(struct __block_literal_5 *src) {
    399      //_Block_byref_release(src->captured_i);
    400      _Block_object_dispose(src->captured_i, BLOCK_FIELD_IS_BYREF | BLOCK_BYREF_CALLER);
    401 }
    402 
    403 static struct __block_descriptor_5 {
    404     unsigned long int reserved;
    405     unsigned long int Block_size;
    406     void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
    407     void (*dispose_helper)(struct __block_literal_5 *);
    408 } __block_descriptor_5 = { 0, sizeof(struct __block_literal_5) __block_copy_5, __block_dispose_5 };
    409 
    410 and
    411 
    412   struct _block_byref_i i = {( .forwarding=&i, .flags=0, .size=sizeof(struct _block_byref_i) )};
    413   struct __block_literal_5 _block_literal = {
    414 	&_NSConcreteStackBlock,
    415 	(1<<25)|(1<<29), <uninitialized>,
    416 	__block_invoke_5,
    417 	&__block_descriptor_5,
    418         2,
    419    };
    420 
    421 2.3.4 Importing __attribute__((NSObject)) __block variables
    422 
    423 A __block variable that is also marked __attribute__((NSObject)) should have byref_keep and byref_dispose helper functions that use _Block_object_assign and _Block_object_dispose.
    424 
    425 2.3.5 __block escapes
    426 
    427 Because Blocks referencing __block variables may have Block_copy() performed upon them the underlying storage for the variables may move to the heap.  In Objective-C Garbage Collection Only compilation environments the heap used is the garbage collected one and no further action is required.  Otherwise the compiler must issue a call to potentially release any heap storage for __block variables at all escapes or terminations of their scope.  The call should be:
    428 
    429     _Block_object_dispose(&_block_byref_xxx, BLOCK_FIELD_IS_BYREF);
    430 
    431 
    432 2.3.6 Nesting
    433 
    434 Blocks may contain Block literal expressions.  Any variables used within inner blocks are imported into all enclosing Block scopes even if the variables are not used.  This includes const imports as well as __block variables.
    435 
    436 3. Objective C Extensions to Blocks
    437 
    438 3.1 Importing Objects
    439 
    440 Objects should be treated as __attribute__((NSObject)) variables; all copy_helper, dispose_helper, byref_keep, and byref_dispose helper functions should use _Block_object_assign and _Block_object_dispose.  There should be no code generated that uses -retain or -release methods.
    441 
    442 
    443 3.2 Blocks as Objects
    444 
    445 The compiler will treat Blocks as objects when synthesizing property setters and getters, will characterize them as objects when generating garbage collection strong and weak layout information in the same manner as objects, and will issue strong and weak write-barrier assignments in the same manner as objects.
    446 
    447 3.3 __weak __block Support
    448 
    449 Objective-C (and Objective-C++) support the __weak attribute on __block variables.  Under normal circumstances the compiler uses the Objective-C runtime helper support functions objc_assign_weak and objc_read_weak.  Both should continue to be used for all reads and writes of __weak __block variables:
    450 	objc_read_weak(&block->byref_i->forwarding->i)
    451 
    452 The __weak variable is stored in a _block_byref_xxxx structure and the Block has copy and dispose helpers for this structure that call:
    453 	_Block_object_assign(&dest->_block_byref_i, src-> _block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);
    454 and
    455 	_Block_object_dispose(src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BYREF);
    456 
    457 
    458 In turn, the block_byref copy support helpers distinguish between whether the __block variable is a Block or not and should either call:
    459 	_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_OBJECT | BLOCK_BYREF_CALLER);
    460 for something declared as an object or
    461 	_Block_object_assign(&dest->_block_byref_i, src->_block_byref_i, BLOCK_FIELD_IS_WEAK | BLOCK_FIELD_IS_BLOCK | BLOCK_BYREF_CALLER);
    462 for something declared as a Block.
