Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      6   <title>Writing an LLVM Pass</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8 </head>
      9 <body>
     10 
     11 <h1>
     12   Writing an LLVM Pass
     13 </h1>
     14 
     15 <ol>
     16   <li><a href="#introduction">Introduction - What is a pass?</a></li>
     17   <li><a href="#quickstart">Quick Start - Writing hello world</a>
     18     <ul>
     19     <li><a href="#makefile">Setting up the build environment</a></li>
     20     <li><a href="#basiccode">Basic code required</a></li>
     21     <li><a href="#running">Running a pass with <tt>opt</tt></a></li>
     22     </ul></li>
     23   <li><a href="#passtype">Pass classes and requirements</a>
     24      <ul>
     25      <li><a href="#ImmutablePass">The <tt>ImmutablePass</tt> class</a></li>
     26      <li><a href="#ModulePass">The <tt>ModulePass</tt> class</a>
     27         <ul>
     28         <li><a href="#runOnModule">The <tt>runOnModule</tt> method</a></li>
     29         </ul></li>
     30      <li><a href="#CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
     31         <ul>
     32         <li><a href="#doInitialization_scc">The <tt>doInitialization(CallGraph
     33                                            &amp;)</tt> method</a></li>
     34         <li><a href="#runOnSCC">The <tt>runOnSCC</tt> method</a></li>
     35         <li><a href="#doFinalization_scc">The <tt>doFinalization(CallGraph
     36                                            &amp;)</tt> method</a></li>
     37         </ul></li>
     38      <li><a href="#FunctionPass">The <tt>FunctionPass</tt> class</a>
     39         <ul>
     40         <li><a href="#doInitialization_mod">The <tt>doInitialization(Module
     41                                             &amp;)</tt> method</a></li>
     42         <li><a href="#runOnFunction">The <tt>runOnFunction</tt> method</a></li>
     43         <li><a href="#doFinalization_mod">The <tt>doFinalization(Module
     44                                             &amp;)</tt> method</a></li>
     45         </ul></li>
     46      <li><a href="#LoopPass">The <tt>LoopPass</tt> class</a>
     47         <ul>
     48         <li><a href="#doInitialization_loop">The <tt>doInitialization(Loop *,
     49                                             LPPassManager &amp;)</tt> method</a></li>
     50         <li><a href="#runOnLoop">The <tt>runOnLoop</tt> method</a></li>
     51         <li><a href="#doFinalization_loop">The <tt>doFinalization()
     52                                             </tt> method</a></li>
     53         </ul></li>
     54      <li><a href="#RegionPass">The <tt>RegionPass</tt> class</a>
     55         <ul>
     56         <li><a href="#doInitialization_region">The <tt>doInitialization(Region *,
     57                                             RGPassManager &amp;)</tt> method</a></li>
     58         <li><a href="#runOnRegion">The <tt>runOnRegion</tt> method</a></li>
     59         <li><a href="#doFinalization_region">The <tt>doFinalization()
     60                                             </tt> method</a></li>
     61         </ul></li>
     62      <li><a href="#BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
     63         <ul>
     64         <li><a href="#doInitialization_fn">The <tt>doInitialization(Function
     65                                              &amp;)</tt> method</a></li>
     66         <li><a href="#runOnBasicBlock">The <tt>runOnBasicBlock</tt>
     67                                        method</a></li>
     68         <li><a href="#doFinalization_fn">The <tt>doFinalization(Function
     69                                          &amp;)</tt> method</a></li>
     70         </ul></li>
     71      <li><a href="#MachineFunctionPass">The <tt>MachineFunctionPass</tt>
     72                                         class</a>
     73         <ul>
     74         <li><a href="#runOnMachineFunction">The
     75             <tt>runOnMachineFunction(MachineFunction &amp;)</tt> method</a></li>
     76         </ul></li>
     77      </ul>
     78   <li><a href="#registration">Pass Registration</a>
     79      <ul>
     80      <li><a href="#print">The <tt>print</tt> method</a></li>
     81      </ul></li>
     82   <li><a href="#interaction">Specifying interactions between passes</a>
     83      <ul>
     84      <li><a href="#getAnalysisUsage">The <tt>getAnalysisUsage</tt> 
     85                                      method</a></li>
     86      <li><a href="#AU::addRequired">The <tt>AnalysisUsage::addRequired&lt;&gt;</tt> and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods</a></li>
     87      <li><a href="#AU::addPreserved">The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method</a></li>
     88      <li><a href="#AU::examples">Example implementations of <tt>getAnalysisUsage</tt></a></li>
     89      <li><a href="#getAnalysis">The <tt>getAnalysis&lt;&gt;</tt> and
     90 <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods</a></li>
     91      </ul></li>
     92   <li><a href="#analysisgroup">Implementing Analysis Groups</a>
     93      <ul>
     94      <li><a href="#agconcepts">Analysis Group Concepts</a></li>
     95      <li><a href="#registerag">Using <tt>RegisterAnalysisGroup</tt></a></li>
     96      </ul></li>
     97   <li><a href="#passStatistics">Pass Statistics</a>
     98   <li><a href="#passmanager">What PassManager does</a>
     99     <ul>
    100     <li><a href="#releaseMemory">The <tt>releaseMemory</tt> method</a></li>
    101     </ul></li>
    102   <li><a href="#registering">Registering dynamically loaded passes</a>
    103     <ul>
    104       <li><a href="#registering_existing">Using existing registries</a></li>
    105       <li><a href="#registering_new">Creating new registries</a></li>
    106     </ul></li>
    107   <li><a href="#debughints">Using GDB with dynamically loaded passes</a>
    108     <ul>
    109     <li><a href="#breakpoint">Setting a breakpoint in your pass</a></li>
    110     <li><a href="#debugmisc">Miscellaneous Problems</a></li>
    111     </ul></li>
    112   <li><a href="#future">Future extensions planned</a>
    113     <ul>
    114     <li><a href="#SMP">Multithreaded LLVM</a></li>
    115     </ul></li>
    116 </ol>
    117 
    118 <div class="doc_author">
    119   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a> and
    120   <a href="mailto:jlaskey (a] mac.com">Jim Laskey</a></p>
    121 </div>
    122 
    123 <!-- *********************************************************************** -->
    124 <h2>
    125   <a name="introduction">Introduction - What is a pass?</a>
    126 </h2>
    127 <!-- *********************************************************************** -->
    128 
    129 <div>
    130 
    131 <p>The LLVM Pass Framework is an important part of the LLVM system, because LLVM
    132 passes are where most of the interesting parts of the compiler exist.  Passes
    133 perform the transformations and optimizations that make up the compiler, they
    134 build the analysis results that are used by these transformations, and they are,
    135 above all, a structuring technique for compiler code.</p>
    136 
    137 <p>All LLVM passes are subclasses of the <tt><a
    138 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>
    139 class, which implement functionality by overriding virtual methods inherited
    140 from <tt>Pass</tt>.  Depending on how your pass works, you should inherit from
    141 the <tt><a href="#ModulePass">ModulePass</a></tt>, <tt><a
    142 href="#CallGraphSCCPass">CallGraphSCCPass</a></tt>, <tt><a
    143 href="#FunctionPass">FunctionPass</a></tt>, or <tt><a
    144 href="#LoopPass">LoopPass</a></tt>, or <tt><a
    145 href="#RegionPass">RegionPass</a></tt>, or <tt><a
    146 href="#BasicBlockPass">BasicBlockPass</a></tt> classes, which gives the system
    147 more information about what your pass does, and how it can be combined with
    148 other passes.  One of the main features of the LLVM Pass Framework is that it
    149 schedules passes to run in an efficient way based on the constraints that your
    150 pass meets (which are indicated by which class they derive from).</p>
    151 
    152 <p>We start by showing you how to construct a pass, everything from setting up
    153 the code, to compiling, loading, and executing it.  After the basics are down,
    154 more advanced features are discussed.</p>
    155 
    156 </div>
    157 
    158 <!-- *********************************************************************** -->
    159 <h2>
    160   <a name="quickstart">Quick Start - Writing hello world</a>
    161 </h2>
    162 <!-- *********************************************************************** -->
    163 
    164 <div>
    165 
    166 <p>Here we describe how to write the "hello world" of passes.  The "Hello" pass
    167 is designed to simply print out the name of non-external functions that exist in
    168 the program being compiled.  It does not modify the program at all, it just
    169 inspects it.  The source code and files for this pass are available in the LLVM
    170 source tree in the <tt>lib/Transforms/Hello</tt> directory.</p>
    171 
    172 <!-- ======================================================================= -->
    173 <h3>
    174   <a name="makefile">Setting up the build environment</a>
    175 </h3>
    176 
    177 <div>
    178 
    179   <p>First, configure and build LLVM.  This needs to be done directly inside the
    180   LLVM source tree rather than in a separate objects directory.
    181   Next, you need to create a new directory somewhere in the LLVM source 
    182   base.  For this example, we'll assume that you made 
    183   <tt>lib/Transforms/Hello</tt>.  Finally, you must set up a build script 
    184   (Makefile) that will compile the source code for the new pass.  To do this, 
    185   copy the following into <tt>Makefile</tt>:</p>
    186   <hr>
    187 
    188 <div class="doc_code"><pre>
    189 # Makefile for hello pass
    190 
    191 # Path to top level of LLVM hierarchy
    192 LEVEL = ../../..
    193 
    194 # Name of the library to build
    195 LIBRARYNAME = Hello
    196 
    197 # Make the shared library become a loadable module so the tools can 
    198 # dlopen/dlsym on the resulting library.
