Home | History | Annotate | Download | only in fdlibm
      1 
      2 /* @(#)k_cos.c 1.3 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  */
     13 
     14 /*
     15  * __kernel_cos( x,  y )
     16  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
     17  * Input x is assumed to be bounded by ~pi/4 in magnitude.
     18  * Input y is the tail of x.
     19  *
     20  * Algorithm
     21  *	1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
     22  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
     23  *	3. ieee_cos(x) is approximated by a polynomial of degree 14 on
     24  *	   [0,pi/4]
     25  *		  	                 4            14
     26  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
     27  *	   where the remez error is
     28  *
     29  * 	|              2     4     6     8     10    12     14 |     -58
     30  * 	|ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
     31  * 	|    					               |
     32  *
     33  * 	               4     6     8     10    12     14
     34  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
     35  *	       ieee_cos(x) = 1 - x*x/2 + r
     36  *	   since ieee_cos(x+y) ~ ieee_cos(x) - ieee_sin(x)*y
     37  *			  ~ ieee_cos(x) - x*y,
     38  *	   a correction term is necessary in ieee_cos(x) and hence
     39  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
     40  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
     41  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
     42  *	   Then
     43  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
     44  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
     45  *	   magnitude of the latter is at least a quarter of x*x/2,
     46  *	   thus, reducing the rounding error in the subtraction.
     47  */
     48 
     49 #include "fdlibm.h"
     50 
     51 #ifdef __STDC__
     52 static const double
     53 #else
     54 static double
     55 #endif
     56 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
     57 C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
     58 C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
     59 C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
     60 C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
     61 C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
     62 C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
     63 
     64 #ifdef __STDC__
     65 	double __kernel_cos(double x, double y)
     66 #else
     67 	double __kernel_cos(x, y)
     68 	double x,y;
     69 #endif
     70 {
     71 	double a,hz,z,r,qx;
     72 	int ix;
     73 	ix = __HI(x)&0x7fffffff;	/* ix = |x|'s high word*/
     74 	if(ix<0x3e400000) {			/* if x < 2**27 */
     75 	    if(((int)x)==0) return one;		/* generate inexact */
     76 	}
     77 	z  = x*x;
     78 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
     79 	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
     80 	    return one - (0.5*z - (z*r - x*y));
     81 	else {
     82 	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
     83 		qx = 0.28125;
     84 	    } else {
     85 	        __HI(qx) = ix-0x00200000;	/* x/4 */
     86 	        __LO(qx) = 0;
     87 	    }
     88 	    hz = 0.5*z-qx;
     89 	    a  = one-qx;
     90 	    return a - (hz - (z*r-x*y));
     91 	}
     92 }
     93