1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <title>TableGen Fundamentals</title> 6 <link rel="stylesheet" href="llvm.css" type="text/css"> 7 </head> 8 <body> 9 10 <h1>TableGen Fundamentals</h1> 11 12 <div> 13 <ul> 14 <li><a href="#introduction">Introduction</a> 15 <ol> 16 <li><a href="#concepts">Basic concepts</a></li> 17 <li><a href="#example">An example record</a></li> 18 <li><a href="#running">Running TableGen</a></li> 19 </ol></li> 20 <li><a href="#syntax">TableGen syntax</a> 21 <ol> 22 <li><a href="#primitives">TableGen primitives</a> 23 <ol> 24 <li><a href="#comments">TableGen comments</a></li> 25 <li><a href="#types">The TableGen type system</a></li> 26 <li><a href="#values">TableGen values and expressions</a></li> 27 </ol></li> 28 <li><a href="#classesdefs">Classes and definitions</a> 29 <ol> 30 <li><a href="#valuedef">Value definitions</a></li> 31 <li><a href="#recordlet">'let' expressions</a></li> 32 <li><a href="#templateargs">Class template arguments</a></li> 33 <li><a href="#multiclass">Multiclass definitions and instances</a></li> 34 </ol></li> 35 <li><a href="#filescope">File scope entities</a> 36 <ol> 37 <li><a href="#include">File inclusion</a></li> 38 <li><a href="#globallet">'let' expressions</a></li> 39 </ol></li> 40 </ol></li> 41 <li><a href="#backends">TableGen backends</a> 42 <ol> 43 <li><a href="#">todo</a></li> 44 </ol></li> 45 </ul> 46 </div> 47 48 <div class="doc_author"> 49 <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p> 50 </div> 51 52 <!-- *********************************************************************** --> 53 <h2><a name="introduction">Introduction</a></h2> 54 <!-- *********************************************************************** --> 55 56 <div> 57 58 <p>TableGen's purpose is to help a human develop and maintain records of 59 domain-specific information. Because there may be a large number of these 60 records, it is specifically designed to allow writing flexible descriptions and 61 for common features of these records to be factored out. This reduces the 62 amount of duplication in the description, reduces the chance of error, and 63 makes it easier to structure domain specific information.</p> 64 65 <p>The core part of TableGen <a href="#syntax">parses a file</a>, instantiates 66 the declarations, and hands the result off to a domain-specific "<a 67 href="#backends">TableGen backend</a>" for processing. The current major user 68 of TableGen is the <a href="CodeGenerator.html">LLVM code generator</a>.</p> 69 70 <p>Note that if you work on TableGen much, and use emacs or vim, that you can 71 find an emacs "TableGen mode" and a vim language file in the 72 <tt>llvm/utils/emacs</tt> and <tt>llvm/utils/vim</tt> directories of your LLVM 73 distribution, respectively.</p> 74 75 <!-- ======================================================================= --> 76 <h3><a name="concepts">Basic concepts</a></h3> 77 78 <div> 79 80 <p>TableGen files consist of two key parts: 'classes' and 'definitions', both 81 of which are considered 'records'.</p> 82 83 <p><b>TableGen records</b> have a unique name, a list of values, and a list of 84 superclasses. The list of values is the main data that TableGen builds for each 85 record; it is this that holds the domain specific information for the 86 application. The interpretation of this data is left to a specific <a 87 href="#backends">TableGen backend</a>, but the structure and format rules are 88 taken care of and are fixed by TableGen.</p> 89 90 <p><b>TableGen definitions</b> are the concrete form of 'records'. These 91 generally do not have any undefined values, and are marked with the 92 '<tt>def</tt>' keyword.</p> 93 94 <p><b>TableGen classes</b> are abstract records that are used to build and 95 describe other records. These 'classes' allow the end-user to build 96 abstractions for either the domain they are targeting (such as "Register", 97 "RegisterClass", and "Instruction" in the LLVM code generator) or for the 98 implementor to help factor out common properties of records (such as "FPInst", 99 which is used to represent floating point instructions in the X86 backend). 100 TableGen keeps track of all of the classes that are used to build up a 101 definition, so the backend can find all definitions of a particular class, such 102 as "Instruction".