    199 LOADABLE_MODULE = 1
    200 
    201 # Include the makefile implementation stuff
    202 include $(LEVEL)/Makefile.common
    203 </pre></div>
    204 
    205 <p>This makefile specifies that all of the <tt>.cpp</tt> files in the current
    206 directory are to be compiled and linked together into a shared object
    207 <tt>$(LEVEL)/Debug+Asserts/lib/Hello.so</tt> that can be dynamically loaded by
    208 the <tt>opt</tt> or <tt>bugpoint</tt> tools via their <tt>-load</tt> options.  
    209 If your operating system uses a suffix other than .so (such as windows or 
    210 Mac OS/X), the appropriate extension will be used.</p>
    211 
    212 <p>If you are used CMake to build LLVM, see
    213 <a href="CMake.html#passdev">Developing an LLVM pass with CMake</a>.</p>
    214 
    215 <p>Now that we have the build scripts set up, we just need to write the code for
    216 the pass itself.</p>
    217 
    218 </div>
    219 
    220 <!-- ======================================================================= -->
    221 <h3>
    222   <a name="basiccode">Basic code required</a>
    223 </h3>
    224 
    225 <div>
    226 
    227 <p>Now that we have a way to compile our new pass, we just have to write it.
    228 Start out with:</p>
    229 
    230 <div class="doc_code">
    231 <pre>
    232 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
    233 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
    234 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
    235 </pre>
    236 </div>
    237 
    238 <p>Which are needed because we are writing a <tt><a
    239 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">Pass</a></tt>,
    240 we are operating on <tt><a
    241 href="http://llvm.org/doxygen/classllvm_1_1Function.html">Function</a></tt>'s,
    242 and we will be doing some printing.</p>
    243 
    244 <p>Next we have:</p>
    245 
    246 <div class="doc_code">
    247 <pre>
    248 <b>using namespace llvm;</b>
    249 </pre>
    250 </div>
    251 
    252 <p>... which is required because the functions from the include files 
    253 live in the llvm namespace.</p>
    254 
    255 <p>Next we have:</p>
    256 
    257 <div class="doc_code">
    258 <pre>
    259 <b>namespace</b> {
    260 </pre>
    261 </div>
    262 
    263 <p>... which starts out an anonymous namespace.  Anonymous namespaces are to C++
    264 what the "<tt>static</tt>" keyword is to C (at global scope).  It makes the
    265 things declared inside of the anonymous namespace visible only to the current
    266 file.  If you're not familiar with them, consult a decent C++ book for more
    267 information.</p>
    268 
    269 <p>Next, we declare our pass itself:</p>
    270 
    271 <div class="doc_code">
    272 <pre>
    273   <b>struct</b> Hello : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
    274 </pre>
    275 </div>
    276 
    277 <p>This declares a "<tt>Hello</tt>" class that is a subclass of <tt><a
    278 href="http://llvm.org/doxygen/classllvm_1_1FunctionPass.html">FunctionPass</a></tt>.
    279 The different builtin pass subclasses are described in detail <a
    280 href="#passtype">later</a>, but for now, know that <a
    281 href="#FunctionPass"><tt>FunctionPass</tt></a>'s operate on a function at a
    282 time.</p>
    283 
    284 <div class="doc_code">
    285 <pre>
    286     static char ID;
    287     Hello() : FunctionPass(ID) {}
    288 </pre>
    289 </div>
    290 
    291 <p>This declares pass identifier used by LLVM to identify pass. This allows LLVM
    292 to avoid using expensive C++ runtime information.</p>
    293 
    294 <div class="doc_code">
    295 <pre>
    296     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
    297       errs() &lt;&lt; "<i>Hello: </i>";
    298       errs().write_escaped(F.getName()) &lt;&lt; "\n";
    299       <b>return false</b>;
    300     }
    301   };  <i>// end of struct Hello</i>
    302 }  <i>// end of anonymous namespace</i>
    303 </pre>
    304 </div>
    305 
    306 <p>We declare a "<a href="#runOnFunction"><tt>runOnFunction</tt></a>" method,
    307 which overloads an abstract virtual method inherited from <a
    308 href="#FunctionPass"><tt>FunctionPass</tt></a>.  This is where we are supposed
    309 to do our thing, so we just print out our message with the name of each
    310 function.</p>
    311 
    312 <div class="doc_code">
    313 <pre>
    314 char Hello::ID = 0;
    315 </pre>
    316 </div>
    317 
    318 <p>We initialize pass ID here. LLVM uses ID's address to identify a pass, so
    319 initialization value is not important.</p>
    320 
    321 <div class="doc_code">
    322 <pre>
    323 static RegisterPass&lt;Hello&gt; X("<i>hello</i>", "<i>Hello World Pass</i>",
    324                              false /* Only looks at CFG */,
    325                              false /* Analysis Pass */);
    326 </pre>
    327 </div>
    328 
    329 <p>Lastly, we <a href="#registration">register our class</a> <tt>Hello</tt>,
    330 giving it a command line argument "<tt>hello</tt>", and a name "<tt>Hello World
    331 Pass</tt>". The last two arguments describe its behavior: if a pass walks CFG
    332 without modifying it then the third argument is set to <tt>true</tt>; if a pass
    333 is an analysis pass, for example dominator tree pass, then <tt>true</tt> is
    334 supplied as the fourth argument.</p>
    335 
    336 <p>As a whole, the <tt>.cpp</tt> file looks like:</p>
    337 
    338 <div class="doc_code">
    339 <pre>
    340 <b>#include</b> "<a href="http://llvm.org/doxygen/Pass_8h-source.html">llvm/Pass.h</a>"
    341 <b>#include</b> "<a href="http://llvm.org/doxygen/Function_8h-source.html">llvm/Function.h</a>"
    342 <b>#include</b> "<a href="http://llvm.org/doxygen/raw__ostream_8h.html">llvm/Support/raw_ostream.h</a>"
    343 
    344 <b>using namespace llvm;</b>
    345 
    346 <b>namespace</b> {
    347   <b>struct Hello</b> : <b>public</b> <a href="#FunctionPass">FunctionPass</a> {
    348     
    349     static char ID;
    350     Hello() : FunctionPass(ID) {}
    351 
    352     <b>virtual bool</b> <a href="#runOnFunction">runOnFunction</a>(Function &amp;F) {
    353       errs() &lt;&lt; "<i>Hello: </i>";
    354       errs().write_escaped(F.getName()) &lt;&lt; '\n';
    355       <b>return false</b>;
    356     }
    357 
    358   };
    359 }
    360   
    361 char Hello::ID = 0;
    362 static RegisterPass&lt;Hello&gt; X("hello", "Hello World Pass", false, false);
    363 </pre>
    364 </div>
    365 
    366 <p>Now that it's all together, compile the file with a simple "<tt>gmake</tt>"
    367 command in the local directory and you should get a new file
    368 "<tt>Debug+Asserts/lib/Hello.so</tt>" under the top level directory of the LLVM
    369 source tree (not in the local directory).  Note that everything in this file is
    370 contained in an anonymous namespace &mdash; this reflects the fact that passes
    371 are self contained units that do not need external interfaces (although they can
    372 have them) to be useful.</p>
    373 
    374 </div>
    375 
    376 <!-- ======================================================================= -->
    377 <h3>
    378   <a name="running">Running a pass with <tt>opt</tt></a>
    379 </h3>
    380 
    381 <div>
    382 
    383 <p>Now that you have a brand new shiny shared object file, we can use the
    384 <tt>opt</tt> command to run an LLVM program through your pass.  Because you
    385 registered your pass with <tt>RegisterPass</tt>, you will be able to
    386 use the <tt>opt</tt> tool to access it, once loaded.</p>
    387 
    388 <p>To test it, follow the example at the end of the <a
    389 href="GettingStarted.html">Getting Started Guide</a> to compile "Hello World" to
    390 LLVM.  We can now run the bitcode file (<tt>hello.bc</tt>) for the program
    391 through our transformation like this (or course, any bitcode file will
    392 work):</p>
    393 
    394 <div class="doc_code"><pre>
    395 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello &lt; hello.bc &gt; /dev/null
    396 Hello: __main
    397 Hello: puts
    398 Hello: main
    399 </pre></div>
    400 
    401 <p>The '<tt>-load</tt>' option specifies that '<tt>opt</tt>' should load your
    402 pass as a shared object, which makes '<tt>-hello</tt>' a valid command line
    403 argument (which is one reason you need to <a href="#registration">register your
    404 pass</a>).  Because the hello pass does not modify the program in any
    405 interesting way, we just throw away the result of <tt>opt</tt> (sending it to
    406 <tt>/dev/null</tt>).</p>
    407 
    408 <p>To see what happened to the other string you registered, try running
    409 <tt>opt</tt> with the <tt>-help</tt> option:</p>
    410 
    411 <div class="doc_code"><pre>
    412 $ opt -load ../../../Debug+Asserts/lib/Hello.so -help
    413 OVERVIEW: llvm .bc -&gt; .bc modular optimizer
    414 
    415 USAGE: opt [options] &lt;input bitcode&gt;
    416 
    417 OPTIONS:
    418   Optimizations available:
    419 ...
