Home | History | Annotate | Download | only in Core
      1 //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defined the types Store and StoreManager.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     16 #include "clang/AST/CharUnits.h"
     17 
     18 using namespace clang;
     19 using namespace ento;
     20 
     21 StoreManager::StoreManager(ProgramStateManager &stateMgr)
     22   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
     23     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
     24 
     25 StoreRef StoreManager::enterStackFrame(const ProgramState *state,
     26                                        const StackFrameContext *frame) {
     27   return StoreRef(state->getStore(), *this);
     28 }
     29 
     30 const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
     31                                               QualType EleTy, uint64_t index) {
     32   NonLoc idx = svalBuilder.makeArrayIndex(index);
     33   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
     34 }
     35 
     36 // FIXME: Merge with the implementation of the same method in MemRegion.cpp
     37 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
     38   if (const RecordType *RT = Ty->getAs<RecordType>()) {
     39     const RecordDecl *D = RT->getDecl();
     40     if (!D->getDefinition())
     41       return false;
     42   }
     43 
     44   return true;
     45 }
     46 
     47 StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
     48   return StoreRef(store, *this);
     49 }
     50 
     51 const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
     52                                                         QualType T) {
     53   NonLoc idx = svalBuilder.makeZeroArrayIndex();
     54   assert(!T.isNull());
     55   return MRMgr.getElementRegion(T, idx, R, Ctx);
     56 }
     57 
     58 const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
     59 
     60   ASTContext &Ctx = StateMgr.getContext();
     61 
     62   // Handle casts to Objective-C objects.
     63   if (CastToTy->isObjCObjectPointerType())
     64     return R->StripCasts();
     65 
     66   if (CastToTy->isBlockPointerType()) {
     67     // FIXME: We may need different solutions, depending on the symbol
     68     // involved.  Blocks can be casted to/from 'id', as they can be treated
     69     // as Objective-C objects.  This could possibly be handled by enhancing
     70     // our reasoning of downcasts of symbolic objects.
     71     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
     72       return R;
     73 
     74     // We don't know what to make of it.  Return a NULL region, which
     75     // will be interpretted as UnknownVal.
     76     return NULL;
     77   }
     78 
     79   // Now assume we are casting from pointer to pointer. Other cases should
     80   // already be handled.
     81   QualType PointeeTy = CastToTy->getPointeeType();
     82   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
     83 
     84   // Handle casts to void*.  We just pass the region through.
     85   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
     86     return R;
     87 
     88   // Handle casts from compatible types.
     89   if (R->isBoundable())
     90     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
     91       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
     92       if (CanonPointeeTy == ObjTy)
     93         return R;
     94     }
     95 
     96   // Process region cast according to the kind of the region being cast.
     97   switch (R->getKind()) {
     98     case MemRegion::CXXThisRegionKind:
     99     case MemRegion::GenericMemSpaceRegionKind:
    100     case MemRegion::StackLocalsSpaceRegionKind:
    101     case MemRegion::StackArgumentsSpaceRegionKind:
    102     case MemRegion::HeapSpaceRegionKind:
    103     case MemRegion::UnknownSpaceRegionKind:
    104     case MemRegion::NonStaticGlobalSpaceRegionKind:
    105     case MemRegion::StaticGlobalSpaceRegionKind: {
    106       llvm_unreachable("Invalid region cast");
    107     }
    108 
    109     case MemRegion::FunctionTextRegionKind:
    110     case MemRegion::BlockTextRegionKind:
    111     case MemRegion::BlockDataRegionKind:
    112     case MemRegion::StringRegionKind:
    113       // FIXME: Need to handle arbitrary downcasts.
    114     case MemRegion::SymbolicRegionKind:
    115     case MemRegion::AllocaRegionKind:
    116     case MemRegion::CompoundLiteralRegionKind:
    117     case MemRegion::FieldRegionKind:
    118     case MemRegion::ObjCIvarRegionKind:
    119     case MemRegion::VarRegionKind:
    120     case MemRegion::CXXTempObjectRegionKind:
    121     case MemRegion::CXXBaseObjectRegionKind:
    122       return MakeElementRegion(R, PointeeTy);
    123 
    124     case MemRegion::ElementRegionKind: {
    125       // If we are casting from an ElementRegion to another type, the
    126       // algorithm is as follows:
    127       //
    128       // (1) Compute the "raw offset" of the ElementRegion from the
    129       //     base region.  This is done by calling 'getAsRawOffset()'.
    130       //
    131       // (2a) If we get a 'RegionRawOffset' after calling
    132       //      'getAsRawOffset()', determine if the absolute offset
    133       //      can be exactly divided into chunks of the size of the
    134       //      casted-pointee type.  If so, create a new ElementRegion with
    135       //      the pointee-cast type as the new ElementType and the index
    136       //      being the offset divded by the chunk size.  If not, create
    137       //      a new ElementRegion at offset 0 off the raw offset region.
    138       //
    139       // (2b) If we don't a get a 'RegionRawOffset' after calling
    140       //      'getAsRawOffset()', it means that we are at offset 0.
    141       //
    142       // FIXME: Handle symbolic raw offsets.
    143 
    144       const ElementRegion *elementR = cast<ElementRegion>(R);
    145       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
    146       const MemRegion *baseR = rawOff.getRegion();
    147 
    148       // If we cannot compute a raw offset, throw up our hands and return
    149       // a NULL MemRegion*.
    150       if (!baseR)
    151         return NULL;
    152 
    153       CharUnits off = rawOff.getOffset();
    154 
    155       if (off.isZero()) {
    156         // Edge case: we are at 0 bytes off the beginning of baseR.  We
    157         // check to see if type we are casting to is the same as the base
    158         // region.  If so, just return the base region.
