1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1"> 6 <title>Clang - Expressive Diagnostics</title> 7 <link type="text/css" rel="stylesheet" href="menu.css" /> 8 <link type="text/css" rel="stylesheet" href="content.css" /> 9 <style type="text/css"> 10 </style> 11 </head> 12 <body> 13 14 <!--#include virtual="menu.html.incl"--> 15 16 <div id="content"> 17 18 19 <!--=======================================================================--> 20 <h1>Expressive Diagnostics</h1> 21 <!--=======================================================================--> 22 23 <p>In addition to being fast and functional, we aim to make Clang extremely user 24 friendly. As far as a command-line compiler goes, this basically boils down to 25 making the diagnostics (error and warning messages) generated by the compiler 26 be as useful as possible. There are several ways that we do this. This section 27 talks about the experience provided by the command line compiler, contrasting 28 Clang output to GCC 4.2's output in several examples. 29 <!-- 30 Other clients 31 that embed Clang and extract equivalent information through internal APIs.--> 32 </p> 33 34 <h2>Column Numbers and Caret Diagnostics</h2> 35 36 <p>First, all diagnostics produced by clang include full column number 37 information. The clang command-line compiler driver uses this information 38 to print "caret diagnostics". 39 (IDEs can use the information to display in-line error markup.) 40 Precise error location in the source is a feature provided by many commercial 41 compilers, but is generally missing from open source 42 compilers. This is nice because it makes it very easy to understand exactly 43 what is wrong in a particular piece of code</p> 44 45 <p>The caret (the blue "^" character) exactly shows where the problem is, even 46 inside of a string. This makes it really easy to jump to the problem and 47 helps when multiple instances of the same character occur on a line. (We'll 48 revisit this more in following examples.)</p> 49 50 <pre> 51 $ <b>gcc-4.2 -fsyntax-only -Wformat format-strings.c</b> 52 format-strings.c:91: warning: too few arguments for format 53 $ <b>clang -fsyntax-only format-strings.c</b> 54 format-strings.c:91:13: <font color="magenta">warning:</font> '.*' specified field precision is missing a matching 'int' argument 55 <font color="darkgreen"> printf("%.*d");</font> 56 <font color="blue"> ^</font> 57 </pre> 58 59 <h2>Range Highlighting for Related Text</h2> 60 61 <p>Clang captures and accurately tracks range information for expressions, 62 statements, and other constructs in your program and uses this to make 63 diagnostics highlight related information. In the following somewhat 64 nonsensical example you can see that you don't even need to see the original source code to 65 understand what is wrong based on the Clang error. Because clang prints a 66 caret, you know exactly <em>which</em> plus it is complaining about. The range 67 information highlights the left and right side of the plus which makes it 68 immediately obvious what the compiler is talking about. 69 Range information is very useful for 70 cases involving precedence issues and many other cases.</p> 71 72 <pre> 73 $ <b>gcc-4.2 -fsyntax-only t.c</b> 74 t.c:7: error: invalid operands to binary + (have 'int' and 'struct A') 75 $ <b>clang -fsyntax-only t.c</b> 76 t.c:7:39: <font color="red">error:</font> invalid operands to binary expression ('int' and 'struct A') 77 <font color="darkgreen"> return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);</font> 78 <font color="blue"> ~~~~~~~~~~~~~~ ^ ~~~~~</font> 79 </pre> 80 81 <h2>Precision in Wording</h2> 82 83 <p>A detail is that we have tried really hard to make the diagnostics that come 84 out of clang contain exactly the pertinent information about what is wrong and 85 why. In the example above, we tell you what the inferred types are for 86 the left and right hand sides, and we don't repeat what is obvious from the 87 caret (e.g., that this is a "binary +").