    420     -funcresolve    - Resolve Functions
    421     -gcse           - Global Common Subexpression Elimination
    422     -globaldce      - Dead Global Elimination
    423     <b>-hello          - Hello World Pass</b>
    424     -indvars        - Canonicalize Induction Variables
    425     -inline         - Function Integration/Inlining
    426     -instcombine    - Combine redundant instructions
    427 ...
    428 </pre></div>
    429 
    430 <p>The pass name get added as the information string for your pass, giving some
    431 documentation to users of <tt>opt</tt>.  Now that you have a working pass, you
    432 would go ahead and make it do the cool transformations you want.  Once you get
    433 it all working and tested, it may become useful to find out how fast your pass
    434 is.  The <a href="#passManager"><tt>PassManager</tt></a> provides a nice command
    435 line option (<tt>--time-passes</tt>) that allows you to get information about
    436 the execution time of your pass along with the other passes you queue up.  For
    437 example:</p>
    438 
    439 <div class="doc_code"><pre>
    440 $ opt -load ../../../Debug+Asserts/lib/Hello.so -hello -time-passes &lt; hello.bc &gt; /dev/null
    441 Hello: __main
    442 Hello: puts
    443 Hello: main
    444 ===============================================================================
    445                       ... Pass execution timing report ...
    446 ===============================================================================
    447   Total Execution Time: 0.02 seconds (0.0479059 wall clock)
    448 
    449    ---User Time---   --System Time--   --User+System--   ---Wall Time---  --- Pass Name ---
    450    0.0100 (100.0%)   0.0000 (  0.0%)   0.0100 ( 50.0%)   0.0402 ( 84.0%)  Bitcode Writer
    451    0.0000 (  0.0%)   0.0100 (100.0%)   0.0100 ( 50.0%)   0.0031 (  6.4%)  Dominator Set Construction
    452    0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0013 (  2.7%)  Module Verifier
    453  <b>  0.0000 (  0.0%)   0.0000 (  0.0%)   0.0000 (  0.0%)   0.0033 (  6.9%)  Hello World Pass</b>
    454    0.0100 (100.0%)   0.0100 (100.0%)   0.0200 (100.0%)   0.0479 (100.0%)  TOTAL
    455 </pre></div>
    456 
    457 <p>As you can see, our implementation above is pretty fast :).  The additional
    458 passes listed are automatically inserted by the '<tt>opt</tt>' tool to verify
    459 that the LLVM emitted by your pass is still valid and well formed LLVM, which
    460 hasn't been broken somehow.</p>
    461 
    462 <p>Now that you have seen the basics of the mechanics behind passes, we can talk
    463 about some more details of how they work and how to use them.</p>
    464 
    465 </div>
    466 
    467 </div>
    468 
    469 <!-- *********************************************************************** -->
    470 <h2>
    471   <a name="passtype">Pass classes and requirements</a>
    472 </h2>
    473 <!-- *********************************************************************** -->
    474 
    475 <div>
    476 
    477 <p>One of the first things that you should do when designing a new pass is to
    478 decide what class you should subclass for your pass.  The <a
    479 href="#basiccode">Hello World</a> example uses the <tt><a
    480 href="#FunctionPass">FunctionPass</a></tt> class for its implementation, but we
    481 did not discuss why or when this should occur.  Here we talk about the classes
    482 available, from the most general to the most specific.</p>
    483 
    484 <p>When choosing a superclass for your Pass, you should choose the <b>most
    485 specific</b> class possible, while still being able to meet the requirements
    486 listed.  This gives the LLVM Pass Infrastructure information necessary to
    487 optimize how passes are run, so that the resultant compiler isn't unnecessarily
    488 slow.</p>
    489 
    490 <!-- ======================================================================= -->
    491 <h3>
    492   <a name="ImmutablePass">The <tt>ImmutablePass</tt> class</a>
    493 </h3>
    494 
    495 <div>
    496 
    497 <p>The most plain and boring type of pass is the "<tt><a
    498 href="http://llvm.org/doxygen/classllvm_1_1ImmutablePass.html">ImmutablePass</a></tt>"
    499 class.  This pass type is used for passes that do not have to be run, do not
    500 change state, and never need to be updated.  This is not a normal type of
    501 transformation or analysis, but can provide information about the current
    502 compiler configuration.</p>
    503 
    504 <p>Although this pass class is very infrequently used, it is important for
    505 providing information about the current target machine being compiled for, and
    506 other static information that can affect the various transformations.</p>
    507 
    508 <p><tt>ImmutablePass</tt>es never invalidate other transformations, are never
    509 invalidated, and are never "run".</p>
    510 
    511 </div>
    512 
    513 <!-- ======================================================================= -->
    514 <h3>
    515   <a name="ModulePass">The <tt>ModulePass</tt> class</a>
    516 </h3>
    517 
    518 <div>
    519 
    520 <p>The "<tt><a
    521 href="http://llvm.org/doxygen/classllvm_1_1ModulePass.html">ModulePass</a></tt>"
    522 class is the most general of all superclasses that you can use.  Deriving from
    523 <tt>ModulePass</tt> indicates that your pass uses the entire program as a unit,
    524 referring to function bodies in no predictable order, or adding and removing
    525 functions.  Because nothing is known about the behavior of <tt>ModulePass</tt>
    526 subclasses, no optimization can be done for their execution.</p>
    527 
    528 <p>A module pass can use function level passes (e.g. dominators) using
    529 the getAnalysis interface
    530 <tt>getAnalysis&lt;DominatorTree&gt;(llvm::Function *)</tt> to provide the
    531 function to retrieve analysis result for, if the function pass does not require
    532 any module or immutable passes. Note that this can only be done for functions for which the
    533 analysis ran, e.g. in the case of dominators you should only ask for the
    534 DominatorTree for function definitions, not declarations.</p>
    535 
    536 <p>To write a correct <tt>ModulePass</tt> subclass, derive from
    537 <tt>ModulePass</tt> and overload the <tt>runOnModule</tt> method with the
    538 following signature:</p>
    539 
    540 <!-- _______________________________________________________________________ -->
    541 <h4>
    542   <a name="runOnModule">The <tt>runOnModule</tt> method</a>
    543 </h4>
    544 
    545 <div>
    546 
    547 <div class="doc_code"><pre>
    548   <b>virtual bool</b> runOnModule(Module &amp;M) = 0;
    549 </pre></div>
    550 
    551 <p>The <tt>runOnModule</tt> method performs the interesting work of the pass.
    552 It should return true if the module was modified by the transformation and
    553 false otherwise.</p>
    554 
    555 </div>
    556 
    557 </div>
    558 
    559 <!-- ======================================================================= -->
    560 <h3>
    561   <a name="CallGraphSCCPass">The <tt>CallGraphSCCPass</tt> class</a>
    562 </h3>
    563 
    564 <div>
    565 
    566 <p>The "<tt><a
    567 href="http://llvm.org/doxygen/classllvm_1_1CallGraphSCCPass.html">CallGraphSCCPass</a></tt>"
    568 is used by passes that need to traverse the program bottom-up on the call graph
    569 (callees before callers).  Deriving from CallGraphSCCPass provides some
    570 mechanics for building and traversing the CallGraph, but also allows the system
    571 to optimize execution of CallGraphSCCPass's.  If your pass meets the
    572 requirements outlined below, and doesn't meet the requirements of a <tt><a
    573 href="#FunctionPass">FunctionPass</a></tt> or <tt><a
    574 href="#BasicBlockPass">BasicBlockPass</a></tt>, you should derive from
    575 <tt>CallGraphSCCPass</tt>.</p>
    576 
    577 <p><b>TODO</b>: explain briefly what SCC, Tarjan's algo, and B-U mean.</p>
    578 
    579 <p>To be explicit, <tt>CallGraphSCCPass</tt> subclasses are:</p>
    580 
    581 <ol>
    582 
    583 <li>... <em>not allowed</em> to inspect or modify any <tt>Function</tt>s other
    584 than those in the current SCC and the direct callers and direct callees of the
    585 SCC.</li>
    586 
    587 <li>... <em>required</em> to preserve the current CallGraph object, updating it
    588 to reflect any changes made to the program.</li>
    589 
    590 <li>... <em>not allowed</em> to add or remove SCC's from the current Module,
    591 though they may change the contents of an SCC.</li>
    592 
    593 <li>... <em>allowed</em> to add or remove global variables from the current
    594 Module.</li>
    595 
    596 <li>... <em>allowed</em> to maintain state across invocations of
    597     <a href="#runOnSCC"><tt>runOnSCC</tt></a> (including global data).</li>
    598 </ol>
    599 
    600 <p>Implementing a <tt>CallGraphSCCPass</tt> is slightly tricky in some cases
    601 because it has to handle SCCs with more than one node in it.  All of the virtual
    602 methods described below should return true if they modified the program, or
    603 false if they didn't.</p>
    604 
    605 <!-- _______________________________________________________________________ -->
    606 <h4>
    607   <a name="doInitialization_scc">
    608     The <tt>doInitialization(CallGraph &amp;)</tt> method
    609   </a>
    610 </h4>
    611 
    612 <div>
    613 
    614 <div class="doc_code"><pre>
    615   <b>virtual bool</b> doInitialization(CallGraph &amp;CG);
    616 </pre></div>
    617 
    618 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
    619 <tt>CallGraphSCCPass</tt>'s are not allowed to do.  They can add and remove
    620 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
    621 is designed to do simple initialization type of stuff that does not depend on
    622 the SCCs being processed.  The <tt>doInitialization</tt> method call is not
    623 scheduled to overlap with any other pass executions (thus it should be very
    624 fast).</p>
    625 
    626 </div>
    627 
    628 <!-- _______________________________________________________________________ -->
    629 <h4>
    630   <a name="runOnSCC">The <tt>runOnSCC</tt> method</a>
    631 </h4>
    632 
    633 <div>
    634 
    635 <div class="doc_code"><pre>
    636   <b>virtual bool</b> runOnSCC(CallGraphSCC &amp;SCC) = 0;
    637 </pre></div>
    638 
    639 <p>The <tt>runOnSCC</tt> method performs the interesting work of the pass, and
    640 should return true if the module was modified by the transformation, false
    641 otherwise.</p>
    642 
    643 </div>
    644 
    645 <!-- _______________________________________________________________________ -->
    646 <h4>
    647   <a name="doFinalization_scc">
    648     The <tt>doFinalization(CallGraph &amp;)</tt> method
    649   </a>
    650 </h4>
    651 
    652 <div>
    653 
    654 <div class="doc_code"><pre>
    655   <b>virtual bool</b> doFinalization(CallGraph &amp;CG);
    656 </pre></div>
    657 
    658 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    659 called when the pass framework has finished calling <a
    660 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
    661 program being compiled.</p>
    662 
    663 </div>
    664 
    665 </div>
    666 
    667 <!-- ======================================================================= -->
    668 <h3>
    669   <a name="FunctionPass">The <tt>FunctionPass</tt> class</a>
    670 </h3>
    671 
    672 <div>
    673 
    674 <p>In contrast to <tt>ModulePass</tt> subclasses, <tt><a
    675 href="http://llvm.org/doxygen/classllvm_1_1Pass.html">FunctionPass</a></tt>
    676 subclasses do have a predictable, local behavior that can be expected by the
    677 system.  All <tt>FunctionPass</tt> execute on each function in the program
    678 independent of all of the other functions in the program.
