Home | History | Annotate | Download | only in Rewrite
      1 //===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the DeltaTree and related classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Rewrite/DeltaTree.h"
     15 #include "clang/Basic/LLVM.h"
     16 #include <cstring>
     17 #include <cstdio>
     18 using namespace clang;
     19 
     20 /// The DeltaTree class is a multiway search tree (BTree) structure with some
     21 /// fancy features.  B-Trees are generally more memory and cache efficient
     22 /// than binary trees, because they store multiple keys/values in each node.
     23 ///
     24 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
     25 /// fast lookup by FileIndex.  However, an added (important) bonus is that it
     26 /// can also efficiently tell us the full accumulated delta for a specific
     27 /// file offset as well, without traversing the whole tree.
     28 ///
     29 /// The nodes of the tree are made up of instances of two classes:
     30 /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
     31 /// former and adds children pointers.  Each node knows the full delta of all
     32 /// entries (recursively) contained inside of it, which allows us to get the
     33 /// full delta implied by a whole subtree in constant time.
     34 
     35 namespace {
     36   /// SourceDelta - As code in the original input buffer is added and deleted,
     37   /// SourceDelta records are used to keep track of how the input SourceLocation
     38   /// object is mapped into the output buffer.
     39   struct SourceDelta {
     40     unsigned FileLoc;
     41     int Delta;
     42 
     43     static SourceDelta get(unsigned Loc, int D) {
     44       SourceDelta Delta;
     45       Delta.FileLoc = Loc;
     46       Delta.Delta = D;
     47       return Delta;
     48     }
     49   };
     50 
     51   /// DeltaTreeNode - The common part of all nodes.
     52   ///
     53   class DeltaTreeNode {
     54   public:
     55     struct InsertResult {
     56       DeltaTreeNode *LHS, *RHS;
     57       SourceDelta Split;
     58     };
     59 
     60   private:
     61     friend class DeltaTreeInteriorNode;
     62 
     63     /// WidthFactor - This controls the number of K/V slots held in the BTree:
     64     /// how wide it is.  Each level of the BTree is guaranteed to have at least
     65     /// WidthFactor-1 K/V pairs (except the root) and may have at most
     66     /// 2*WidthFactor-1 K/V pairs.
     67     enum { WidthFactor = 8 };
     68 
     69     /// Values - This tracks the SourceDelta's currently in this node.
     70     ///
     71     SourceDelta Values[2*WidthFactor-1];
     72 
     73     /// NumValuesUsed - This tracks the number of values this node currently
     74     /// holds.
     75     unsigned char NumValuesUsed;
     76 
     77     /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
     78     /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
     79     bool IsLeaf;
     80 
     81     /// FullDelta - This is the full delta of all the values in this node and
     82     /// all children nodes.
     83     int FullDelta;
     84   public:
     85     DeltaTreeNode(bool isLeaf = true)
     86       : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
     87 
     88     bool isLeaf() const { return IsLeaf; }
     89     int getFullDelta() const { return FullDelta; }
     90     bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
     91 
     92     unsigned getNumValuesUsed() const { return NumValuesUsed; }
     93     const SourceDelta &getValue(unsigned i) const {
     94       assert(i < NumValuesUsed && "Invalid value #");
     95       return Values[i];
     96     }
     97     SourceDelta &getValue(unsigned i) {
     98       assert(i < NumValuesUsed && "Invalid value #");
     99       return Values[i];
    100     }
    101 
    102     /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
    103     /// this node.  If insertion is easy, do it and return false.  Otherwise,
    104     /// split the node, populate InsertRes with info about the split, and return
    105     /// true.
    106     bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
    107 
    108     void DoSplit(InsertResult &InsertRes);
    109 
    110 
    111     /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
    112     /// local walk over our contained deltas.
    113     void RecomputeFullDeltaLocally();
    114 
    115     void Destroy();
    116 
    117     //static inline bool classof(const DeltaTreeNode *) { return true; }
    118   };
    119 } // end anonymous namespace
    120 
    121 namespace {
    122   /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
    123   /// This class tracks them.
