Home | History | Annotate | Download | only in libtommath
      1 #include <tommath.h>
      2 #ifdef BN_MP_DIV_C
      3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
      4  *
      5  * LibTomMath is a library that provides multiple-precision
      6  * integer arithmetic as well as number theoretic functionality.
      7  *
      8  * The library was designed directly after the MPI library by
      9  * Michael Fromberger but has been written from scratch with
     10  * additional optimizations in place.
     11  *
     12  * The library is free for all purposes without any express
     13  * guarantee it works.
     14  *
     15  * Tom St Denis, tomstdenis (at) gmail.com, http://math.libtomcrypt.com
     16  */
     17 
     18 #ifdef BN_MP_DIV_SMALL
     19 
     20 /* slower bit-bang division... also smaller */
     21 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
     22 {
     23    mp_int ta, tb, tq, q;
     24    int    res, n, n2;
     25 
     26   /* is divisor zero ? */
     27   if (mp_iszero (b) == 1) {
     28     return MP_VAL;
     29   }
     30 
     31   /* if a < b then q=0, r = a */
     32   if (mp_cmp_mag (a, b) == MP_LT) {
     33     if (d != NULL) {
     34       res = mp_copy (a, d);
     35     } else {
     36       res = MP_OKAY;
     37     }
     38     if (c != NULL) {
     39       mp_zero (c);
     40     }
     41     return res;
     42   }
     43 
     44   /* init our temps */
     45   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
     46      return res;
     47   }
     48 
     49 
     50   mp_set(&tq, 1);
     51   n = mp_count_bits(a) - mp_count_bits(b);
     52   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
     53       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
     54       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
     55       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
     56       goto LBL_ERR;
     57   }
     58 
     59   while (n-- >= 0) {
     60      if (mp_cmp(&tb, &ta) != MP_GT) {
     61         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
     62             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
     63            goto LBL_ERR;
     64         }
     65      }
     66      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
     67          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
     68            goto LBL_ERR;
     69      }
     70   }
     71 
     72   /* now q == quotient and ta == remainder */
     73   n  = a->sign;
     74   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
     75   if (c != NULL) {
     76      mp_exch(c, &q);
     77      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
     78   }
     79   if (d != NULL) {
     80      mp_exch(d, &ta);
     81      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
     82   }
     83 LBL_ERR:
     84    mp_clear_multi(&ta, &tb, &tq, &q, NULL);
     85    return res;
     86 }
     87 
     88 #else
     89 
     90 /* integer signed division.
     91  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
     92  * HAC pp.598 Algorithm 14.20
     93  *
     94  * Note that the description in HAC is horribly
     95  * incomplete.  For example, it doesn't consider
     96  * the case where digits are removed from 'x' in
     97  * the inner loop.  It also doesn't consider the
     98  * case that y has fewer than three digits, etc..
     99  *
    100  * The overall algorithm is as described as
    101  * 14.20 from HAC but fixed to treat these cases.