    679 <tt>FunctionPass</tt>'s do not require that they are executed in a particular
    680 order, and <tt>FunctionPass</tt>'s do not modify external functions.</p>
    681 
    682 <p>To be explicit, <tt>FunctionPass</tt> subclasses are not allowed to:</p>
    683 
    684 <ol>
    685 <li>Modify a Function other than the one currently being processed.</li>
    686 <li>Add or remove Function's from the current Module.</li>
    687 <li>Add or remove global variables from the current Module.</li>
    688 <li>Maintain state across invocations of
    689     <a href="#runOnFunction"><tt>runOnFunction</tt></a> (including global data)</li>
    690 </ol>
    691 
    692 <p>Implementing a <tt>FunctionPass</tt> is usually straightforward (See the <a
    693 href="#basiccode">Hello World</a> pass for example).  <tt>FunctionPass</tt>'s
    694 may overload three virtual methods to do their work.  All of these methods
    695 should return true if they modified the program, or false if they didn't.</p>
    696 
    697 <!-- _______________________________________________________________________ -->
    698 <h4>
    699   <a name="doInitialization_mod">
    700     The <tt>doInitialization(Module &amp;)</tt> method
    701   </a>
    702 </h4>
    703 
    704 <div>
    705 
    706 <div class="doc_code"><pre>
    707   <b>virtual bool</b> doInitialization(Module &amp;M);
    708 </pre></div>
    709 
    710 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
    711 <tt>FunctionPass</tt>'s are not allowed to do.  They can add and remove
    712 functions, get pointers to functions, etc.  The <tt>doInitialization</tt> method
    713 is designed to do simple initialization type of stuff that does not depend on
    714 the functions being processed.  The <tt>doInitialization</tt> method call is not
    715 scheduled to overlap with any other pass executions (thus it should be very
    716 fast).</p>
    717 
    718 <p>A good example of how this method should be used is the <a
    719 href="http://llvm.org/doxygen/LowerAllocations_8cpp-source.html">LowerAllocations</a>
    720 pass.  This pass converts <tt>malloc</tt> and <tt>free</tt> instructions into
    721 platform dependent <tt>malloc()</tt> and <tt>free()</tt> function calls.  It
    722 uses the <tt>doInitialization</tt> method to get a reference to the malloc and
    723 free functions that it needs, adding prototypes to the module if necessary.</p>
    724 
    725 </div>
    726 
    727 <!-- _______________________________________________________________________ -->
    728 <h4>
    729   <a name="runOnFunction">The <tt>runOnFunction</tt> method</a>
    730 </h4>
    731 
    732 <div>
    733 
    734 <div class="doc_code"><pre>
    735   <b>virtual bool</b> runOnFunction(Function &amp;F) = 0;
    736 </pre></div><p>
    737 
    738 <p>The <tt>runOnFunction</tt> method must be implemented by your subclass to do
    739 the transformation or analysis work of your pass.  As usual, a true value should
    740 be returned if the function is modified.</p>
    741 
    742 </div>
    743 
    744 <!-- _______________________________________________________________________ -->
    745 <h4>
    746   <a name="doFinalization_mod">
    747     The <tt>doFinalization(Module &amp;)</tt> method
    748   </a>
    749 </h4>
    750 
    751 <div>
    752 
    753 <div class="doc_code"><pre>
    754   <b>virtual bool</b> doFinalization(Module &amp;M);
    755 </pre></div>
    756 
    757 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    758 called when the pass framework has finished calling <a
    759 href="#runOnFunction"><tt>runOnFunction</tt></a> for every function in the
    760 program being compiled.</p>
    761 
    762 </div>
    763 
    764 </div>
    765 
    766 <!-- ======================================================================= -->
    767 <h3>
    768   <a name="LoopPass">The <tt>LoopPass</tt> class </a>
    769 </h3>
    770 
    771 <div>
    772 
    773 <p> All <tt>LoopPass</tt> execute on each loop in the function independent of
    774 all of the other loops in the function. <tt>LoopPass</tt> processes loops in
    775 loop nest order such that outer most loop is processed last. </p>
    776 
    777 <p> <tt>LoopPass</tt> subclasses are allowed to update loop nest using
    778 <tt>LPPassManager</tt> interface. Implementing a loop pass is usually
    779 straightforward. <tt>LoopPass</tt>'s may overload three virtual methods to
    780 do their work. All these methods should return true if they modified the 
    781 program, or false if they didn't. </p>
    782 
    783 <!-- _______________________________________________________________________ -->
    784 <h4>
    785   <a name="doInitialization_loop">
    786     The <tt>doInitialization(Loop *,LPPassManager &amp;)</tt> method
    787   </a>
    788 </h4>
    789 
    790 <div>
    791 
    792 <div class="doc_code"><pre>
    793   <b>virtual bool</b> doInitialization(Loop *, LPPassManager &amp;LPM);
    794 </pre></div>
    795 
    796 <p>The <tt>doInitialization</tt> method is designed to do simple initialization 
    797 type of stuff that does not depend on the functions being processed.  The 
    798 <tt>doInitialization</tt> method call is not scheduled to overlap with any 
    799 other pass executions (thus it should be very fast). LPPassManager 
    800 interface should be used to access Function or Module level analysis
    801 information.</p>
    802 
    803 </div>
    804 
    805 
    806 <!-- _______________________________________________________________________ -->
    807 <h4>
    808   <a name="runOnLoop">The <tt>runOnLoop</tt> method</a>
    809 </h4>
    810 
    811 <div>
    812 
    813 <div class="doc_code"><pre>
    814   <b>virtual bool</b> runOnLoop(Loop *, LPPassManager &amp;LPM) = 0;
    815 </pre></div><p>
    816 
    817 <p>The <tt>runOnLoop</tt> method must be implemented by your subclass to do
    818 the transformation or analysis work of your pass.  As usual, a true value should
    819 be returned if the function is modified. <tt>LPPassManager</tt> interface
    820 should be used to update loop nest.</p>
    821 
    822 </div>
    823 
    824 <!-- _______________________________________________________________________ -->
    825 <h4>
    826   <a name="doFinalization_loop">The <tt>doFinalization()</tt> method</a>
    827 </h4>
    828 
    829 <div>
    830 
    831 <div class="doc_code"><pre>
    832   <b>virtual bool</b> doFinalization();
    833 </pre></div>
    834 
    835 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    836 called when the pass framework has finished calling <a
    837 href="#runOnLoop"><tt>runOnLoop</tt></a> for every loop in the
    838 program being compiled. </p>
    839 
    840 </div>
    841 
    842 </div>
    843 
    844 <!-- ======================================================================= -->
    845 <h3>
    846   <a name="RegionPass">The <tt>RegionPass</tt> class </a>
    847 </h3>
    848 
    849 <div>
    850 
    851 <p> <tt>RegionPass</tt> is similar to <a href="#LoopPass"><tt>LoopPass</tt></a>,
    852 but executes on each single entry single exit region in the function.
    853 <tt>RegionPass</tt> processes regions in nested order such that the outer most
    854 region is processed last.  </p>
    855 
    856 <p> <tt>RegionPass</tt> subclasses are allowed to update the region tree by using
    857 the <tt>RGPassManager</tt> interface. You may overload three virtual methods of
    858 <tt>RegionPass</tt> to implement your own region pass. All these
    859 methods should return true if they modified the program, or false if they didn not.