</p> 103 104 <p><b>TableGen multiclasses</b> are groups of abstract records that are 105 instantiated all at once. Each instantiation can result in multiple 106 TableGen definitions. If a multiclass inherits from another multiclass, 107 the definitions in the sub-multiclass become part of the current 108 multiclass, as if they were declared in the current multiclass.</p> 109 110 </div> 111 112 <!-- ======================================================================= --> 113 <h3><a name="example">An example record</a></h3> 114 115 <div> 116 117 <p>With no other arguments, TableGen parses the specified file and prints out 118 all of the classes, then all of the definitions. This is a good way to see what 119 the various definitions expand to fully. Running this on the <tt>X86.td</tt> 120 file prints this (at the time of this writing):</p> 121 122 <div class="doc_code"> 123 <pre> 124 ... 125 <b>def</b> ADD32rr { <i>// Instruction X86Inst I</i> 126 <b>string</b> Namespace = "X86"; 127 <b>dag</b> OutOperandList = (outs GR32:$dst); 128 <b>dag</b> InOperandList = (ins GR32:$src1, GR32:$src2); 129 <b>string</b> AsmString = "add{l}\t{$src2, $dst|$dst, $src2}"; 130 <b>list</b><dag> Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]; 131 <b>list</b><Register> Uses = []; 132 <b>list</b><Register> Defs = [EFLAGS]; 133 <b>list</b><Predicate> Predicates = []; 134 <b>int</b> CodeSize = 3; 135 <b>int</b> AddedComplexity = 0; 136 <b>bit</b> isReturn = 0; 137 <b>bit</b> isBranch = 0; 138 <b>bit</b> isIndirectBranch = 0; 139 <b>bit</b> isBarrier = 0; 140 <b>bit</b> isCall = 0; 141 <b>bit</b> canFoldAsLoad = 0; 142 <b>bit</b> mayLoad = 0; 143 <b>bit</b> mayStore = 0; 144 <b>bit</b> isImplicitDef = 0; 145 <b>bit</b> isConvertibleToThreeAddress = 1; 146 <b>bit</b> isCommutable = 1; 147 <b>bit</b> isTerminator = 0; 148 <b>bit</b> isReMaterializable = 0; 149 <b>bit</b> isPredicable = 0; 150 <b>bit</b> hasDelaySlot = 0; 151 <b>bit</b> usesCustomInserter = 0; 152 <b>bit</b> hasCtrlDep = 0; 153 <b>bit</b> isNotDuplicable = 0; 154 <b>bit</b> hasSideEffects = 0; 155 <b>bit</b> neverHasSideEffects = 0; 156 InstrItinClass Itinerary = NoItinerary; 157 <b>string</b> Constraints = ""; 158 <b>string</b> DisableEncoding = ""; 159 <b>bits</b><8> Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 }; 160 Format Form = MRMDestReg; 161 <b>bits</b><6> FormBits = { 0, 0, 0, 0, 1, 1 }; 162 ImmType ImmT = NoImm; 163 <b>bits</b><3> ImmTypeBits = { 0, 0, 0 }; 164 <b>bit</b> hasOpSizePrefix = 0; 165 <b>bit</b> hasAdSizePrefix = 0; 166 <b>bits</b><4> Prefix = { 0, 0, 0, 0 }; 167 <b>bit</b> hasREX_WPrefix = 0; 168 FPFormat FPForm = ?; 169 <b>bits</b><3> FPFormBits = { 0, 0, 0 }; 170 } 171 ... 172 </pre> 173 </div> 174 175 <p>This definition corresponds to a 32-bit register-register add instruction in 176 the X86. The string after the '<tt>def</tt>' string indicates the name of the 177 record—"<tt>ADD32rr</tt>" in this case—and the comment at the end of 178 the line indicates the superclasses of the definition. The body of the record 179 contains all of the data that TableGen assembled for the record, indicating that 180 the instruction is part of the "X86" namespace, the pattern indicating how the 181 the instruction should be emitted into the assembly file, that it is a 182 two-address instruction, has a particular encoding, etc. The contents and 183 semantics of the information in the record is specific to the needs of the X86 184 backend, and is only shown as an example.</p> 185 186 <p>As you can see, a lot of information is needed for every instruction 187 supported by the code generator, and specifying it all manually would be 188 unmaintainable, prone to bugs, and tiring to do in the first place. Because we 189 are using TableGen, all of the information was derived from the following 190 definition:</p> 191 192 <div class="doc_code"> 193 <pre> 194 let Defs = [EFLAGS], 195 isCommutable = 1, <i>// X = ADD Y,Z --> X = ADD Z,Y</i> 196 isConvertibleToThreeAddress = 1 <b>in</b> <i>// Can transform into LEA.</i> 197 def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), 198 (ins GR32:$src1, GR32:$src2), 199 "add{l}\t{$src2, $dst|$dst, $src2}", 200 [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>; 201 </pre> 202 </div> 203 204 <p>This definition makes use of the custom class <tt>I</tt> (extended from the 205 custom class <tt>X86Inst</tt>), which is defined in the X86-specific TableGen 206 file, to factor out the common features that instructions of its class share. A 207 key feature of TableGen is that it allows the end-user to define the 208 abstractions they prefer to use when describing their information.