</p> 88 89 <p>Many other examples abound. In the following example, not only do we tell you that there is a problem with the * 90 and point to it, we say exactly why and tell you what the type is (in case it is 91 a complicated subexpression, such as a call to an overloaded function). This 92 sort of attention to detail makes it much easier to understand and fix problems 93 quickly.</p> 94 95 <pre> 96 $ <b>gcc-4.2 -fsyntax-only t.c</b> 97 t.c:5: error: invalid type argument of 'unary *' 98 $ <b>clang -fsyntax-only t.c</b> 99 t.c:5:11: <font color="red">error:</font> indirection requires pointer operand ('int' invalid) 100 <font color="darkgreen"> int y = *SomeA.X;</font> 101 <font color="blue"> ^~~~~~~~</font> 102 </pre> 103 104 <h2>No Pretty Printing of Expressions in Diagnostics</h2> 105 106 <p>Since Clang has range highlighting, it never needs to pretty print your code 107 back out to you. GCC can produce inscrutible error messages in some cases when 108 it tries to do this. In this example P and Q have type "int*":</p> 109 110 <pre> 111 $ <b>gcc-4.2 -fsyntax-only t.c</b> 112 #'exact_div_expr' not supported by pp_c_expression#'t.c:12: error: called object is not a function 113 $ <b>clang -fsyntax-only t.c</b> 114 t.c:12:8: <font color="red">error:</font> called object type 'int' is not a function or function pointer 115 <font color="darkgreen"> (P-Q)();</font> 116 <font color="blue"> ~~~~~^</font> 117 </pre> 118 119 <p>This can be particularly bad in G++, which often emits errors 120 containing lowered vtable references. For example:</p> 121 122 <pre> 123 $ <b>cat t.cc</b> 124 struct a { 125 virtual int bar(); 126 }; 127 128 struct foo : public virtual a { 129 }; 130 131 void test(foo *P) { 132 return P->bar() + *P; 133 } 134 $ <b>gcc-4.2 t.cc</b> 135 t.cc: In function 'void test(foo*)': 136 t.cc:9: error: no match for 'operator+' in '(((a*)P) + (*(long int*)(P->foo::<anonymous>.a::_vptr$a + -0x00000000000000020)))->a::bar() + * P' 137 t.cc:9: error: return-statement with a value, in function returning 'void' 138 $ <b>clang t.cc</b> 139 t.cc:9:18: <font color="red">error:</font> invalid operands to binary expression ('int' and 'foo') 140 <font color="darkgreen"> return P->bar() + *P;</font> 141 <font color="blue"> ~~~~~~~~ ^ ~~</font> 142 </pre> 143 144 145 <h2>Typedef Preservation and Selective Unwrapping</h2> 146 147 <p>Many programmers use high-level user defined types, typedefs, and other 148 syntactic sugar to refer to types in their program. This is useful because they 149 can abbreviate otherwise very long types and it is useful to preserve the 150 typename in diagnostics. However, sometimes very simple typedefs can wrap 151 trivial types and it is important to strip off the typedef to understand what 152 is going on. Clang aims to handle both cases well.<p> 153 154 <p>The following example shows where it is important to preserve 155 a typedef in C. Here the type printed by GCC isn't even valid, but if the error 156 were about a very long and complicated type (as often happens in C++) the error 157 message would be ugly just because it was long and hard to read.</p> 158 159 <pre> 160 $ <b>gcc-4.2 -fsyntax-only t.c</b> 161 t.c:15: error: invalid operands to binary / (have 'float __vector__' and 'const int *') 162 $ <b>clang -fsyntax-only t.c</b> 163 t.c:15:11: <font color="red">error:</font> can't convert between vector values of different size ('__m128' and 'int const *') 164 <font color="darkgreen"> myvec[1]/P;</font> 165 <font color="blue"> ~~~~~~~~^~</font> 166 </pre> 167 168 <p>The following example shows where it is useful for the compiler to expose 169 underlying details of a typedef. If the user was somehow confused about how the 170 system "pid_t" typedef is defined, Clang helpfully displays it with "aka".