    860 </p>
    861 
    862 <!-- _______________________________________________________________________ -->
    863 <h4>
    864   <a name="doInitialization_region">
    865     The <tt>doInitialization(Region *, RGPassManager &amp;)</tt> method
    866   </a>
    867 </h4>
    868 
    869 <div>
    870 
    871 <div class="doc_code"><pre>
    872   <b>virtual bool</b> doInitialization(Region *, RGPassManager &amp;RGM);
    873 </pre></div>
    874 
    875 <p>The <tt>doInitialization</tt> method is designed to do simple initialization
    876 type of stuff that does not depend on the functions being processed.  The
    877 <tt>doInitialization</tt> method call is not scheduled to overlap with any
    878 other pass executions (thus it should be very fast). RPPassManager
    879 interface should be used to access Function or Module level analysis
    880 information.</p>
    881 
    882 </div>
    883 
    884 
    885 <!-- _______________________________________________________________________ -->
    886 <h4>
    887   <a name="runOnRegion">The <tt>runOnRegion</tt> method</a>
    888 </h4>
    889 
    890 <div>
    891 
    892 <div class="doc_code"><pre>
    893   <b>virtual bool</b> runOnRegion(Region *, RGPassManager &amp;RGM) = 0;
    894 </pre></div><p>
    895 
    896 <p>The <tt>runOnRegion</tt> method must be implemented by your subclass to do
    897 the transformation or analysis work of your pass.  As usual, a true value should
    898 be returned if the region is modified. <tt>RGPassManager</tt> interface
    899 should be used to update region tree.</p>
    900 
    901 </div>
    902 
    903 <!-- _______________________________________________________________________ -->
    904 <h4>
    905   <a name="doFinalization_region">The <tt>doFinalization()</tt> method</a>
    906 </h4>
    907 
    908 <div>
    909 
    910 <div class="doc_code"><pre>
    911   <b>virtual bool</b> doFinalization();
    912 </pre></div>
    913 
    914 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
    915 called when the pass framework has finished calling <a
    916 href="#runOnRegion"><tt>runOnRegion</tt></a> for every region in the
    917 program being compiled. </p>
    918 
    919 </div>
    920 
    921 </div>
    922 
    923 <!-- ======================================================================= -->
    924 <h3>
    925   <a name="BasicBlockPass">The <tt>BasicBlockPass</tt> class</a>
    926 </h3>
    927 
    928 <div>
    929 
    930 <p><tt>BasicBlockPass</tt>'s are just like <a
    931 href="#FunctionPass"><tt>FunctionPass</tt></a>'s, except that they must limit
    932 their scope of inspection and modification to a single basic block at a time.
    933 As such, they are <b>not</b> allowed to do any of the following:</p>
    934 
    935 <ol>
    936 <li>Modify or inspect any basic blocks outside of the current one</li>
    937 <li>Maintain state across invocations of
    938     <a href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a></li>
    939 <li>Modify the control flow graph (by altering terminator instructions)</li>
    940 <li>Any of the things forbidden for
    941     <a href="#FunctionPass"><tt>FunctionPass</tt></a>es.</li>
    942 </ol>
    943 
    944 <p><tt>BasicBlockPass</tt>es are useful for traditional local and "peephole"
    945 optimizations.  They may override the same <a
    946 href="#doInitialization_mod"><tt>doInitialization(Module &amp;)</tt></a> and <a
    947 href="#doFinalization_mod"><tt>doFinalization(Module &amp;)</tt></a> methods that <a
    948 href="#FunctionPass"><tt>FunctionPass</tt></a>'s have, but also have the following virtual methods that may also be implemented:</p>
    949 
    950 <!-- _______________________________________________________________________ -->
    951 <h4>
    952   <a name="doInitialization_fn">
    953     The <tt>doInitialization(Function &amp;)</tt> method
    954   </a>
    955 </h4>
    956 
    957 <div>
    958 
    959 <div class="doc_code"><pre>
    960   <b>virtual bool</b> doInitialization(Function &amp;F);
    961 </pre></div>
    962 
    963 <p>The <tt>doIninitialize</tt> method is allowed to do most of the things that
    964 <tt>BasicBlockPass</tt>'s are not allowed to do, but that
    965 <tt>FunctionPass</tt>'s can.  The <tt>doInitialization</tt> method is designed
    966 to do simple initialization that does not depend on the
    967 BasicBlocks being processed.  The <tt>doInitialization</tt> method call is not
    968 scheduled to overlap with any other pass executions (thus it should be very
    969 fast).</p>
    970 
    971 </div>
    972 
    973 <!-- _______________________________________________________________________ -->
    974 <h4>
    975   <a name="runOnBasicBlock">The <tt>runOnBasicBlock</tt> method</a>
    976 </h4>
    977 
    978 <div>
    979 
    980 <div class="doc_code"><pre>
    981   <b>virtual bool</b> runOnBasicBlock(BasicBlock &amp;BB) = 0;
    982 </pre></div>
    983 
    984 <p>Override this function to do the work of the <tt>BasicBlockPass</tt>.  This
    985 function is not allowed to inspect or modify basic blocks other than the
    986 parameter, and are not allowed to modify the CFG.  A true value must be returned
    987 if the basic block is modified.</p>
    988 
    989 </div>
    990 
    991 <!-- _______________________________________________________________________ -->
    992 <h4>
    993   <a name="doFinalization_fn">
    994     The <tt>doFinalization(Function &amp;)</tt> method
    995   </a>
    996 </h4>
    997 
    998 <div>
    999 
   1000 <div class="doc_code"><pre>
   1001   <b>virtual bool</b> doFinalization(Function &amp;F);
   1002 </pre></div>
   1003 
   1004 <p>The <tt>doFinalization</tt> method is an infrequently used method that is
   1005 called when the pass framework has finished calling <a
   1006 href="#runOnBasicBlock"><tt>runOnBasicBlock</tt></a> for every BasicBlock in the
   1007 program being compiled.  This can be used to perform per-function
   1008 finalization.</p>
   1009 
   1010 </div>
   1011 
   1012 </div>
   1013 
   1014 <!-- ======================================================================= -->
   1015 <h3>
   1016   <a name="MachineFunctionPass">The <tt>MachineFunctionPass</tt> class</a>
   1017 </h3>
   1018 
   1019 <div>
   1020 
   1021 <p>A <tt>MachineFunctionPass</tt> is a part of the LLVM code generator that
   1022 executes on the machine-dependent representation of each LLVM function in the
   1023 program.</p>
   1024 
   1025 <p>Code generator passes are registered and initialized specially by
   1026 <tt>TargetMachine::addPassesToEmitFile</tt> and similar routines, so they
   1027 cannot generally be run from the <tt>opt</tt> or <tt>bugpoint</tt>
   1028 commands.</p>
   1029 
   1030 <p>A <tt>MachineFunctionPass</tt> is also a <tt>FunctionPass</tt>, so all
   1031 the restrictions that apply to a <tt>FunctionPass</tt> also apply to it.