    124   class DeltaTreeInteriorNode : public DeltaTreeNode {
    125     DeltaTreeNode *Children[2*WidthFactor];
    126     ~DeltaTreeInteriorNode() {
    127       for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
    128         Children[i]->Destroy();
    129     }
    130     friend class DeltaTreeNode;
    131   public:
    132     DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
    133 
    134     DeltaTreeInteriorNode(const InsertResult &IR)
    135       : DeltaTreeNode(false /*nonleaf*/) {
    136       Children[0] = IR.LHS;
    137       Children[1] = IR.RHS;
    138       Values[0] = IR.Split;
    139       FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
    140       NumValuesUsed = 1;
    141     }
    142 
    143     const DeltaTreeNode *getChild(unsigned i) const {
    144       assert(i < getNumValuesUsed()+1 && "Invalid child");
    145       return Children[i];
    146     }
    147     DeltaTreeNode *getChild(unsigned i) {
    148       assert(i < getNumValuesUsed()+1 && "Invalid child");
    149       return Children[i];
    150     }
    151 
    152   //static inline bool classof(const DeltaTreeInteriorNode *) { return true; }
    153     static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
    154   };
    155 }
    156 
    157 
    158 /// Destroy - A 'virtual' destructor.
    159 void DeltaTreeNode::Destroy() {
    160   if (isLeaf())
    161     delete this;
    162   else
    163     delete cast<DeltaTreeInteriorNode>(this);
    164 }
    165 
    166 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
    167 /// local walk over our contained deltas.
    168 void DeltaTreeNode::RecomputeFullDeltaLocally() {
    169   int NewFullDelta = 0;
    170   for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
    171     NewFullDelta += Values[i].Delta;
    172   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
    173     for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
    174       NewFullDelta += IN->getChild(i)->getFullDelta();
    175   FullDelta = NewFullDelta;
    176 }
    177 
    178 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
    179 /// this node.  If insertion is easy, do it and return false.  Otherwise,
    180 /// split the node, populate InsertRes with info about the split, and return
    181 /// true.
    182 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
    183                                 InsertResult *InsertRes) {
    184   // Maintain full delta for this node.
    185   FullDelta += Delta;
    186 
    187   // Find the insertion point, the first delta whose index is >= FileIndex.
    188   unsigned i = 0, e = getNumValuesUsed();
    189   while (i != e && FileIndex > getValue(i).FileLoc)
    190     ++i;
    191 
    192   // If we found an a record for exactly this file index, just merge this
    193   // value into the pre-existing record and finish early.
    194   if (i != e && getValue(i).FileLoc == FileIndex) {
    195     // NOTE: Delta could drop to zero here.  This means that the delta entry is
    196     // useless and could be removed.  Supporting erases is more complex than
    197     // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
    198     // the tree.
    199     Values[i].Delta += Delta;
    200     return false;
    201   }
    202 
    203   // Otherwise, we found an insertion point, and we know that the value at the
    204   // specified index is > FileIndex.  Handle the leaf case first.
    205   if (isLeaf()) {
    206     if (!isFull()) {
    207       // For an insertion into a non-full leaf node, just insert the value in
    208       // its sorted position.  This requires moving later values over.
    209       if (i != e)
    210         memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
    211       Values[i] = SourceDelta::get(FileIndex, Delta);
    212       ++NumValuesUsed;
    213       return false;
    214     }
    215 
    216     // Otherwise, if this is leaf is full, split the node at its median, insert
    217     // the value into one of the children, and return the result.
    218     assert(InsertRes && "No result location specified");
    219     DoSplit(*InsertRes);
    220 
    221     if (InsertRes->Split.FileLoc > FileIndex)
    222       InsertRes->LHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
    223     else
    224       InsertRes->RHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
    225     return true;
    226   }
    227 
    228   // Otherwise, this is an interior node.  Send the request down the tree.
    229   DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
    230   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
    231     return false; // If there was space in the child, just return.
    232 
    233   // Okay, this split the subtree, producing a new value and two children to
    234   // insert here.  If this node is non-full, we can just insert it directly.
    235   if (!isFull()) {
    236     // Now that we have two nodes and a new element, insert the perclated value
    237     // into ourself by moving all the later values/children down, then inserting
    238     // the new one.