</p> 209 210 <p>Each def record has a special entry called "NAME." This is the 211 name of the def ("ADD32rr" above). In the general case def names can 212 be formed from various kinds of string processing expressions and NAME 213 resolves to the final value obtained after resolving all of those 214 expressions. The user may refer to NAME anywhere she desires to use 215 the ultimate name of the def. NAME should not be defined anywhere 216 else in user code to avoid conflict problems.</p> 217 218 </div> 219 220 <!-- ======================================================================= --> 221 <h3><a name="running">Running TableGen</a></h3> 222 223 <div> 224 225 <p>TableGen runs just like any other LLVM tool. The first (optional) argument 226 specifies the file to read. If a filename is not specified, <tt>tblgen</tt> 227 reads from standard input.</p> 228 229 <p>To be useful, one of the <a href="#backends">TableGen backends</a> must be 230 used. These backends are selectable on the command line (type '<tt>tblgen 231 -help</tt>' for a list). For example, to get a list of all of the definitions 232 that subclass a particular type (which can be useful for building up an enum 233 list of these records), use the <tt>-print-enums</tt> option:</p> 234 235 <div class="doc_code"> 236 <pre> 237 $ tblgen X86.td -print-enums -class=Register 238 AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX, 239 ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP, 240 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D, 241 R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15, 242 R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI, 243 RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, 244 XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5, 245 XMM6, XMM7, XMM8, XMM9, 246 247 $ tblgen X86.td -print-enums -class=Instruction 248 ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri, 249 ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8, 250 ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm, 251 ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr, 252 ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ... 253 </pre> 254 </div> 255 256 <p>The default backend prints out all of the records, as described <a 257 href="#example">above</a>.</p> 258 259 <p>If you plan to use TableGen, you will most likely have to <a 260 href="#backends">write a backend</a> that extracts the information specific to 261 what you need and formats it in the appropriate way.</p> 262 263 </div> 264 265 </div> 266 267 <!-- *********************************************************************** --> 268 <h2><a name="syntax">TableGen syntax</a></h2> 269 <!-- *********************************************************************** --> 270 271 <div> 272 273 <p>TableGen doesn't care about the meaning of data (that is up to the backend to 274 define), but it does care about syntax, and it enforces a simple type system. 275 This section describes the syntax and the constructs allowed in a TableGen file. 276 </p> 277 278 <!-- ======================================================================= --> 279 <h3><a name="primitives">TableGen primitives</a></h3> 280 281 <div> 282 283 <!-- --------------------------------------------------------------------------> 284 <h4><a name="comments">TableGen comments</a></h4> 285 286 <div> 287 288 <p>TableGen supports BCPL style "<tt>//</tt>" comments, which run to the end of 289 the line, and it also supports <b>nestable</b> "<tt>/* */</tt>" comments.</p> 290 291 </div> 292 293 <!-- --------------------------------------------------------------------------> 294 <h4> 295 <a name="types">The TableGen type system</a> 296 </h4> 297 298 <div> 299 300 <p>TableGen files are strongly typed, in a simple (but complete) type-system. 301 These types are used to perform automatic conversions, check for errors, and to 302 help interface designers constrain the input that they allow. Every <a 303 href="#valuedef">value definition</a> is required to have an associated type. 304 </p> 305 306 <p>TableGen supports a mixture of very low-level types (such as <tt>bit</tt>) 307 and very high-level types (such as <tt>dag</tt>). This flexibility is what 308 allows it to describe a wide range of information conveniently and compactly. 