    102 */
    103 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
    104 {
    105   mp_int  q, x, y, t1, t2;
    106   int     res, n, t, i, norm, neg;
    107 
    108   /* is divisor zero ? */
    109   if (mp_iszero (b) == 1) {
    110     return MP_VAL;
    111   }
    112 
    113   /* if a < b then q=0, r = a */
    114   if (mp_cmp_mag (a, b) == MP_LT) {
    115     if (d != NULL) {
    116       res = mp_copy (a, d);
    117     } else {
    118       res = MP_OKAY;
    119     }
    120     if (c != NULL) {
    121       mp_zero (c);
    122     }
    123     return res;
    124   }
    125 
    126   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
    127     return res;
    128   }
    129   q.used = a->used + 2;
    130 
    131   if ((res = mp_init (&t1)) != MP_OKAY) {
    132     goto LBL_Q;
    133   }
    134 
    135   if ((res = mp_init (&t2)) != MP_OKAY) {
    136     goto LBL_T1;
    137   }
    138 
    139   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
    140     goto LBL_T2;
    141   }
    142 
    143   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
    144     goto LBL_X;
    145   }
    146 
    147   /* fix the sign */
    148   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
    149   x.sign = y.sign = MP_ZPOS;
    150 
    151   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
    152   norm = mp_count_bits(&y) % DIGIT_BIT;
    153   if (norm < (int)(DIGIT_BIT-1)) {
    154      norm = (DIGIT_BIT-1) - norm;
    155      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
    156        goto LBL_Y;
    157      }
    158      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
    159        goto LBL_Y;
    160      }
    161   } else {
    162      norm = 0;
    163   }
    164 
    165   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
    166   n = x.used - 1;
    167   t = y.used - 1;
    168 
    169   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
    170   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
    171     goto LBL_Y;
    172   }
    173 
    174   while (mp_cmp (&x, &y) != MP_LT) {
    175     ++(q.dp[n - t]);
    176     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
    177       goto LBL_Y;
    178     }
    179   }
    180 
    181   /* reset y by shifting it back down */
    182   mp_rshd (&y, n - t);
    183 
    184   /* step 3. for i from n down to (t + 1) */
    185   for (i = n; i >= (t + 1); i--) {
    186     if (i > x.used) {
    187       continue;
    188     }
    189 
    190     /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
    191      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
    192     if (x.dp[i] == y.dp[t]) {
    193       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
    194     } else {
    195       mp_word tmp;
    196       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
    197       tmp |= ((mp_word) x.dp[i - 1]);
    198       tmp /= ((mp_word) y.dp[t]);
    199       if (tmp > (mp_word) MP_MASK)
    200         tmp = MP_MASK;
    201       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
    202     }
    203 
    204     /* while (q{i-t-1} * (yt * b + y{t-1})) >
    205              xi * b**2 + xi-1 * b + xi-2
    206 
    207        do q{i-t-1} -= 1;
    208     */
    209     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
    210     do {
    211       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
    212 
    213       /* find left hand */
    214       mp_zero (&t1);
    215       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
    216       t1.dp[1] = y.dp[t];
    217       t1.used = 2;
    218       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
    219         goto LBL_Y;
    220       }
    221 
    222       /* find right hand */
    223       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
    224       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
    225       t2.dp[2] = x.dp[i];
    226       t2.used = 3;
    227     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
    228 
    229     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
    230     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
    231       goto LBL_Y;
    232     }
    233 
    234     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
    235       goto LBL_Y;
    236     }
    237 
    238     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
    239       goto LBL_Y;
    240     }
    241 
    242     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
    243     if (x.sign == MP_NEG) {
    244       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
    245         goto LBL_Y;
    246       }
    247       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
    248         goto LBL_Y;
    249       }
    250       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
    251         goto LBL_Y;
    252       }
    253 
    254       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
    255     }
    256   }
    257 
    258   /* now q is the quotient and x is the remainder
    259    * [which we have to normalize]
    260    */
    261 
    262   /* get sign before writing to c */
    263   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
    264 
    265   if (c != NULL) {
    266     mp_clamp (&q);
    267     mp_exch (&q, c);
    268     c->sign = neg;
    269   }
    270 
    271   if (d != NULL) {
    272     if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) {
    273 		goto LBL_Y;
    274 	}
    275     mp_exch (&x, d);
    276   }
    277 
    278   res = MP_OKAY;
    279 
    280 LBL_Y:mp_clear (&y);
    281 LBL_X:mp_clear (&x);
    282 LBL_T2:mp_clear (&t2);
    283 LBL_T1:mp_clear (&t1);
    284 LBL_Q:mp_clear (&q);
    285   return res;
    286 }
    287 
    288 #endif
    289 
    290 #endif
    291 
    292 /* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */
    293 /* $Revision: 1.3 $ */
    294 /* $Date: 2006/03/31 14:18:44 $ */
    295