    159         if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
    160           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
    161           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
    162           if (CanonPointeeTy == ObjTy)
    163             return baseR;
    164         }
    165 
    166         // Otherwise, create a new ElementRegion at offset 0.
    167         return MakeElementRegion(baseR, PointeeTy);
    168       }
    169 
    170       // We have a non-zero offset from the base region.  We want to determine
    171       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
    172       // we create an ElementRegion whose index is that value.  Otherwise, we
    173       // create two ElementRegions, one that reflects a raw offset and the other
    174       // that reflects the cast.
    175 
    176       // Compute the index for the new ElementRegion.
    177       int64_t newIndex = 0;
    178       const MemRegion *newSuperR = 0;
    179 
    180       // We can only compute sizeof(PointeeTy) if it is a complete type.
    181       if (IsCompleteType(Ctx, PointeeTy)) {
    182         // Compute the size in **bytes**.
    183         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
    184         if (!pointeeTySize.isZero()) {
    185           // Is the offset a multiple of the size?  If so, we can layer the
    186           // ElementRegion (with elementType == PointeeTy) directly on top of
    187           // the base region.
    188           if (off % pointeeTySize == 0) {
    189             newIndex = off / pointeeTySize;
    190             newSuperR = baseR;
    191           }
    192         }
    193       }
    194 
    195       if (!newSuperR) {
    196         // Create an intermediate ElementRegion to represent the raw byte.
    197         // This will be the super region of the final ElementRegion.
    198         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
    199       }
    200 
    201       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
    202     }
    203   }
    204 
    205   llvm_unreachable("unreachable");
    206 }
    207 
    208 
    209 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
    210 ///  implicit casts that arise from loads from regions that are reinterpreted
    211 ///  as another region.
    212 SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
    213                                     QualType castTy, bool performTestOnly) {
    214 
    215   if (castTy.isNull())
    216     return V;
    217 
    218   ASTContext &Ctx = svalBuilder.getContext();
    219 
    220   if (performTestOnly) {
    221     // Automatically translate references to pointers.
    222     QualType T = R->getValueType();
    223     if (const ReferenceType *RT = T->getAs<ReferenceType>())
    224       T = Ctx.getPointerType(RT->getPointeeType());
    225 
    226     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
    227     return V;
    228   }
    229 
    230   if (const Loc *L = dyn_cast<Loc>(&V))
    231     return svalBuilder.evalCastFromLoc(*L, castTy);
    232   else if (const NonLoc *NL = dyn_cast<NonLoc>(&V))
    233     return svalBuilder.evalCastFromNonLoc(*NL, castTy);
    234 
    235   return V;
    236 }
    237 
    238 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
    239   if (Base.isUnknownOrUndef())
    240     return Base;
    241 
    242   Loc BaseL = cast<Loc>(Base);
    243   const MemRegion* BaseR = 0;
    244 
    245   switch (BaseL.getSubKind()) {
    246   case loc::MemRegionKind:
    247     BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
    248     break;
    249 
    250   case loc::GotoLabelKind:
    251     // These are anormal cases. Flag an undefined value.
    252     return UndefinedVal();
    253 
    254   case loc::ConcreteIntKind:
    255     // While these seem funny, this can happen through casts.
    256     // FIXME: What we should return is the field offset.  For example,
    257     //  add the field offset to the integer value.  That way funny things
    258     //  like this work properly:  &(((struct foo *) 0xa)->f)
    259     return Base;
    260 
    261   default:
    262     llvm_unreachable("Unhandled Base.");
    263   }
    264 
    265   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
    266   // of FieldDecl.
    267   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
    268     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
    269 
    270   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
    271 }
    272 
    273 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
    274                                     SVal Base) {
    275 
    276   // If the base is an unknown or undefined value, just return it back.
    277   // FIXME: For absolute pointer addresses, we just return that value back as
    278   //  well, although in reality we should return the offset added to that
    279   //  value.
    280   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
    281     return Base;
    282 
    283   const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
    284 
    285   // Pointer of any type can be cast and used as array base.
    286   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
    287 
    288   // Convert the offset to the appropriate size and signedness.
    289   Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
    290 
    291   if (!ElemR) {
    292     //
    293     // If the base region is not an ElementRegion, create one.
    294     // This can happen in the following example:
    295     //
    296     //   char *p = __builtin_alloc(10);
    297     //   p[1] = 8;
    298     //
    299     //  Observe that 'p' binds to an AllocaRegion.
    300     //
    301     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    302                                                     BaseRegion, Ctx));
    303   }
    304 
    305   SVal BaseIdx = ElemR->getIndex();
    306 
    307   if (!isa<nonloc::ConcreteInt>(BaseIdx))
    308     return UnknownVal();
    309 
    310   const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
    311 
    312   // Only allow non-integer offsets if the base region has no offset itself.
    313   // FIXME: This is a somewhat arbitrary restriction. We should be using
    314   // SValBuilder here to add the two offsets without checking their types.
    315   if (!isa<nonloc::ConcreteInt>(Offset)) {
    316     if (isa<ElementRegion>(BaseRegion->StripCasts()))
    317       return UnknownVal();
    318 
    319     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
    320                                                     ElemR->getSuperRegion(),
    321                                                     Ctx));
    322   }
    323 
    324   const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
    325   assert(BaseIdxI.isSigned());
    326 
    327   // Compute the new index.
    328   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
    329                                                                     OffI));
    330 
    331   // Construct the new ElementRegion.
    332   const MemRegion *ArrayR = ElemR->getSuperRegion();
    333   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
    334                                                   Ctx));
    335 }
    336 
    337 StoreManager::BindingsHandler::~BindingsHandler() {}
    338 
    339