1 //===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the DeltaTree and related classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Rewrite/DeltaTree.h" 15 #include "clang/Basic/LLVM.h" 16 #include <cstring> 17 #include <cstdio> 18 using namespace clang; 19 20 /// The DeltaTree class is a multiway search tree (BTree) structure with some 21 /// fancy features. B-Trees are generally more memory and cache efficient 22 /// than binary trees, because they store multiple keys/values in each node. 23 /// 24 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing 25 /// fast lookup by FileIndex. However, an added (important) bonus is that it 26 /// can also efficiently tell us the full accumulated delta for a specific 27 /// file offset as well, without traversing the whole tree. 28 /// 29 /// The nodes of the tree are made up of instances of two classes: 30 /// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the 31 /// former and adds children pointers. Each node knows the full delta of all 32 /// entries (recursively) contained inside of it, which allows us to get the 33 /// full delta implied by a whole subtree in constant time. 34 35 namespace { 36 /// SourceDelta - As code in the original input buffer is added and deleted, 37 /// SourceDelta records are used to keep track of how the input SourceLocation 38 /// object is mapped into the output buffer. 39 struct SourceDelta { 40 unsigned FileLoc; 41 int Delta; 42 43 static SourceDelta get(unsigned Loc, int D) { 44 SourceDelta Delta; 45 Delta.FileLoc = Loc; 46 Delta.Delta = D; 47 return Delta; 48 } 49 }; 50 51 /// DeltaTreeNode - The common part of all nodes. 52 /// 53 class DeltaTreeNode { 54 public: 55 struct InsertResult { 56 DeltaTreeNode *LHS, *RHS; 57 SourceDelta Split; 58 }; 59 60 private: 61 friend class DeltaTreeInteriorNode; 62 63 /// WidthFactor - This controls the number of K/V slots held in the BTree: 64 /// how wide it is. Each level of the BTree is guaranteed to have at least 65 /// WidthFactor-1 K/V pairs (except the root) and may have at most 66 /// 2*WidthFactor-1 K/V pairs. 67 enum { WidthFactor = 8 }; 68 69 /// Values - This tracks the SourceDelta's currently in this node. 70 /// 71 SourceDelta Values[2*WidthFactor-1]; 72 73 /// NumValuesUsed - This tracks the number of values this node currently 74 /// holds. 75 unsigned char NumValuesUsed; 76 77 /// IsLeaf - This is true if this is a leaf of the btree. If false, this is 78 /// an interior node, and is actually an instance of DeltaTreeInteriorNode. 79 bool IsLeaf; 80 81 /// FullDelta - This is the full delta of all the values in this node and 82 /// all children nodes. 83 int FullDelta; 84 public: 85 DeltaTreeNode(bool isLeaf = true) 86 : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {} 87 88 bool isLeaf() const { return IsLeaf; } 89 int getFullDelta() const { return FullDelta; } 90 bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; } 91 92 unsigned getNumValuesUsed() const { return NumValuesUsed; } 93 const SourceDelta &getValue(unsigned i) const { 94 assert(i < NumValuesUsed && "Invalid value #"); 95 return Values[i]; 96 } 97 SourceDelta &getValue(unsigned i) { 98 assert(i < NumValuesUsed && "Invalid value #"); 99 return Values[i]; 100 } 101 102 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 103 /// this node. If insertion is easy, do it and return false. Otherwise, 104 /// split the node, populate InsertRes with info about the split, and return 105 /// true. 106 bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes); 107 108 void DoSplit(InsertResult &InsertRes); 109 110 111 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 112 /// local walk over our contained deltas. 