309 The TableGen types are:</p> 310 311 <dl> 312 <dt><tt><b>bit</b></tt></dt> 313 <dd>A 'bit' is a boolean value that can hold either 0 or 1.</dd> 314 315 <dt><tt><b>int</b></tt></dt> 316 <dd>The 'int' type represents a simple 32-bit integer value, such as 5.</dd> 317 318 <dt><tt><b>string</b></tt></dt> 319 <dd>The 'string' type represents an ordered sequence of characters of 320 arbitrary length.</dd> 321 322 <dt><tt><b>bits</b><n></tt></dt> 323 <dd>A 'bits' type is an arbitrary, but fixed, size integer that is broken up 324 into individual bits. This type is useful because it can handle some bits 325 being defined while others are undefined.</dd> 326 327 <dt><tt><b>list</b><ty></tt></dt> 328 <dd>This type represents a list whose elements are some other type. The 329 contained type is arbitrary: it can even be another list type.</dd> 330 331 <dt>Class type</dt> 332 <dd>Specifying a class name in a type context means that the defined value 333 must be a subclass of the specified class. This is useful in conjunction with 334 the <b><tt>list</tt></b> type, for example, to constrain the elements of the 335 list to a common base class (e.g., a <tt><b>list</b><Register></tt> can 336 only contain definitions derived from the "<tt>Register</tt>" class).</dd> 337 338 <dt><tt><b>dag</b></tt></dt> 339 <dd>This type represents a nestable directed graph of elements.</dd> 340 341 <dt><tt><b>code</b></tt></dt> 342 <dd>This represents a big hunk of text. This is lexically distinct from 343 string values because it doesn't require escapeing double quotes and other 344 common characters that occur in code.</dd> 345 </dl> 346 347 <p>To date, these types have been sufficient for describing things that 348 TableGen has been used for, but it is straight-forward to extend this list if 349 needed.</p> 350 351 </div> 352 353 <!-- --------------------------------------------------------------------------> 354 <h4> 355 <a name="values">TableGen values and expressions</a> 356 </h4> 357 358 <div> 359 360 <p>TableGen allows for a pretty reasonable number of different expression forms 361 when building up values. These forms allow the TableGen file to be written in a 362 natural syntax and flavor for the application. The current expression forms 363 supported include:</p> 364 365 <dl> 366 <dt><tt>?</tt></dt> 367 <dd>uninitialized field</dd> 368 <dt><tt>0b1001011</tt></dt> 369 <dd>binary integer value</dd> 370 <dt><tt>07654321</tt></dt> 371 <dd>octal integer value (indicated by a leading 0)</dd> 372 <dt><tt>7</tt></dt> 373 <dd>decimal integer value</dd> 374 <dt><tt>0x7F</tt></dt> 375 <dd>hexadecimal integer value</dd> 376 <dt><tt>"foo"</tt></dt> 377 <dd>string value</dd> 378 <dt><tt>[{ ... }]</tt></dt> 379 <dd>code fragment</dd> 380 <dt><tt>[ X, Y, Z ]<type></tt></dt> 381 <dd>list value. <type> is the type of the list 382 element and is usually optional. In rare cases, 383 TableGen is unable to deduce the element type in 384 which case the user must specify it explicitly.</dd> 385 <dt><tt>{ a, b, c }</tt></dt> 386 <dd>initializer for a "bits<3>" value</dd> 387 <dt><tt>value</tt></dt> 388 <dd>value reference</dd> 389 <dt><tt>value{17}</tt></dt> 390 <dd>access to one bit of a value</dd> 391 <dt><tt>value{15-17}</tt></dt> 392 <dd>access to multiple bits of a value</dd> 393 <dt><tt>DEF</tt></dt> 394 <dd>reference to a record definition</dd> 395 <dt><tt>CLASS<val list></tt></dt> 396 <dd>reference to a new anonymous definition of CLASS with the specified 397 template arguments.</dd> 398 <dt><tt>X.Y</tt></dt> 399 <dd>reference to the subfield of a value</dd> 400 <dt><tt>list[4-7,17,2-3]</tt></dt> 401 <dd>A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from 402 it. Elements may be included multiple times.</dd> 403 <dt><tt>(DEF a, b)</tt></dt> 404 <dd>a dag value. The first element is required to be a record definition, the 405 remaining elements in the list may be arbitrary other values, including nested 406 `<tt>dag</tt>' values.</dd> 407 <dt><tt>!strconcat(a, b)</tt></dt> 408 <dd>A string value that is the result of concatenating the 'a' and 'b' 409 strings.</dd> 410 <dt><tt>str1#str2</tt></dt> 411 <dd>"#" (paste) is a shorthand for !strconcat. It may concatenate 412 things that are not quoted strings, in which case an implicit 413 !cast<string> is done on the operand of the paste.</dd> 414 <dt><tt>!cast<type>(a)</tt></dt> 415 <dd>A symbol of type <em>type</em> obtained by looking up the string 'a' in 416 the symbol table. If the type of 'a' does not match <em>type</em>, TableGen 417 aborts with an error. !cast<string> is a special case in that the argument must 418 be an object defined by a 'def' construct.