   1032 <tt>MachineFunctionPass</tt>es also have additional restrictions. In particular,
   1033 <tt>MachineFunctionPass</tt>es are not allowed to do any of the following:</p>
   1034 
   1035 <ol>
   1036 <li>Modify or create any LLVM IR Instructions, BasicBlocks, Arguments,
   1037     Functions, GlobalVariables, GlobalAliases, or Modules.</li>
   1038 <li>Modify a MachineFunction other than the one currently being processed.</li>
   1039 <li>Maintain state across invocations of <a
   1040 href="#runOnMachineFunction"><tt>runOnMachineFunction</tt></a> (including global
   1041 data)</li>
   1042 </ol>
   1043 
   1044 <!-- _______________________________________________________________________ -->
   1045 <h4>
   1046   <a name="runOnMachineFunction">
   1047     The <tt>runOnMachineFunction(MachineFunction &amp;MF)</tt> method
   1048   </a>
   1049 </h4>
   1050 
   1051 <div>
   1052 
   1053 <div class="doc_code"><pre>
   1054   <b>virtual bool</b> runOnMachineFunction(MachineFunction &amp;MF) = 0;
   1055 </pre></div>
   1056 
   1057 <p><tt>runOnMachineFunction</tt> can be considered the main entry point of a
   1058 <tt>MachineFunctionPass</tt>; that is, you should override this method to do the
   1059 work of your <tt>MachineFunctionPass</tt>.</p>
   1060 
   1061 <p>The <tt>runOnMachineFunction</tt> method is called on every
   1062 <tt>MachineFunction</tt> in a <tt>Module</tt>, so that the
   1063 <tt>MachineFunctionPass</tt> may perform optimizations on the machine-dependent
   1064 representation of the function. If you want to get at the LLVM <tt>Function</tt>
   1065 for the <tt>MachineFunction</tt> you're working on, use
   1066 <tt>MachineFunction</tt>'s <tt>getFunction()</tt> accessor method -- but
   1067 remember, you may not modify the LLVM <tt>Function</tt> or its contents from a
   1068 <tt>MachineFunctionPass</tt>.</p>
   1069 
   1070 </div>
   1071 
   1072 </div>
   1073 
   1074 </div>
   1075 
   1076 <!-- *********************************************************************** -->
   1077 <h2>
   1078   <a name="registration">Pass registration</a>
   1079 </h2>
   1080 <!-- *********************************************************************** -->
   1081 
   1082 <div>
   1083 
   1084 <p>In the <a href="#basiccode">Hello World</a> example pass we illustrated how
   1085 pass registration works, and discussed some of the reasons that it is used and
   1086 what it does.  Here we discuss how and why passes are registered.</p>
   1087 
   1088 <p>As we saw above, passes are registered with the <b><tt>RegisterPass</tt></b>
   1089 template.  The template parameter is the name of the pass that is to be used on
   1090 the command line to specify that the pass should be added to a program (for
   1091 example, with <tt>opt</tt> or <tt>bugpoint</tt>).  The first argument is the
   1092 name of the pass, which is to be used for the <tt>-help</tt> output of
   1093 programs, as
   1094 well as for debug output generated by the <tt>--debug-pass</tt> option.</p>
   1095 
   1096 <p>If you want your pass to be easily dumpable, you should 
   1097 implement the virtual <tt>print</tt> method:</p>
   1098 
   1099 <!-- _______________________________________________________________________ -->
   1100 <h4>
   1101   <a name="print">The <tt>print</tt> method</a>
   1102 </h4>
   1103 
   1104 <div>
   1105 
   1106 <div class="doc_code"><pre>
   1107   <b>virtual void</b> print(std::ostream &amp;O, <b>const</b> Module *M) <b>const</b>;
   1108 </pre></div>
   1109 
   1110 <p>The <tt>print</tt> method must be implemented by "analyses" in order to print
   1111 a human readable version of the analysis results.  This is useful for debugging
   1112 an analysis itself, as well as for other people to figure out how an analysis
   1113 works.  Use the <tt>opt -analyze</tt> argument to invoke this method.</p>
   1114 
   1115 <p>The <tt>llvm::OStream</tt> parameter specifies the stream to write the results on,
   1116 and the <tt>Module</tt> parameter gives a pointer to the top level module of the
   1117 program that has been analyzed.  Note however that this pointer may be null in
   1118 certain circumstances (such as calling the <tt>Pass::dump()</tt> from a
   1119 debugger), so it should only be used to enhance debug output, it should not be
   1120 depended on.</p>
   1121 
   1122 </div>
   1123 
   1124 </div>
   1125 
   1126 <!-- *********************************************************************** -->
   1127 <h2>
   1128   <a name="interaction">Specifying interactions between passes</a>
   1129 </h2>
   1130 <!-- *********************************************************************** -->
   1131 
   1132 <div>
   1133 
   1134 <p>One of the main responsibilities of the <tt>PassManager</tt> is to make sure
   1135 that passes interact with each other correctly.  Because <tt>PassManager</tt>
   1136 tries to <a href="#passmanager">optimize the execution of passes</a> it must
   1137 know how the passes interact with each other and what dependencies exist between
   1138 the various passes.  To track this, each pass can declare the set of passes that
   1139 are required to be executed before the current pass, and the passes which are
   1140 invalidated by the current pass.</p>
   1141 
   1142 <p>Typically this functionality is used to require that analysis results are
   1143 computed before your pass is run.  Running arbitrary transformation passes can
   1144 invalidate the computed analysis results, which is what the invalidation set
   1145 specifies.  If a pass does not implement the <tt><a
   1146 href="#getAnalysisUsage">getAnalysisUsage</a></tt> method, it defaults to not
   1147 having any prerequisite passes, and invalidating <b>all</b> other passes.</p>
   1148 
   1149 <!-- _______________________________________________________________________ -->
   1150 <h4>
   1151   <a name="getAnalysisUsage">The <tt>getAnalysisUsage</tt> method</a>
   1152 </h4>
   1153 
   1154 <div>
   1155 
   1156 <div class="doc_code"><pre>
   1157   <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;Info) <b>const</b>;
   1158 </pre></div>
   1159 
   1160 <p>By implementing the <tt>getAnalysisUsage</tt> method, the required and
   1161 invalidated sets may be specified for your transformation.  The implementation
   1162 should fill in the <tt><a
   1163 href="http://llvm.org/doxygen/classllvm_1_1AnalysisUsage.html">AnalysisUsage</a></tt>
   1164 object with information about which passes are required and not invalidated.  To
   1165 do this, a pass may call any of the following methods on the AnalysisUsage
   1166 object:</p>
   1167 </div>
   1168 
   1169 <!-- _______________________________________________________________________ -->
   1170 <h4>
   1171   <a name="AU::addRequired">
   1172     The <tt>AnalysisUsage::addRequired&lt;&gt;</tt>
   1173     and <tt>AnalysisUsage::addRequiredTransitive&lt;&gt;</tt> methods
   1174   </a>
   1175 </h4>
   1176 
   1177 <div>
   1178 <p>
   1179 If your pass requires a previous pass to be executed (an analysis for example),
   1180 it can use one of these methods to arrange for it to be run before your pass.
   1181 LLVM has many different types of analyses and passes that can be required,
   1182 spanning the range from <tt>DominatorSet</tt> to <tt>BreakCriticalEdges</tt>.
   1183 Requiring <tt>BreakCriticalEdges</tt>, for example, guarantees that there will
   1184 be no critical edges in the CFG when your pass has been run.
   1185 </p>
   1186 
   1187 <p>
   1188 Some analyses chain to other analyses to do their job.  For example, an <a
   1189 href="AliasAnalysis.html">AliasAnalysis</a> implementation is required to <a
   1190 href="AliasAnalysis.html#chaining">chain</a> to other alias analysis passes.  In
   1191 cases where analyses chain, the <tt>addRequiredTransitive</tt> method should be
   1192 used instead of the <tt>addRequired</tt> method.  This informs the PassManager
   1193 that the transitively required pass should be alive as long as the requiring
   1194 pass is.
   1195 </p>
   1196 </div>
   1197 
   1198 <!-- _______________________________________________________________________ -->
   1199 <h4>
   1200   <a name="AU::addPreserved">
   1201     The <tt>AnalysisUsage::addPreserved&lt;&gt;</tt> method
   1202   </a>
   1203 </h4>
   1204 
   1205 <div>
   1206 <p>
   1207 One of the jobs of the PassManager is to optimize how and when analyses are run.
   1208 In particular, it attempts to avoid recomputing data unless it needs to.  For
   1209 this reason, passes are allowed to declare that they preserve (i.e., they don't
   1210 invalidate) an existing analysis if it's available.  For example, a simple
   1211 constant folding pass would not modify the CFG, so it can't possibly affect the
   1212 results of dominator analysis.  By default, all passes are assumed to invalidate
   1213 all others.
   1214 </p>
   1215 
   1216 <p>
   1217 The <tt>AnalysisUsage</tt> class provides several methods which are useful in
   1218 certain circumstances that are related to <tt>addPreserved</tt>.  In particular,
   1219 the <tt>setPreservesAll</tt> method can be called to indicate that the pass does
   1220 not modify the LLVM program at all (which is true for analyses), and the
   1221 <tt>setPreservesCFG</tt> method can be used by transformations that change
   1222 instructions in the program but do not modify the CFG or terminator instructions
   1223 (note that this property is implicitly set for <a
   1224 href="#BasicBlockPass">BasicBlockPass</a>'s).
   1225 </p>
   1226 
   1227 <p>
   1228 <tt>addPreserved</tt> is particularly useful for transformations like
   1229 <tt>BreakCriticalEdges</tt>.  This pass knows how to update a small set of loop
   1230 and dominator related analyses if they exist, so it can preserve them, despite
   1231 the fact that it hacks on the CFG.
   1232 </p>
   1233 </div>
   1234 
   1235 <!-- _______________________________________________________________________ -->
   1236 <h4>
   1237   <a name="AU::examples">
   1238     Example implementations of <tt>getAnalysisUsage</tt>
   1239   </a>
   1240 </h4>
   1241 
   1242 <div>
   1243 
   1244 <div class="doc_code"><pre>
   1245   <i>// This example modifies the program, but does not modify the CFG</i>
   1246   <b>void</b> <a href="http://llvm.org/doxygen/structLICM.html">LICM</a>::getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
   1247     AU.setPreservesCFG();
   1248     AU.addRequired&lt;<a href="http://llvm.org/doxygen/classllvm_1_1LoopInfo.html">LoopInfo</a>&gt;();
   1249   }
   1250 </pre></div>
   1251 
   1252 </div>
   1253 
   1254 <!-- _______________________________________________________________________ -->
   1255 <h4>
   1256   <a name="getAnalysis">
   1257     The <tt>getAnalysis&lt;&gt;</tt> and
   1258     <tt>getAnalysisIfAvailable&lt;&gt;</tt> methods
   1259   </a>
   1260 </h4>
   1261 
   1262 <div>
   1263 
   1264 <p>The <tt>Pass::getAnalysis&lt;&gt;</tt> method is automatically inherited by
   1265 your class, providing you with access to the passes that you declared that you
   1266 required with the <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a>
   1267 method.  It takes a single template argument that specifies which pass class you
   1268 want, and returns a reference to that pass.  For example:</p>
   1269 
   1270 <div class="doc_code"><pre>
   1271    bool LICM::runOnFunction(Function &amp;F) {
   1272      LoopInfo &amp;LI = getAnalysis&lt;LoopInfo&gt;();
   1273      ...
   1274    }
   1275 </pre></div>
   1276 
   1277 <p>This method call returns a reference to the pass desired.  You may get a
   1278 runtime assertion failure if you attempt to get an analysis that you did not
   1279 declare as required in your <a
   1280 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> implementation.  This
   1281 method can be called by your <tt>run*</tt> method implementation, or by any
   1282 other local method invoked by your <tt>run*</tt> method.
   1283 
   1284 A module level pass can use function level analysis info using this interface.
   1285 For example:</p>
   1286 
   1287 <div class="doc_code"><pre>
   1288    bool ModuleLevelPass::runOnModule(Module &amp;M) {
   1289      ...