    463 
    464 A full example follows:
    465 
    466 
    467    __block __weak id obj = <initialization expression>;
    468    functioncall(^{ [obj somemessage]; });
    469 
    470 would translate to
    471 
    472 struct _block_byref_obj {
    473     void *isa;  // uninitialized
    474     struct _block_byref_obj *forwarding;
    475     int flags;   //refcount;
    476     int size;
    477     void (*byref_keep)(struct _block_byref_i *dst, struct _block_byref_i *src);
    478     void (*byref_dispose)(struct _block_byref_i *);
    479     id captured_obj;
    480 };
    481 
    482 void _block_byref_obj_keep(struct _block_byref_voidBlock *dst, struct _block_byref_voidBlock *src) {
    483     //_Block_copy_assign(&dst->captured_obj, src->captured_obj, 0);
    484     _Block_object_assign(&dst->captured_obj, src->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
    485 }
    486 
    487 void _block_byref_obj_dispose(struct _block_byref_voidBlock *param) {
    488     //_Block_destroy(param->captured_obj, 0);
    489     _Block_object_dispose(param->captured_obj, BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK | BLOCK_BYREF_CALLER);
    490 };
    491 
    492 for the block byref part and
    493 
    494 struct __block_literal_5 {
    495     void *isa;
    496     int flags;
    497     int reserved; 
    498     void (*invoke)(struct __block_literal_5 *);
    499     struct __block_descriptor_5 *descriptor;
    500     struct _block_byref_obj *byref_obj;
    501 };
    502 
    503 void __block_invoke_5(struct __block_literal_5 *_block) {
    504    [objc_read_weak(&_block->byref_obj->forwarding->captured_obj) somemessage];
    505 }
    506 
    507 void __block_copy_5(struct __block_literal_5 *dst, struct __block_literal_5 *src) {
    508      //_Block_byref_assign_copy(&dst->byref_obj, src->byref_obj);
    509      _Block_object_assign(&dst->byref_obj, src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
    510 }
    511 
    512 void __block_dispose_5(struct __block_literal_5 *src) {
    513      //_Block_byref_release(src->byref_obj);
    514      _Block_object_dispose(src->byref_obj, BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK);
    515 }
    516 
    517 static struct __block_descriptor_5 {
    518     unsigned long int reserved;
    519     unsigned long int Block_size;
    520     void (*copy_helper)(struct __block_literal_5 *dst, struct __block_literal_5 *src);
    521     void (*dispose_helper)(struct __block_literal_5 *);
    522 } __block_descriptor_5 = { 0, sizeof(struct __block_literal_5), __block_copy_5, __block_dispose_5 };
    523 
    524 and within the compound statement:
    525 
    526   struct _block_byref_obj obj = {( .forwarding=&obj, .flags=(1<<25), .size=sizeof(struct _block_byref_obj),
    527 				.byref_keep=_block_byref_obj_keep, .byref_dispose=_block_byref_obj_dispose,
    528 				.captured_obj = <initialization expression> )};
    529 
    530   struct __block_literal_5 _block_literal = {
    531 	&_NSConcreteStackBlock,
    532 	(1<<25)|(1<<29), <uninitialized>,
    533 	__block_invoke_5,
    534 	&__block_descriptor_5,
    535         &obj,		// a reference to the on-stack structure containing "captured_obj"
    536    };
    537 
    538 
    539    functioncall(_block_literal->invoke(&_block_literal));
    540 
    541 
    542 4.0 C++ Support
    543 
    544 Within a block stack based C++ objects are copied into const copies using the copy constructor.  It is an error if a stack based C++ object is used within a block if it does not have a copy constructor.  In addition both copy and destroy helper routines must be synthesized for the block to support the Block_copy() operation, and the flags work marked with the (1<<26) bit in addition to the (1<<25) bit.  The copy helper should call the constructor using appropriate offsets of the variable within the supplied stack based block source and heap based destination for all const constructed copies, and similarly should call the destructor in the destroy routine.
    545 
    546 As an example, suppose a C++ class FOO existed with a copy constructor.  Within a code block a stack version of a FOO object is declared and used within a Block literal expression:
    547 
    548 {
    549     FOO foo;
    550     void (^block)(void) = ^{ printf("%d\n", foo.value()); };
    551 }
    552 
    553 The compiler would synthesize
    554 
    555 struct __block_literal_10 {
    556     void *isa;
    557     int flags;
    558     int reserved; 
    559     void (*invoke)(struct __block_literal_10 *);
    560     struct __block_descriptor_10 *descriptor;
    561     const FOO foo;
    562 };
    563 
    564 void __block_invoke_10(struct __block_literal_10 *_block) {
    565    printf("%d\n", _block->foo.value());
    566 }
    567 
    568 void __block_literal_10(struct __block_literal_10 *dst, struct __block_literal_10 *src) {
    569      FOO_ctor(&dst->foo, &src->foo);
    570 }
    571 
    572 void __block_dispose_10(struct __block_literal_10 *src) {
    573      FOO_dtor(&src->foo);
    574 }
    575 
    576 static struct __block_descriptor_10 {
    577     unsigned long int reserved;
    578     unsigned long int Block_size;
    579     void (*copy_helper)(struct __block_literal_10 *dst, struct __block_literal_10 *src);
    580     void (*dispose_helper)(struct __block_literal_10 *);
    581 } __block_descriptor_10 = { 0, sizeof(struct __block_literal_10), __block_copy_10, __block_dispose_10 };
    582 
    583 and the code would be:
    584 {
    585   FOO foo;
    586   comp_ctor(&foo); // default constructor
    587   struct __block_literal_10 _block_literal = {
    588 	&_NSConcreteStackBlock,
    589 	(1<<25)|(1<<26)|(1<<29), <uninitialized>,
    590 	__block_invoke_10,
    591 	&__block_descriptor_10,
    592    };
    593    comp_ctor(&_block_literal->foo, &foo);  // const copy into stack version
    594    struct __block_literal_10 &block = &_block_literal;  // assign literal to block variable
    595    block->invoke(block);	// invoke block
    596    comp_dtor(&_block_literal->foo); // destroy stack version of const block copy
    597    comp_dtor(&foo); // destroy original version
    598 }
    599 
    600 
    601 C++ objects stored in __block storage start out on the stack in a block_byref data structure as do other variables.  Such objects (if not const objects) must support a regular copy constructor.  The block_byref data structure will have copy and destroy helper routines synthesized by the compiler.  The copy helper will have code created to perform the copy constructor based on the initial stack block_byref data structure, and will also set the (1<<26) bit in addition to the (1<<25) bit.  The destroy helper will have code to do the destructor on the object stored within the supplied block_byref heap data structure.  For example,
    602 
    603     __block FOO blockStorageFoo;
    604 
    605 requires the normal constructor for the embedded blockStorageFoo object
    606 
    607     FOO_ctor(& _block_byref_blockStorageFoo->blockStorageFoo);
    608 
    609 and at scope termination the destructor:
    610 
    611     FOO_dtor(& _block_byref_blockStorageFoo->blockStorageFoo);
    612 
    613 Note that the forwarding indirection is NOT used.
    614 
    615 The compiler would need to generate (if used from a block literal) the following copy/dispose helpers:
    616 
    617 void _block_byref_obj_keep(struct _block_byref_blockStorageFoo *dst, struct _block_byref_blockStorageFoo *src) {
    618      FOO_ctor(&dst->blockStorageFoo, &src->blockStorageFoo);
    619 }
    620 
    621 void _block_byref_obj_dispose(struct _block_byref_blockStorageFoo *src) {
    622      FOO_dtor(&src->blockStorageFoo);
    623 }
    624 
    625 for the appropriately named constructor and destructor for the class/struct FOO.
    626 
    627 To support member variable and function access the compiler will synthesize a const pointer to a block version of the "this" pointer.
    628 
    629 5.0 Runtime Helper Functions
    630 
    631 The runtime helper functions are described in /usr/local/include/Block_private.h.  To summarize their use, a block requires copy/dispose helpers if it imports any block variables, __block storage variables, __attribute__((NSObject)) variables, or C++ const copied objects with constructor/destructors.  The (1<<26) bit is set and functions are generated.
    632 
    633 The block copy helper function should, for each of the variables of the type mentioned above, call
    634      _Block_object_assign(&dst->target, src->target, BLOCK_FIELD_<appropo>);
    635 in the copy helper and
    636     _Block_object_dispose(->target, BLOCK_FIELD_<appropo>);
    637 in the dispose helper where
    638       <appropo> is
    639 
    640 enum {
    641     BLOCK_FIELD_IS_OBJECT   =  3,  // id, NSObject, __attribute__((NSObject)), block, ...
    642     BLOCK_FIELD_IS_BLOCK    =  7,  // a block variable
    643     BLOCK_FIELD_IS_BYREF    =  8,  // the on stack structure holding the __block variable
    644 
    645     BLOCK_FIELD_IS_WEAK     = 16,  // declared __weak
    646 
    647     BLOCK_BYREF_CALLER      = 128, // called from byref copy/dispose helpers
    648 };
    649 
    650 and of course the CTORs/DTORs for const copied C++ objects.
    651 
    652 The block_byref data structure similarly requires copy/dispose helpers for block variables, __attribute__((NSObject)) variables, or C++ const copied objects with constructor/destructors, and again the (1<<26) bit is set and functions are generated in the same manner.
    653 
    654 Under ObjC we allow __weak as an attribute on __block variables, and this causes the addition of BLOCK_FIELD_IS_WEAK orred onto the BLOCK_FIELD_IS_BYREF flag when copying the block_byref structure in the block copy helper, and onto the BLOCK_FIELD_<appropo> field within the block_byref copy/dispose helper calls.
    655 
    656 The prototypes, and summary, of the helper functions are
    657 
    658 /* Certain field types require runtime assistance when being copied to the heap.  The following function is used
    659    to copy fields of types: blocks, pointers to byref structures, and objects (including __attribute__((NSObject)) pointers.
    660    BLOCK_FIELD_IS_WEAK is orthogonal to the other choices which are mutually exclusive.
    661    Only in a Block copy helper will one see BLOCK_FIELD_IS_BYREF.
    662  */
    663 void _Block_object_assign(void *destAddr, const void *object, const int flags);
    664 
    665 /* Similarly a compiler generated dispose helper needs to call back for each field of the byref data structure.
    666    (Currently the implementation only packs one field into the byref structure but in principle there could be more).
    667    The same flags used in the copy helper should be used for each call generated to this function:
    668  */
    669 void _Block_object_dispose(const void *object, const int flags);
    670 
    671