</dd> 419 <dt><tt>!subst(a, b, c)</tt></dt> 420 <dd>If 'a' and 'b' are of string type or are symbol references, substitute 421 'b' for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.</dd> 422 <dt><tt>!foreach(a, b, c)</tt></dt> 423 <dd>For each member 'b' of dag or list 'a' apply operator 'c.' 'b' is a 424 dummy variable that should be declared as a member variable of an instantiated 425 class. This operation is analogous to $(foreach) in GNU make.</dd> 426 <dt><tt>!head(a)</tt></dt> 427 <dd>The first element of list 'a.'</dd> 428 <dt><tt>!tail(a)</tt></dt> 429 <dd>The 2nd-N elements of list 'a.'</dd> 430 <dt><tt>!empty(a)</tt></dt> 431 <dd>An integer {0,1} indicating whether list 'a' is empty.</dd> 432 <dt><tt>!if(a,b,c)</tt></dt> 433 <dd>'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 434 'c' otherwise.</dd> 435 <dt><tt>!eq(a,b)</tt></dt> 436 <dd>'bit 1' if string a is equal to string b, 0 otherwise. This 437 only operates on string, int and bit objects. Use !cast<string> to 438 compare other types of objects.</dd> 439 </dl> 440 441 <p>Note that all of the values have rules specifying how they convert to values 442 for different types. These rules allow you to assign a value like "<tt>7</tt>" 443 to a "<tt>bits<4></tt>" value, for example.</p> 444 445 </div> 446 447 </div> 448 449 <!-- ======================================================================= --> 450 <h3> 451 <a name="classesdefs">Classes and definitions</a> 452 </h3> 453 454 <div> 455 456 <p>As mentioned in the <a href="#concepts">intro</a>, classes and definitions 457 (collectively known as 'records') in TableGen are the main high-level unit of 458 information that TableGen collects. Records are defined with a <tt>def</tt> or 459 <tt>class</tt> keyword, the record name, and an optional list of "<a 460 href="#templateargs">template arguments</a>". If the record has superclasses, 461 they are specified as a comma separated list that starts with a colon character 462 ("<tt>:</tt>"). If <a href="#valuedef">value definitions</a> or <a 463 href="#recordlet">let expressions</a> are needed for the class, they are 464 enclosed in curly braces ("<tt>{}</tt>"); otherwise, the record ends with a 465 semicolon.</p> 466 467 <p>Here is a simple TableGen file:</p> 468 469 <div class="doc_code"> 470 <pre> 471 <b>class</b> C { <b>bit</b> V = 1; } 472 <b>def</b> X : C; 473 <b>def</b> Y : C { 474 <b>string</b> Greeting = "hello"; 475 } 476 </pre> 477 </div> 478 479 <p>This example defines two definitions, <tt>X</tt> and <tt>Y</tt>, both of 480 which derive from the <tt>C</tt> class. Because of this, they both get the 481 <tt>V</tt> bit value. The <tt>Y</tt> definition also gets the Greeting member 482 as well.</p> 483 484 <p>In general, classes are useful for collecting together the commonality 485 between a group of records and isolating it in a single place. Also, classes 486 permit the specification of default values for their subclasses, allowing the 487 subclasses to override them as they wish.</p> 488 489 <!----------------------------------------------------------------------------> 490 <h4> 491 <a name="valuedef">Value definitions</a> 492 </h4> 493 494 <div> 495 496 <p>Value definitions define named entries in records. A value must be defined 497 before it can be referred to as the operand for another value definition or 498 before the value is reset with a <a href="#recordlet">let expression</a>. A 499 value is defined by specifying a <a href="#types">TableGen type</a> and a name. 500 If an initial value is available, it may be specified after the type with an 501 equal sign. Value definitions require terminating semicolons.</p> 502 503 </div> 504 505 <!-- --------------------------------------------------------------------------> 506 <h4> 507 <a name="recordlet">'let' expressions</a> 508 </h4> 509 510 <div> 511 512 <p>A record-level let expression is used to change the value of a value 513 definition in a record. This is primarily useful when a superclass defines a 514 value that a derived class or definition wants to override. Let expressions 515 consist of the '<tt>let</tt>' keyword followed by a value name, an equal sign 516 ("<tt>=</tt>"), and a new value. For example, a new class could be added to the 517 example above, redefining the <tt>V</tt> field for all of its subclasses:</p> 518 519 <div class="doc_code"> 520 <pre> 521 <b>class</b> D : C { let V = 0; } 522 <b>def</b> Z : D; 523 </pre> 524 </div> 525 526 <p>In this case, the <tt>Z</tt> definition will have a zero value for its "V" 527 value, despite the fact that it derives (indirectly) from the <tt>C</tt> class, 528 because the <tt>D</tt> class overrode its value.