    239     if (i != e)
    240       memmove(&IN->Children[i+2], &IN->Children[i+1],
    241               (e-i)*sizeof(IN->Children[0]));
    242     IN->Children[i] = InsertRes->LHS;
    243     IN->Children[i+1] = InsertRes->RHS;
    244 
    245     if (e != i)
    246       memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
    247     Values[i] = InsertRes->Split;
    248     ++NumValuesUsed;
    249     return false;
    250   }
    251 
    252   // Finally, if this interior node was full and a node is percolated up, split
    253   // ourself and return that up the chain.  Start by saving all our info to
    254   // avoid having the split clobber it.
    255   IN->Children[i] = InsertRes->LHS;
    256   DeltaTreeNode *SubRHS = InsertRes->RHS;
    257   SourceDelta SubSplit = InsertRes->Split;
    258 
    259   // Do the split.
    260   DoSplit(*InsertRes);
    261 
    262   // Figure out where to insert SubRHS/NewSplit.
    263   DeltaTreeInteriorNode *InsertSide;
    264   if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
    265     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
    266   else
    267     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
    268 
    269   // We now have a non-empty interior node 'InsertSide' to insert
    270   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
    271 
    272   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
    273   i = 0; e = InsertSide->getNumValuesUsed();
    274   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
    275     ++i;
    276 
    277   // Now we know that i is the place to insert the split value into.  Insert it
    278   // and the child right after it.
    279   if (i != e)
    280     memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
    281             (e-i)*sizeof(IN->Children[0]));
    282   InsertSide->Children[i+1] = SubRHS;
    283 
    284   if (e != i)
    285     memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
    286             (e-i)*sizeof(Values[0]));
    287   InsertSide->Values[i] = SubSplit;
    288   ++InsertSide->NumValuesUsed;
    289   InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
    290   return true;
    291 }
    292 
    293 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
    294 /// into two subtrees each with "WidthFactor-1" values and a pivot value.
    295 /// Return the pieces in InsertRes.
    296 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
    297   assert(isFull() && "Why split a non-full node?");
    298 
    299   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
    300   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
    301   // node), propagate one value up, and move the last 'WidthFactor-1' values
    302   // into the RHS child.
    303 
    304   // Create the new child node.
    305   DeltaTreeNode *NewNode;
    306   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
    307     // If this is an interior node, also move over 'WidthFactor' children
    308     // into the new node.
    309     DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
    310     memcpy(&New->Children[0], &IN->Children[WidthFactor],
    311            WidthFactor*sizeof(IN->Children[0]));
    312     NewNode = New;
    313   } else {
    314     // Just create the new leaf node.
    315     NewNode = new DeltaTreeNode();
    316   }
    317 
    318   // Move over the last 'WidthFactor-1' values from here to NewNode.
    319   memcpy(&NewNode->Values[0], &Values[WidthFactor],
    320          (WidthFactor-1)*sizeof(Values[0]));
    321 
    322   // Decrease the number of values in the two nodes.
    323   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
    324 
    325   // Recompute the two nodes' full delta.
    326   NewNode->RecomputeFullDeltaLocally();
    327   RecomputeFullDeltaLocally();
    328 
    329   InsertRes.LHS = this;
    330   InsertRes.RHS = NewNode;
    331   InsertRes.Split = Values[WidthFactor-1];
    332 }
    333 
    334 
    335 
    336 //===----------------------------------------------------------------------===//
    337 //                        DeltaTree Implementation
    338 //===----------------------------------------------------------------------===//
    339 
    340 //#define VERIFY_TREE
    341 
    342 #ifdef VERIFY_TREE
    343 /// VerifyTree - Walk the btree performing assertions on various properties to
    344 /// verify consistency.  This is useful for debugging new changes to the tree.
    345 static void VerifyTree(const DeltaTreeNode *N) {
    346   const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
    347   if (IN == 0) {
    348     // Verify leaves, just ensure that FullDelta matches up and the elements
    349     // are in proper order.