113 void RecomputeFullDeltaLocally(); 114 115 void Destroy(); 116 117 //static inline bool classof(const DeltaTreeNode *) { return true; } 118 }; 119 } // end anonymous namespace 120 121 namespace { 122 /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers. 123 /// This class tracks them. 124 class DeltaTreeInteriorNode : public DeltaTreeNode { 125 DeltaTreeNode *Children[2*WidthFactor]; 126 ~DeltaTreeInteriorNode() { 127 for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i) 128 Children[i]->Destroy(); 129 } 130 friend class DeltaTreeNode; 131 public: 132 DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {} 133 134 DeltaTreeInteriorNode(const InsertResult &IR) 135 : DeltaTreeNode(false /*nonleaf*/) { 136 Children[0] = IR.LHS; 137 Children[1] = IR.RHS; 138 Values[0] = IR.Split; 139 FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta; 140 NumValuesUsed = 1; 141 } 142 143 const DeltaTreeNode *getChild(unsigned i) const { 144 assert(i < getNumValuesUsed()+1 && "Invalid child"); 145 return Children[i]; 146 } 147 DeltaTreeNode *getChild(unsigned i) { 148 assert(i < getNumValuesUsed()+1 && "Invalid child"); 149 return Children[i]; 150 } 151 152 //static inline bool classof(const DeltaTreeInteriorNode *) { return true; } 153 static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); } 154 }; 155 } 156 157 158 /// Destroy - A 'virtual' destructor. 159 void DeltaTreeNode::Destroy() { 160 if (isLeaf()) 161 delete this; 162 else 163 delete cast<DeltaTreeInteriorNode>(this); 164 } 165 166 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 167 /// local walk over our contained deltas. 168 void DeltaTreeNode::RecomputeFullDeltaLocally() { 169 int NewFullDelta = 0; 170 for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i) 171 NewFullDelta += Values[i].Delta; 172 if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) 173 for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i) 174 NewFullDelta += IN->getChild(i)->getFullDelta(); 175 FullDelta = NewFullDelta; 176 } 177 178 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 179 /// this node. If insertion is easy, do it and return false. Otherwise, 180 /// split the node, populate InsertRes with info about the split, and return 181 /// true. 182 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta, 183 InsertResult *InsertRes) { 184 // Maintain full delta for this node. 185 FullDelta += Delta; 186 187 // Find the insertion point, the first delta whose index is >= FileIndex. 188 unsigned i = 0, e = getNumValuesUsed(); 189 while (i != e && FileIndex > getValue(i).FileLoc) 190 ++i; 191 192 // If we found an a record for exactly this file index, just merge this 193 // value into the pre-existing record and finish early. 194 if (i != e && getValue(i).FileLoc == FileIndex) { 195 // NOTE: Delta could drop to zero here. This means that the delta entry is 196 // useless and could be removed. Supporting erases is more complex than 197 // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in 198 // the tree. 199 Values[i].Delta += Delta; 200 return false; 201 } 202 203 // Otherwise, we found an insertion point, and we know that the value at the 204 // specified index is > FileIndex. Handle the leaf case first. 205 if (isLeaf()) { 206 if (!isFull()) { 207 // For an insertion into a non-full leaf node, just insert the value in 208 // its sorted position. This requires moving later values over. 209 if (i != e) 210 memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i)); 211 Values[i] = SourceDelta::get(FileIndex, Delta); 212 ++NumValuesUsed; 213 return false; 214 } 215 216 // Otherwise, if this is leaf is full, split the node at its median, insert 217 // the value into one of the children, and return the result. 218 assert(InsertRes && "No result location specified"); 219 DoSplit(*InsertRes); 220 221 if (InsertRes->Split.FileLoc > FileIndex) 222 InsertRes->LHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/); 223 else 224 InsertRes->RHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/); 225 return true; 226 } 227 228 // Otherwise, this is an interior node. Send the request down the tree. 229 DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this); 230 if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes)) 231 return false; // If there was space in the child, just return. 232 233 // Okay, this split the subtree, producing a new value and two children to 234 // insert here. If this node is non-full, we can just insert it directly. 