</p> 529 530 </div> 531 532 <!-- --------------------------------------------------------------------------> 533 <h4> 534 <a name="templateargs">Class template arguments</a> 535 </h4> 536 537 <div> 538 539 <p>TableGen permits the definition of parameterized classes as well as normal 540 concrete classes. Parameterized TableGen classes specify a list of variable 541 bindings (which may optionally have defaults) that are bound when used. Here is 542 a simple example:</p> 543 544 <div class="doc_code"> 545 <pre> 546 <b>class</b> FPFormat<<b>bits</b><3> val> { 547 <b>bits</b><3> Value = val; 548 } 549 <b>def</b> NotFP : FPFormat<0>; 550 <b>def</b> ZeroArgFP : FPFormat<1>; 551 <b>def</b> OneArgFP : FPFormat<2>; 552 <b>def</b> OneArgFPRW : FPFormat<3>; 553 <b>def</b> TwoArgFP : FPFormat<4>; 554 <b>def</b> CompareFP : FPFormat<5>; 555 <b>def</b> CondMovFP : FPFormat<6>; 556 <b>def</b> SpecialFP : FPFormat<7>; 557 </pre> 558 </div> 559 560 <p>In this case, template arguments are used as a space efficient way to specify 561 a list of "enumeration values", each with a "<tt>Value</tt>" field set to the 562 specified integer.</p> 563 564 <p>The more esoteric forms of <a href="#values">TableGen expressions</a> are 565 useful in conjunction with template arguments. As an example:</p> 566 567 <div class="doc_code"> 568 <pre> 569 <b>class</b> ModRefVal<<b>bits</b><2> val> { 570 <b>bits</b><2> Value = val; 571 } 572 573 <b>def</b> None : ModRefVal<0>; 574 <b>def</b> Mod : ModRefVal<1>; 575 <b>def</b> Ref : ModRefVal<2>; 576 <b>def</b> ModRef : ModRefVal<3>; 577 578 <b>class</b> Value<ModRefVal MR> { 579 <i>// Decode some information into a more convenient format, while providing 580 // a nice interface to the user of the "Value" class.</i> 581 <b>bit</b> isMod = MR.Value{0}; 582 <b>bit</b> isRef = MR.Value{1}; 583 584 <i>// other stuff...</i> 585 } 586 587 <i>// Example uses</i> 588 <b>def</b> bork : Value<Mod>; 589 <b>def</b> zork : Value<Ref>; 590 <b>def</b> hork : Value<ModRef>; 591 </pre> 592 </div> 593 594 <p>This is obviously a contrived example, but it shows how template arguments 595 can be used to decouple the interface provided to the user of the class from the 596 actual internal data representation expected by the class. In this case, 597 running <tt>tblgen</tt> on the example prints the following definitions:</p> 598 599 <div class="doc_code"> 600 <pre> 601 <b>def</b> bork { <i>// Value</i> 602 <b>bit</b> isMod = 1; 603 <b>bit</b> isRef = 0; 604 } 605 <b>def</b> hork { <i>// Value</i> 606 <b>bit</b> isMod = 1; 607 <b>bit</b> isRef = 1; 608 } 609 <b>def</b> zork { <i>// Value</i> 610 <b>bit</b> isMod = 0; 611 <b>bit</b> isRef = 1; 612 } 613 </pre> 614 </div> 615 616 <p> This shows that TableGen was able to dig into the argument and extract a 617 piece of information that was requested by the designer of the "Value" class. 618 For more realistic examples, please see existing users of TableGen, such as the 619 X86 backend.</p> 620 621 </div> 622 623 <!-- --------------------------------------------------------------------------> 624 <h4> 625 <a name="multiclass">Multiclass definitions and instances</a> 626 </h4> 627 628 <div> 629 630 <p> 631 While classes with template arguments are a good way to factor commonality 632 between two instances of a definition, multiclasses allow a convenient notation 633 for defining multiple definitions at once (instances of implicitly constructed 634 classes). For example, consider an 3-address instruction set whose instructions 635 come in two forms: "<tt>reg = reg op reg</tt>" and "<tt>reg = reg op imm</tt>" 636 (e.g. SPARC). In this case, you'd like to specify in one place that this 637 commonality exists, then in a separate place indicate what all the ops are. 638 </p> 639 640 <p> 641 Here is an example TableGen fragment that shows this idea: 642 </p> 643 644 <div class="doc_code"> 645 <pre> 646 <b>def</b> ops; 647 <b>def</b> GPR; 648 <b>def</b> Imm; 649 <b>class</b> inst<<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist>; 650 651 <b>multiclass</b> ri_inst<<b>int</b> opc, <b>string</b> asmstr> { 652 def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 653 (ops GPR:$dst, GPR:$src1, GPR:$src2)>; 654 def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 655 (ops GPR:$dst, GPR:$src1, Imm:$src2)>; 656 } 657 658 <i>// Instantiations of the ri_inst multiclass.