    350     int FullDelta = 0;
    351     for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
    352       if (i)
    353         assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
    354       FullDelta += N->getValue(i).Delta;
    355     }
    356     assert(FullDelta == N->getFullDelta());
    357     return;
    358   }
    359 
    360   // Verify interior nodes: Ensure that FullDelta matches up and the
    361   // elements are in proper order and the children are in proper order.
    362   int FullDelta = 0;
    363   for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
    364     const SourceDelta &IVal = N->getValue(i);
    365     const DeltaTreeNode *IChild = IN->getChild(i);
    366     if (i)
    367       assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
    368     FullDelta += IVal.Delta;
    369     FullDelta += IChild->getFullDelta();
    370 
    371     // The largest value in child #i should be smaller than FileLoc.
    372     assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
    373            IVal.FileLoc);
    374 
    375     // The smallest value in child #i+1 should be larger than FileLoc.
    376     assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
    377     VerifyTree(IChild);
    378   }
    379 
    380   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
    381 
    382   assert(FullDelta == N->getFullDelta());
    383 }
    384 #endif  // VERIFY_TREE
    385 
    386 static DeltaTreeNode *getRoot(void *Root) {
    387   return (DeltaTreeNode*)Root;
    388 }
    389 
    390 DeltaTree::DeltaTree() {
    391   Root = new DeltaTreeNode();
    392 }
    393 DeltaTree::DeltaTree(const DeltaTree &RHS) {
    394   // Currently we only support copying when the RHS is empty.
    395   assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
    396          "Can only copy empty tree");
    397   Root = new DeltaTreeNode();
    398 }
    399 
    400 DeltaTree::~DeltaTree() {
    401   getRoot(Root)->Destroy();
    402 }
    403 
    404 /// getDeltaAt - Return the accumulated delta at the specified file offset.
    405 /// This includes all insertions or delections that occurred *before* the
    406 /// specified file index.
    407 int DeltaTree::getDeltaAt(unsigned FileIndex) const {
    408   const DeltaTreeNode *Node = getRoot(Root);
    409 
    410   int Result = 0;
    411 
    412   // Walk down the tree.
    413   while (1) {
    414     // For all nodes, include any local deltas before the specified file
    415     // index by summing them up directly.  Keep track of how many were
    416     // included.
    417     unsigned NumValsGreater = 0;
    418     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
    419          ++NumValsGreater) {
    420       const SourceDelta &Val = Node->getValue(NumValsGreater);
    421 
    422       if (Val.FileLoc >= FileIndex)
    423         break;
    424       Result += Val.Delta;
    425     }
    426 
    427     // If we have an interior node, include information about children and
    428     // recurse.  Otherwise, if we have a leaf, we're done.
    429     const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
    430     if (!IN) return Result;
    431 
    432     // Include any children to the left of the values we skipped, all of
    433     // their deltas should be included as well.
    434     for (unsigned i = 0; i != NumValsGreater; ++i)
    435       Result += IN->getChild(i)->getFullDelta();
    436 
    437     // If we found exactly the value we were looking for, break off the
    438     // search early.  There is no need to search the RHS of the value for
    439     // partial results.
    440     if (NumValsGreater != Node->getNumValuesUsed() &&
    441         Node->getValue(NumValsGreater).FileLoc == FileIndex)
    442       return Result+IN->getChild(NumValsGreater)->getFullDelta();
    443 
    444     // Otherwise, traverse down the tree.  The selected subtree may be
    445     // partially included in the range.
    446     Node = IN->getChild(NumValsGreater);
    447   }
    448   // NOT REACHED.
    449 }
    450 
    451 /// AddDelta - When a change is made that shifts around the text buffer,
    452 /// this method is used to record that info.  It inserts a delta of 'Delta'
    453 /// into the current DeltaTree at offset FileIndex.
    454 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
    455   assert(Delta && "Adding a noop?");
    456   DeltaTreeNode *MyRoot = getRoot(Root);
    457 
    458   DeltaTreeNode::InsertResult InsertRes;
    459   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
    460     Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
    461   }
    462 
    463 #ifdef VERIFY_TREE
    464   VerifyTree(MyRoot);
    465 #endif
    466 }
    467 
    468