   1290      DominatorTree &amp;DT = getAnalysis&lt;DominatorTree&gt;(Func);
   1291      ...
   1292    }
   1293 </pre></div>
   1294 
   1295 <p>In above example, runOnFunction for DominatorTree is called by pass manager
   1296 before returning a reference to the desired pass.</p>
   1297 
   1298 <p>
   1299 If your pass is capable of updating analyses if they exist (e.g.,
   1300 <tt>BreakCriticalEdges</tt>, as described above), you can use the
   1301 <tt>getAnalysisIfAvailable</tt> method, which returns a pointer to the analysis
   1302 if it is active.  For example:</p>
   1303 
   1304 <div class="doc_code"><pre>
   1305   ...
   1306   if (DominatorSet *DS = getAnalysisIfAvailable&lt;DominatorSet&gt;()) {
   1307     <i>// A DominatorSet is active.  This code will update it.</i>
   1308   }
   1309   ...
   1310 </pre></div>
   1311 
   1312 </div>
   1313 
   1314 </div>
   1315 
   1316 <!-- *********************************************************************** -->
   1317 <h2>
   1318   <a name="analysisgroup">Implementing Analysis Groups</a>
   1319 </h2>
   1320 <!-- *********************************************************************** -->
   1321 
   1322 <div>
   1323 
   1324 <p>Now that we understand the basics of how passes are defined, how they are
   1325 used, and how they are required from other passes, it's time to get a little bit
   1326 fancier.  All of the pass relationships that we have seen so far are very
   1327 simple: one pass depends on one other specific pass to be run before it can run.
   1328 For many applications, this is great, for others, more flexibility is
   1329 required.</p>
   1330 
   1331 <p>In particular, some analyses are defined such that there is a single simple
   1332 interface to the analysis results, but multiple ways of calculating them.
   1333 Consider alias analysis for example.  The most trivial alias analysis returns
   1334 "may alias" for any alias query.  The most sophisticated analysis a
   1335 flow-sensitive, context-sensitive interprocedural analysis that can take a
   1336 significant amount of time to execute (and obviously, there is a lot of room
   1337 between these two extremes for other implementations).  To cleanly support
   1338 situations like this, the LLVM Pass Infrastructure supports the notion of
   1339 Analysis Groups.</p>
   1340 
   1341 <!-- _______________________________________________________________________ -->
   1342 <h4>
   1343   <a name="agconcepts">Analysis Group Concepts</a>
   1344 </h4>
   1345 
   1346 <div>
   1347 
   1348 <p>An Analysis Group is a single simple interface that may be implemented by
   1349 multiple different passes.  Analysis Groups can be given human readable names
   1350 just like passes, but unlike passes, they need not derive from the <tt>Pass</tt>
   1351 class.  An analysis group may have one or more implementations, one of which is
   1352 the "default" implementation.</p>
   1353 
   1354 <p>Analysis groups are used by client passes just like other passes are: the
   1355 <tt>AnalysisUsage::addRequired()</tt> and <tt>Pass::getAnalysis()</tt> methods.
   1356 In order to resolve this requirement, the <a href="#passmanager">PassManager</a>
   1357 scans the available passes to see if any implementations of the analysis group
   1358 are available.  If none is available, the default implementation is created for
   1359 the pass to use.  All standard rules for <A href="#interaction">interaction
   1360 between passes</a> still apply.</p>
   1361 
   1362 <p>Although <a href="#registration">Pass Registration</a> is optional for normal
   1363 passes, all analysis group implementations must be registered, and must use the
   1364 <A href="#registerag"><tt>INITIALIZE_AG_PASS</tt></a> template to join the
   1365 implementation pool.  Also, a default implementation of the interface
   1366 <b>must</b> be registered with <A
   1367 href="#registerag"><tt>RegisterAnalysisGroup</tt></a>.</p>
   1368 
   1369 <p>As a concrete example of an Analysis Group in action, consider the <a
   1370 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>
   1371 analysis group.  The default implementation of the alias analysis interface (the
   1372 <tt><a
   1373 href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">basicaa</a></tt>
   1374 pass) just does a few simple checks that don't require significant analysis to
   1375 compute (such as: two different globals can never alias each other, etc).
   1376 Passes that use the <tt><a
   1377 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
   1378 interface (for example the <tt><a
   1379 href="http://llvm.org/doxygen/structGCSE.html">gcse</a></tt> pass), do
   1380 not care which implementation of alias analysis is actually provided, they just
   1381 use the designated interface.</p>
   1382 
   1383 <p>From the user's perspective, commands work just like normal.  Issuing the
   1384 command '<tt>opt -gcse ...</tt>' will cause the <tt>basicaa</tt> class to be
   1385 instantiated and added to the pass sequence.  Issuing the command '<tt>opt
   1386 -somefancyaa -gcse ...</tt>' will cause the <tt>gcse</tt> pass to use the
   1387 <tt>somefancyaa</tt> alias analysis (which doesn't actually exist, it's just a
   1388 hypothetical example) instead.</p>
   1389 
   1390 </div>
   1391 
   1392 <!-- _______________________________________________________________________ -->
   1393 <h4>
   1394   <a name="registerag">Using <tt>RegisterAnalysisGroup</tt></a>
   1395 </h4>
   1396 
   1397 <div>
   1398 
   1399 <p>The <tt>RegisterAnalysisGroup</tt> template is used to register the analysis
   1400 group itself, while the <tt>INITIALIZE_AG_PASS</tt> is used to add pass
   1401 implementations to the analysis group.  First,
   1402 an analysis group should be registered, with a human readable name
   1403 provided for it.
   1404 Unlike registration of passes, there is no command line argument to be specified
   1405 for the Analysis Group Interface itself, because it is "abstract":</p>
   1406 
   1407 <div class="doc_code"><pre>
   1408   <b>static</b> RegisterAnalysisGroup&lt;<a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>&gt; A("<i>Alias Analysis</i>");
   1409 </pre></div>
   1410 
   1411 <p>Once the analysis is registered, passes can declare that they are valid
   1412 implementations of the interface by using the following code:</p>
   1413 
   1414 <div class="doc_code"><pre>
   1415 <b>namespace</b> {
   1416   //<i> Declare that we implement the AliasAnalysis interface</i>
   1417   INITIALIZE_AG_PASS(FancyAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>somefancyaa</i>",
   1418                      "<i>A more complex alias analysis implementation</i>",
   1419                      false, // <i>Is CFG Only?</i>
   1420                      true,  // <i>Is Analysis?</i>
   1421                      false, // <i>Is default Analysis Group implementation?</i>
   1422                     );
   1423 }
   1424 </pre></div>
   1425 
   1426 <p>This just shows a class <tt>FancyAA</tt> that 
   1427 uses the <tt>INITIALIZE_AG_PASS</tt> macro both to register and
   1428 to "join" the <tt><a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a></tt>
   1429 analysis group.  Every implementation of an analysis group should join using
   1430 this macro.</p>
   1431 
   1432 <div class="doc_code"><pre>
   1433 <b>namespace</b> {
   1434   //<i> Declare that we implement the AliasAnalysis interface</i>
   1435   INITIALIZE_AG_PASS(BasicAA, <a href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html">AliasAnalysis</a>, "<i>basicaa</i>",
   1436                      "<i>Basic Alias Analysis (default AA impl)</i>",
   1437                      false, // <i>Is CFG Only?</i>
   1438                      true,  // <i>Is Analysis?</i>
   1439                      true, // <i>Is default Analysis Group implementation?</i>
   1440                     );
   1441 }
   1442 </pre></div>
   1443 
   1444 <p>Here we show how the default implementation is specified (using the final
   1445 argument to the <tt>INITIALIZE_AG_PASS</tt> template).  There must be exactly
   1446 one default implementation available at all times for an Analysis Group to be
   1447 used.  Only default implementation can derive from <tt>ImmutablePass</tt>. 
   1448 Here we declare that the
   1449  <tt><a href="http://llvm.org/doxygen/structBasicAliasAnalysis.html">BasicAliasAnalysis</a></tt>
   1450 pass is the default implementation for the interface.</p>
   1451 
   1452 </div>
   1453 
   1454 </div>
   1455 
   1456 <!-- *********************************************************************** -->
   1457 <h2>
   1458   <a name="passStatistics">Pass Statistics</a>
   1459 </h2>
   1460 <!-- *********************************************************************** -->
   1461 
   1462 <div>
   1463 <p>The <a
   1464 href="http://llvm.org/doxygen/Statistic_8h-source.html"><tt>Statistic</tt></a>
   1465 class is designed to be an easy way to expose various success
   1466 metrics from passes.  These statistics are printed at the end of a
   1467 run, when the -stats command line option is enabled on the command
   1468 line. See the <a href="http://llvm.org/docs/ProgrammersManual.html#Statistic">Statistics section</a> in the Programmer's Manual for details. 