</i> 659 <b>defm</b> ADD : ri_inst<0b111, "add">; 660 <b>defm</b> SUB : ri_inst<0b101, "sub">; 661 <b>defm</b> MUL : ri_inst<0b100, "mul">; 662 ... 663 </pre> 664 </div> 665 666 <p>The name of the resultant definitions has the multidef fragment names 667 appended to them, so this defines <tt>ADD_rr</tt>, <tt>ADD_ri</tt>, 668 <tt>SUB_rr</tt>, etc. A defm may inherit from multiple multiclasses, 669 instantiating definitions from each multiclass. Using a multiclass 670 this way is exactly equivalent to instantiating the classes multiple 671 times yourself, e.g. by writing:</p> 672 673 <div class="doc_code"> 674 <pre> 675 <b>def</b> ops; 676 <b>def</b> GPR; 677 <b>def</b> Imm; 678 <b>class</b> inst<<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist>; 679 680 <b>class</b> rrinst<<b>int</b> opc, <b>string</b> asmstr> 681 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 682 (ops GPR:$dst, GPR:$src1, GPR:$src2)>; 683 684 <b>class</b> riinst<<b>int</b> opc, <b>string</b> asmstr> 685 : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), 686 (ops GPR:$dst, GPR:$src1, Imm:$src2)>; 687 688 <i>// Instantiations of the ri_inst multiclass.</i> 689 <b>def</b> ADD_rr : rrinst<0b111, "add">; 690 <b>def</b> ADD_ri : riinst<0b111, "add">; 691 <b>def</b> SUB_rr : rrinst<0b101, "sub">; 692 <b>def</b> SUB_ri : riinst<0b101, "sub">; 693 <b>def</b> MUL_rr : rrinst<0b100, "mul">; 694 <b>def</b> MUL_ri : riinst<0b100, "mul">; 695 ... 696 </pre> 697 </div> 698 699 <p> 700 A defm can also be used inside a multiclass providing several levels of 701 multiclass instanciations. 702 </p> 703 704 <div class="doc_code"> 705 <pre> 706 <b>class</b> Instruction<bits<4> opc, string Name> { 707 bits<4> opcode = opc; 708 string name = Name; 709 } 710 711 <b>multiclass</b> basic_r<bits<4> opc> { 712 <b>def</b> rr : Instruction<opc, "rr">; 713 <b>def</b> rm : Instruction<opc, "rm">; 714 } 715 716 <b>multiclass</b> basic_s<bits<4> opc> { 717 <b>defm</b> SS : basic_r<opc>; 718 <b>defm</b> SD : basic_r<opc>; 719 <b>def</b> X : Instruction<opc, "x">; 720 } 721 722 <b>multiclass</b> basic_p<bits<4> opc> { 723 <b>defm</b> PS : basic_r<opc>; 724 <b>defm</b> PD : basic_r<opc>; 725 <b>def</b> Y : Instruction<opc, "y">; 726 } 727 728 <b>defm</b> ADD : basic_s<0xf>, basic_p<0xf>; 729 ... 730 731 <i>// Results</i> 732 <b>def</b> ADDPDrm { ... 733 <b>def</b> ADDPDrr { ... 734 <b>def</b> ADDPSrm { ... 735 <b>def</b> ADDPSrr { ... 736 <b>def</b> ADDSDrm { ... 737 <b>def</b> ADDSDrr { ... 738 <b>def</b> ADDY { ... 739 <b>def</b> ADDX { ... 740 </pre> 741 </div> 742 743 <p> 744 defm declarations can inherit from classes too, the 745 rule to follow is that the class list must start after the 746 last multiclass, and there must be at least one multiclass 747 before them. 748 </p> 749 750 <div class="doc_code"> 751 <pre> 752 <b>class</b> XD { bits<4> Prefix = 11; } 753 <b>class</b> XS { bits<4> Prefix = 12; } 754 755 <b>class</b> I<bits<4> op> { 756 bits<4> opcode = op; 757 } 758 759 <b>multiclass</b> R { 760 <b>def</b> rr : I<4>; 761 <b>def</b> rm : I<2>; 762 } 763 764 <b>multiclass</b> Y { 765 <b>defm</b> SS : R, XD; 766 <b>defm</b> SD : R, XS; 767 } 768 769 <b>defm</b> Instr : Y; 770 771 <i>// Results</i> 772 <b>def</b> InstrSDrm { 773 bits<4> opcode = { 0, 0, 1, 0 }; 774 bits<4> Prefix = { 1, 1, 0, 0 }; 775 } 776 ... 777 <b>def</b> InstrSSrr { 778 bits<4> opcode = { 0, 1, 0, 0 }; 779 bits<4> Prefix = { 1, 0, 1, 1 }; 780 } 781 </pre> 782 </div> 783 784 </div> 785 786 </div> 787 788 <!-- ======================================================================= --> 789 <h3> 790 <a name="filescope">File scope entities</a> 791 </h3> 792 793 <div> 794 795 <!-- --------------------------------------------------------------------------> 796 <h4> 797 <a name="include">File inclusion</a> 798 </h4> 799 800 <div> 801 <p>TableGen supports the '<tt>include</tt>' token, which textually substitutes 802 the specified file in place of the include directive. The filename should be 803 specified as a double quoted string immediately after the '<tt>include</tt>' 804 keyword. Example:</p> 805 806 <div class="doc_code"> 807 <pre> 808 <b>include</b> "foo.td" 809 </pre> 810 </div> 811 812 </div> 813 814 <!