</p> 171 172 <pre> 173 $ <b>gcc-4.2 -fsyntax-only t.c</b> 174 t.c:13: error: request for member 'x' in something not a structure or union 175 $ <b>clang -fsyntax-only t.c</b> 176 t.c:13:9: <font color="red">error:</font> member reference base type 'pid_t' (aka 'int') is not a structure or union 177 <font color="darkgreen"> myvar = myvar.x;</font> 178 <font color="blue"> ~~~~~ ^</font> 179 </pre> 180 181 <p>In C++, type preservation includes retaining any qualification written into type names. For example, if we take a small snippet of code such as: 182 183 <blockquote> 184 <pre> 185 namespace services { 186 struct WebService { }; 187 } 188 namespace myapp { 189 namespace servers { 190 struct Server { }; 191 } 192 } 193 194 using namespace myapp; 195 void addHTTPService(servers::Server const &server, ::services::WebService const *http) { 196 server += http; 197 } 198 </pre> 199 </blockquote> 200 201 <p>and then compile it, we see that Clang is both providing more accurate information and is retaining the types as written by the user (e.g., "servers::Server", "::services::WebService"): 202 203 <pre> 204 $ <b>g++-4.2 -fsyntax-only t.cpp</b> 205 t.cpp:9: error: no match for 'operator+=' in 'server += http' 206 $ <b>clang -fsyntax-only t.cpp</b> 207 t.cpp:9:10: <font color="red">error:</font> invalid operands to binary expression ('servers::Server const' and '::services::WebService const *') 208 <font color="darkgreen">server += http;</font> 209 <font color="blue">~~~~~~ ^ ~~~~</font> 210 </pre> 211 212 <p>Naturally, type preservation extends to uses of templates, and Clang retains information about how a particular template specialization (like <code>std::vector<Real></code>) was spelled within the source code. For example:</p> 213 214 <pre> 215 $ <b>g++-4.2 -fsyntax-only t.cpp</b> 216 t.cpp:12: error: no match for 'operator=' in 'str = vec' 217 $ <b>clang -fsyntax-only t.cpp</b> 218 t.cpp:12:7: <font color="red">error:</font> incompatible type assigning 'vector<Real>', expected 'std::string' (aka 'class std::basic_string<char>') 219 <font color="darkgreen">str = vec</font>; 220 <font color="blue">^ ~~~</font> 221 </pre> 222 223 <h2>Fix-it Hints</h2> 224 225 <p>"Fix-it" hints provide advice for fixing small, localized problems 226 in source code. When Clang produces a diagnostic about a particular 227 problem that it can work around (e.g., non-standard or redundant 228 syntax, missing keywords, common mistakes, etc.), it may also provide 229 specific guidance in the form of a code transformation to correct the 230 problem. In the following example, Clang warns about the use of a GCC 231 extension that has been considered obsolete since 1993. The underlined 232 code should be removed, then replaced with the code below the 233 caret line (".x =" or ".y =", respectively).</p> 234 235 <pre> 236 $ <b>clang t.c</b> 237 t.c:5:28: <font color="magenta">warning:</font> use of GNU old-style field designator extension 238 <font color="darkgreen">struct point origin = { x: 0.0, y: 0.0 };</font> 239 <font color="red">~~</font> <font color="blue">^</font> 240 <font color="darkgreen">.x = </font> 241 t.c:5:36: <font color="magenta">warning:</font> use of GNU old-style field designator extension 242 <font color="darkgreen">struct point origin = { x: 0.0, y: 0.0 };</font> 243 <font color="red">~~</font> <font color="blue">^</font> 244 <font color="darkgreen">.y = </font> 245 </pre> 246 247 <p>"Fix-it" hints are most useful for 248 working around common user errors and misconceptions. For example, C++ users 249 commonly forget the syntax for explicit specialization of class templates, 250 as in the error in the following example. Again, after describing the problem, 251 Clang provides the fix--add <code>template<></code>--as part of the 252 diagnostic.<p> 253 254 <pre> 255 $ <b>clang t.cpp</b> 256 t.cpp:9:3: <font color="red">error:</font> template specialization requires 'template<>' 257 struct iterator_traits<file_iterator> { 258 <font color="blue">^</font> 259 <font color="darkgreen">template<> </font> 260 </pre> 261 262 <h2>Automatic Macro Expansion</h2> 263 264 <p>Many errors happen in macros that are sometimes deeply nested. With 265 traditional compilers, you need to dig deep into the definition of the macro to 266 understand how you got into trouble. The following simple example shows how 267 Clang helps you out by automatically printing instantiation information and 268 nested range information for diagnostics as they are instantiated through macros 269 and also shows how some of the other pieces work in a bigger example.