235 if (!isFull()) { 236 // Now that we have two nodes and a new element, insert the perclated value 237 // into ourself by moving all the later values/children down, then inserting 238 // the new one. 239 if (i != e) 240 memmove(&IN->Children[i+2], &IN->Children[i+1], 241 (e-i)*sizeof(IN->Children[0])); 242 IN->Children[i] = InsertRes->LHS; 243 IN->Children[i+1] = InsertRes->RHS; 244 245 if (e != i) 246 memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0])); 247 Values[i] = InsertRes->Split; 248 ++NumValuesUsed; 249 return false; 250 } 251 252 // Finally, if this interior node was full and a node is percolated up, split 253 // ourself and return that up the chain. Start by saving all our info to 254 // avoid having the split clobber it. 255 IN->Children[i] = InsertRes->LHS; 256 DeltaTreeNode *SubRHS = InsertRes->RHS; 257 SourceDelta SubSplit = InsertRes->Split; 258 259 // Do the split. 260 DoSplit(*InsertRes); 261 262 // Figure out where to insert SubRHS/NewSplit. 263 DeltaTreeInteriorNode *InsertSide; 264 if (SubSplit.FileLoc < InsertRes->Split.FileLoc) 265 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS); 266 else 267 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS); 268 269 // We now have a non-empty interior node 'InsertSide' to insert 270 // SubRHS/SubSplit into. Find out where to insert SubSplit. 271 272 // Find the insertion point, the first delta whose index is >SubSplit.FileLoc. 273 i = 0; e = InsertSide->getNumValuesUsed(); 274 while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc) 275 ++i; 276 277 // Now we know that i is the place to insert the split value into. Insert it 278 // and the child right after it. 279 if (i != e) 280 memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1], 281 (e-i)*sizeof(IN->Children[0])); 282 InsertSide->Children[i+1] = SubRHS; 283 284 if (e != i) 285 memmove(&InsertSide->Values[i+1], &InsertSide->Values[i], 286 (e-i)*sizeof(Values[0])); 287 InsertSide->Values[i] = SubSplit; 288 ++InsertSide->NumValuesUsed; 289 InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta(); 290 return true; 291 } 292 293 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values) 294 /// into two subtrees each with "WidthFactor-1" values and a pivot value. 295 /// Return the pieces in InsertRes. 296 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) { 297 assert(isFull() && "Why split a non-full node?"); 298 299 // Since this node is full, it contains 2*WidthFactor-1 values. We move 300 // the first 'WidthFactor-1' values to the LHS child (which we leave in this 301 // node), propagate one value up, and move the last 'WidthFactor-1' values 302 // into the RHS child. 303 304 // Create the new child node. 305 DeltaTreeNode *NewNode; 306 if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) { 307 // If this is an interior node, also move over 'WidthFactor' children 308 // into the new node. 309 DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode(); 310 memcpy(&New->Children[0], &IN->Children[WidthFactor], 311 WidthFactor*sizeof(IN->Children[0])); 312 NewNode = New; 313 } else { 314 // Just create the new leaf node. 315 NewNode = new DeltaTreeNode(); 316 } 317 318 // Move over the last 'WidthFactor-1' values from here to NewNode. 319 memcpy(&NewNode->Values[0], &Values[WidthFactor], 320 (WidthFactor-1)*sizeof(Values[0])); 321 322 // Decrease the number of values in the two nodes. 323 NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1; 324 325 // Recompute the two nodes' full delta. 326 NewNode->RecomputeFullDeltaLocally(); 327 RecomputeFullDeltaLocally(); 328 329 InsertRes.LHS = this; 330 InsertRes.RHS = NewNode; 331 InsertRes.Split = Values[WidthFactor-1]; 332 } 333 334 335 336 //===----------------------------------------------------------------------===// 337 // DeltaTree Implementation 338 //===----------------------------------------------------------------------===// 339 340 //#define VERIFY_TREE 341 342 #ifdef VERIFY_TREE 343 /// VerifyTree - Walk the btree performing assertions on various properties to 344 /// verify consistency. This is useful for debugging new changes to the tree. 345 static void VerifyTree(const DeltaTreeNode *N) { 346 const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N); 347 if (IN == 0) { 348 // Verify leaves, just ensure that FullDelta matches up and the elements 349 // are in proper order. 