-- --------------------------------------------------------------------------> 815 <h4> 816 <a name="globallet">'let' expressions</a> 817 </h4> 818 819 <div> 820 821 <p>"Let" expressions at file scope are similar to <a href="#recordlet">"let" 822 expressions within a record</a>, except they can specify a value binding for 823 multiple records at a time, and may be useful in certain other cases. 824 File-scope let expressions are really just another way that TableGen allows the 825 end-user to factor out commonality from the records.</p> 826 827 <p>File-scope "let" expressions take a comma-separated list of bindings to 828 apply, and one or more records to bind the values in. Here are some 829 examples:</p> 830 831 <div class="doc_code"> 832 <pre> 833 <b>let</b> isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 <b>in</b> 834 <b>def</b> RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>; 835 836 <b>let</b> isCall = 1 <b>in</b> 837 <i>// All calls clobber the non-callee saved registers...</i> 838 <b>let</b> Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, 839 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, 840 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] <b>in</b> { 841 <b>def</b> CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops), 842 "call\t${dst:call}", []>; 843 <b>def</b> CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops), 844 "call\t{*}$dst", [(X86call GR32:$dst)]>; 845 <b>def</b> CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops), 846 "call\t{*}$dst", []>; 847 } 848 </pre> 849 </div> 850 851 <p>File-scope "let" expressions are often useful when a couple of definitions 852 need to be added to several records, and the records do not otherwise need to be 853 opened, as in the case with the <tt>CALL*</tt> instructions above.</p> 854 855 <p>It's also possible to use "let" expressions inside multiclasses, providing 856 more ways to factor out commonality from the records, specially if using 857 several levels of multiclass instanciations. This also avoids the need of using 858 "let" expressions within subsequent records inside a multiclass.</p> 859 860 <pre class="doc_code"> 861 <b>multiclass </b>basic_r<bits<4> opc> { 862 <b>let </b>Predicates = [HasSSE2] in { 863 <b>def </b>rr : Instruction<opc, "rr">; 864 <b>def </b>rm : Instruction<opc, "rm">; 865 } 866 <b>let </b>Predicates = [HasSSE3] in 867 <b>def </b>rx : Instruction<opc, "rx">; 868 } 869 870 <b>multiclass </b>basic_ss<bits<4> opc> { 871 <b>let </b>IsDouble = 0 in 872 <b>defm </b>SS : basic_r<opc>; 873 874 <b>let </b>IsDouble = 1 in 875 <b>defm </b>SD : basic_r<opc>; 876 } 877 878 <b>defm </b>ADD : basic_ss<0xf>; 879 </pre> 880 </div> 881 882 </div> 883 884 </div> 885 886 <!-- *********************************************************************** --> 887 <h2><a name="codegen">Code Generator backend info</a></h2> 888 <!-- *********************************************************************** --> 889 890 <div> 891 892 <p>Expressions used by code generator to describe instructions and isel 893 patterns:</p> 894 895 <dl> 896 <dt><tt>(implicit a)</tt></dt> 897 <dd>an implicitly defined physical register. This tells the dag instruction 898 selection emitter the input pattern's extra definitions matches implicit 899 physical register definitions.</dd> 900 </dl> 901 </div> 902 903 <!-- *********************************************************************** --> 904 <h2><a name="backends">TableGen backends</a></h2> 905 <!-- *********************************************************************** --> 906 907 <div> 908 909 <p>TODO: How they work, how to write one. This section should not contain 910 details about any particular backend, except maybe -print-enums as an example. 911 This should highlight the APIs in <tt>TableGen/Record.h</tt>.</p> 912 913 </div> 914 915 <!-- *********************************************************************** --> 916 917 <hr> 918 <address> 919 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 920 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> 921 <a href="http://validator.w3.org/check/referer"><img 922 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> 923 924 <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br> 925 <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br> 926 Last modified: $Date$ 927 </address> 928 929 </body> 930 </html> 931