</p> 270 271 <pre> 272 $ <b>gcc-4.2 -fsyntax-only t.c</b> 273 t.c: In function 'test': 274 t.c:80: error: invalid operands to binary < (have 'struct mystruct' and 'float') 275 $ <b>clang -fsyntax-only t.c</b> 276 t.c:80:3: <font color="red">error:</font> invalid operands to binary expression ('typeof(P)' (aka 'struct mystruct') and 'typeof(F)' (aka 'float')) 277 <font color="darkgreen"> X = MYMAX(P, F);</font> 278 <font color="blue"> ^~~~~~~~~~~</font> 279 t.c:76:94: note: instantiated from: 280 <font color="darkgreen">#define MYMAX(A,B) __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a < __b ? __b : __a; })</font> 281 <font color="blue"> ~~~ ^ ~~~</font> 282 </pre> 283 284 <p>Here's another real world warning that occurs in the "window" Unix package (which 285 implements the "wwopen" class of APIs):</p> 286 287 <pre> 288 $ <b>clang -fsyntax-only t.c</b> 289 t.c:22:2: <font color="magenta">warning:</font> type specifier missing, defaults to 'int' 290 <font color="darkgreen"> ILPAD();</font> 291 <font color="blue"> ^</font> 292 t.c:17:17: note: instantiated from: 293 <font color="darkgreen">#define ILPAD() PAD((NROW - tt.tt_row) * 10) /* 1 ms per char */</font> 294 <font color="blue"> ^</font> 295 t.c:14:2: note: instantiated from: 296 <font color="darkgreen"> register i; \</font> 297 <font color="blue"> ^</font> 298 </pre> 299 300 <p>In practice, we've found that Clang's treatment of macros is actually more useful in multiply nested 301 macros that in simple ones.</p> 302 303 <h2>Quality of Implementation and Attention to Detail</h2> 304 305 <p>Finally, we have put a lot of work polishing the little things, because 306 little things add up over time and contribute to a great user experience.</p> 307 308 <p>The following example shows a trivial little tweak, where we tell you to put the semicolon at 309 the end of the line that is missing it (line 4) instead of at the beginning of 310 the following line (line 5). This is particularly important with fixit hints 311 and caret diagnostics, because otherwise you don't get the important context. 312 </p> 313 314 <pre> 315 $ <b>gcc-4.2 t.c</b> 316 t.c: In function 'foo': 317 t.c:5: error: expected ';' before '}' token 318 $ <b>clang t.c</b> 319 t.c:4:8: <font color="red">error:</font> expected ';' after expression 320 <font color="darkgreen"> bar()</font> 321 <font color="blue"> ^</font> 322 <font color="blue"> ;</font> 323 </pre> 324 325 <p>The following example shows much better error recovery than GCC. The message coming out 326 of GCC is completely useless for diagnosing the problem. Clang tries much harder 327 and produces a much more useful diagnosis of the problem.</p> 328 329 <pre> 330 $ <b>gcc-4.2 t.c</b> 331 t.c:3: error: expected '=', ',', ';', 'asm' or '__attribute__' before '*' token 332 $ <b>clang t.c</b> 333 t.c:3:1: <font color="red">error:</font> unknown type name 'foo_t' 334 <font color="darkgreen">foo_t *P = 0;</font> 335 <font color="blue">^</font> 336 </pre> 337 338 <p>The following example shows that we recover from the simple case of 339 forgetting a ; after a struct definition much better than GCC.</p> 340 341 <pre> 342 $ <b>cat t.cc</b> 343 template<class T> 344 class a {} 345 class temp {}; 346 a<temp> b; 347 struct b { 348 } 349 $ <b>gcc-4.2 t.cc</b> 350 t.cc:3: error: multiple types in one declaration 351 t.cc:4: error: non-template type 'a' used as a template 352 t.cc:4: error: invalid type in declaration before ';' token 353 t.cc:6: error: expected unqualified-id at end of input 354 $ <b>clang t.cc</b> 355 t.cc:2:11: <font color="red">error:</font> expected ';' after class 356 <font color="darkgreen">class a {}</font> 357 <font color="blue"> ^</font> 358 <font color="blue"> ;</font> 359 t.cc:6:2: <font color="red">error:</font> expected ';' after struct 360 <font color="darkgreen">}</font> 361 <font color="blue"> ^</font> 362 <font color="blue"> ;</font> 363 </pre> 364 365 <p>While each of these details is minor, we feel that they all add up to provide 366 a much more polished experience.</p> 367 368 </div> 369 </body> 370 </html> 371