350 int FullDelta = 0; 351 for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) { 352 if (i) 353 assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc); 354 FullDelta += N->getValue(i).Delta; 355 } 356 assert(FullDelta == N->getFullDelta()); 357 return; 358 } 359 360 // Verify interior nodes: Ensure that FullDelta matches up and the 361 // elements are in proper order and the children are in proper order. 362 int FullDelta = 0; 363 for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) { 364 const SourceDelta &IVal = N->getValue(i); 365 const DeltaTreeNode *IChild = IN->getChild(i); 366 if (i) 367 assert(IN->getValue(i-1).FileLoc < IVal.FileLoc); 368 FullDelta += IVal.Delta; 369 FullDelta += IChild->getFullDelta(); 370 371 // The largest value in child #i should be smaller than FileLoc. 372 assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc < 373 IVal.FileLoc); 374 375 // The smallest value in child #i+1 should be larger than FileLoc. 376 assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc); 377 VerifyTree(IChild); 378 } 379 380 FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta(); 381 382 assert(FullDelta == N->getFullDelta()); 383 } 384 #endif // VERIFY_TREE 385 386 static DeltaTreeNode *getRoot(void *Root) { 387 return (DeltaTreeNode*)Root; 388 } 389 390 DeltaTree::DeltaTree() { 391 Root = new DeltaTreeNode(); 392 } 393 DeltaTree::DeltaTree(const DeltaTree &RHS) { 394 // Currently we only support copying when the RHS is empty. 395 assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 && 396 "Can only copy empty tree"); 397 Root = new DeltaTreeNode(); 398 } 399 400 DeltaTree::~DeltaTree() { 401 getRoot(Root)->Destroy(); 402 } 403 404 /// getDeltaAt - Return the accumulated delta at the specified file offset. 405 /// This includes all insertions or delections that occurred *before* the 406 /// specified file index. 407 int DeltaTree::getDeltaAt(unsigned FileIndex) const { 408 const DeltaTreeNode *Node = getRoot(Root); 409 410 int Result = 0; 411 412 // Walk down the tree. 413 while (1) { 414 // For all nodes, include any local deltas before the specified file 415 // index by summing them up directly. Keep track of how many were 416 // included. 417 unsigned NumValsGreater = 0; 418 for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e; 419 ++NumValsGreater) { 420 const SourceDelta &Val = Node->getValue(NumValsGreater); 421 422 if (Val.FileLoc >= FileIndex) 423 break; 424 Result += Val.Delta; 425 } 426 427 // If we have an interior node, include information about children and 428 // recurse. Otherwise, if we have a leaf, we're done. 429 const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node); 430 if (!IN) return Result; 431 432 // Include any children to the left of the values we skipped, all of 433 // their deltas should be included as well. 434 for (unsigned i = 0; i != NumValsGreater; ++i) 435 Result += IN->getChild(i)->getFullDelta(); 436 437 // If we found exactly the value we were looking for, break off the 438 // search early. There is no need to search the RHS of the value for 439 // partial results. 440 if (NumValsGreater != Node->getNumValuesUsed() && 441 Node->getValue(NumValsGreater).FileLoc == FileIndex) 442 return Result+IN->getChild(NumValsGreater)->getFullDelta(); 443 444 // Otherwise, traverse down the tree. The selected subtree may be 445 // partially included in the range. 446 Node = IN->getChild(NumValsGreater); 447 } 448 // NOT REACHED. 449 } 450 451 /// AddDelta - When a change is made that shifts around the text buffer, 452 /// this method is used to record that info. It inserts a delta of 'Delta' 453 /// into the current DeltaTree at offset FileIndex. 454 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) { 455 assert(Delta && "Adding a noop?"); 456 DeltaTreeNode *MyRoot = getRoot(Root); 457 458 DeltaTreeNode::InsertResult InsertRes; 459 if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) { 460 Root = MyRoot = new DeltaTreeInteriorNode(InsertRes); 461 } 462 463 #ifdef VERIFY_TREE 464 VerifyTree(MyRoot); 465 #endif 466 } 467 468