   1469 
   1470 </div>
   1471 
   1472 
   1473 <!-- *********************************************************************** -->
   1474 <h2>
   1475   <a name="passmanager">What PassManager does</a>
   1476 </h2>
   1477 <!-- *********************************************************************** -->
   1478 
   1479 <div>
   1480 
   1481 <p>The <a
   1482 href="http://llvm.org/doxygen/PassManager_8h-source.html"><tt>PassManager</tt></a>
   1483 <a
   1484 href="http://llvm.org/doxygen/classllvm_1_1PassManager.html">class</a>
   1485 takes a list of passes, ensures their <a href="#interaction">prerequisites</a>
   1486 are set up correctly, and then schedules passes to run efficiently.  All of the
   1487 LLVM tools that run passes use the <tt>PassManager</tt> for execution of these
   1488 passes.</p>
   1489 
   1490 <p>The <tt>PassManager</tt> does two main things to try to reduce the execution
   1491 time of a series of passes:</p>
   1492 
   1493 <ol>
   1494 <li><b>Share analysis results</b> - The PassManager attempts to avoid
   1495 recomputing analysis results as much as possible.  This means keeping track of
   1496 which analyses are available already, which analyses get invalidated, and which
   1497 analyses are needed to be run for a pass.  An important part of work is that the
   1498 <tt>PassManager</tt> tracks the exact lifetime of all analysis results, allowing
   1499 it to <a href="#releaseMemory">free memory</a> allocated to holding analysis
   1500 results as soon as they are no longer needed.</li>
   1501 
   1502 <li><b>Pipeline the execution of passes on the program</b> - The
   1503 <tt>PassManager</tt> attempts to get better cache and memory usage behavior out
   1504 of a series of passes by pipelining the passes together.  This means that, given
   1505 a series of consecutive <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s, it
   1506 will execute all of the <a href="#FunctionPass"><tt>FunctionPass</tt></a>'s on
   1507 the first function, then all of the <a
   1508 href="#FunctionPass"><tt>FunctionPass</tt></a>es on the second function,
   1509 etc... until the entire program has been run through the passes.
   1510 
   1511 <p>This improves the cache behavior of the compiler, because it is only touching
   1512 the LLVM program representation for a single function at a time, instead of
   1513 traversing the entire program.  It reduces the memory consumption of compiler,
   1514 because, for example, only one <a
   1515 href="http://llvm.org/doxygen/classllvm_1_1DominatorSet.html"><tt>DominatorSet</tt></a>
   1516 needs to be calculated at a time.  This also makes it possible to implement
   1517 some <a
   1518 href="#SMP">interesting enhancements</a> in the future.</p></li>
   1519 
   1520 </ol>
   1521 
   1522 <p>The effectiveness of the <tt>PassManager</tt> is influenced directly by how
   1523 much information it has about the behaviors of the passes it is scheduling.  For
   1524 example, the "preserved" set is intentionally conservative in the face of an
   1525 unimplemented <a href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method.
   1526 Not implementing when it should be implemented will have the effect of not
   1527 allowing any analysis results to live across the execution of your pass.</p>
   1528 
   1529 <p>The <tt>PassManager</tt> class exposes a <tt>--debug-pass</tt> command line
   1530 options that is useful for debugging pass execution, seeing how things work, and
   1531 diagnosing when you should be preserving more analyses than you currently are
   1532 (To get information about all of the variants of the <tt>--debug-pass</tt>
   1533 option, just type '<tt>opt -help-hidden</tt>').</p>
   1534 
   1535 <p>By using the <tt>--debug-pass=Structure</tt> option, for example, we can see
   1536 how our <a href="#basiccode">Hello World</a> pass interacts with other passes.
   1537 Lets try it out with the <tt>gcse</tt> and <tt>licm</tt> passes:</p>
   1538 
   1539 <div class="doc_code"><pre>
   1540 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
   1541 Module Pass Manager
   1542   Function Pass Manager
   1543     Dominator Set Construction
   1544     Immediate Dominators Construction
   1545     Global Common Subexpression Elimination
   1546 --  Immediate Dominators Construction
   1547 --  Global Common Subexpression Elimination
   1548     Natural Loop Construction
   1549     Loop Invariant Code Motion
   1550 --  Natural Loop Construction
   1551 --  Loop Invariant Code Motion
   1552     Module Verifier
   1553 --  Dominator Set Construction
   1554 --  Module Verifier
   1555   Bitcode Writer
   1556 --Bitcode Writer
   1557 </pre></div>
   1558 
   1559 <p>This output shows us when passes are constructed and when the analysis
   1560 results are known to be dead (prefixed with '<tt>--</tt>').  Here we see that
   1561 GCSE uses dominator and immediate dominator information to do its job.  The LICM
   1562 pass uses natural loop information, which uses dominator sets, but not immediate
   1563 dominators.  Because immediate dominators are no longer useful after the GCSE
   1564 pass, it is immediately destroyed.  The dominator sets are then reused to
   1565 compute natural loop information, which is then used by the LICM pass.</p>
   1566 
   1567 <p>After the LICM pass, the module verifier runs (which is automatically added
   1568 by the '<tt>opt</tt>' tool), which uses the dominator set to check that the
   1569 resultant LLVM code is well formed.  After it finishes, the dominator set
   1570 information is destroyed, after being computed once, and shared by three
   1571 passes.</p>
   1572 
   1573 <p>Lets see how this changes when we run the <a href="#basiccode">Hello
   1574 World</a> pass in between the two passes:</p>
   1575 
   1576 <div class="doc_code"><pre>
   1577 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
   1578 Module Pass Manager
   1579   Function Pass Manager
   1580     Dominator Set Construction
   1581     Immediate Dominators Construction
   1582     Global Common Subexpression Elimination
   1583 <b>--  Dominator Set Construction</b>
   1584 --  Immediate Dominators Construction
   1585 --  Global Common Subexpression Elimination
   1586 <b>    Hello World Pass
   1587 --  Hello World Pass
   1588     Dominator Set Construction</b>
   1589     Natural Loop Construction
   1590     Loop Invariant Code Motion
   1591 --  Natural Loop Construction
   1592 --  Loop Invariant Code Motion
   1593     Module Verifier
   1594 --  Dominator Set Construction
   1595 --  Module Verifier
   1596   Bitcode Writer
   1597 --Bitcode Writer
   1598 Hello: __main
   1599 Hello: puts
   1600 Hello: main
   1601 </pre></div>
   1602 
   1603 <p>Here we see that the <a href="#basiccode">Hello World</a> pass has killed the
   1604 Dominator Set pass, even though it doesn't modify the code at all!  To fix this,
   1605 we need to add the following <a
   1606 href="#getAnalysisUsage"><tt>getAnalysisUsage</tt></a> method to our pass:</p>
   1607 
   1608 <div class="doc_code"><pre>
   1609     <i>// We don't modify the program, so we preserve all analyses</i>
   1610     <b>virtual void</b> getAnalysisUsage(AnalysisUsage &amp;AU) <b>const</b> {
   1611       AU.setPreservesAll();
   1612     }
   1613 </pre></div>
   1614 
   1615 <p>Now when we run our pass, we get this output:</p>
   1616 
   1617 <div class="doc_code"><pre>
   1618 $ opt -load ../../../Debug+Asserts/lib/Hello.so -gcse -hello -licm --debug-pass=Structure &lt; hello.bc &gt; /dev/null
   1619 Pass Arguments:  -gcse -hello -licm
   1620 Module Pass Manager
   1621   Function Pass Manager
   1622     Dominator Set Construction
   1623     Immediate Dominators Construction
   1624     Global Common Subexpression Elimination
   1625 --  Immediate Dominators Construction
   1626 --  Global Common Subexpression Elimination
   1627     Hello World Pass
   1628 --  Hello World Pass
   1629     Natural Loop Construction
   1630     Loop Invariant Code Motion
   1631 --  Loop Invariant Code Motion
   1632 --  Natural Loop Construction
   1633     Module Verifier
   1634 --  Dominator Set Construction
   1635 --  Module Verifier
   1636   Bitcode Writer
   1637 --Bitcode Writer
   1638 Hello: __main
   1639 Hello: puts
   1640 Hello: main
   1641 </pre></div>
   1642 
   1643 <p>Which shows that we don't accidentally invalidate dominator information
   1644 anymore, and therefore do not have to compute it twice.</p>
   1645 
   1646 <!-- _______________________________________________________________________ -->
   1647 <h4>
   1648   <a name="releaseMemory">The <tt>releaseMemory</tt> method</a>
   1649 </h4>
   1650 
   1651 <div>
   1652 
   1653 <div class="doc_code"><pre>
   1654   <b>virtual void</b> releaseMemory();
   1655 </pre></div>
   1656 
   1657 <p>The <tt>PassManager</tt> automatically determines when to compute analysis
   1658 results, and how long to keep them around for.  Because the lifetime of the pass
   1659 object itself is effectively the entire duration of the compilation process, we
   1660 need some way to free analysis results when they are no longer useful.  The
   1661 <tt>releaseMemory</tt> virtual method is the way to do this.</p>
   1662 
   1663 <p>If you are writing an analysis or any other pass that retains a significant
   1664 amount of state (for use by another pass which "requires" your pass and uses the
   1665 <a href="#getAnalysis">getAnalysis</a> method) you should implement
   1666 <tt>releaseMemory</tt> to, well, release the memory allocated to maintain this
   1667 internal state.  This method is called after the <tt>run*</tt> method for the
   1668 class, before the next call of <tt>run*</tt> in your pass.</p>
   1669 
   1670 </div>
   1671 
   1672 </div>
   1673 
   1674 <!-- *********************************************************************** -->
   1675 <h2>
   1676   <a name="registering">Registering dynamically loaded passes</a>
   1677 </h2>
   1678 <!-- *********************************************************************** -->
   1679 
   1680 <div>
   1681 
   1682 <p><i>Size matters</i> when constructing production quality tools using llvm, 
   1683 both for the purposes of distribution, and for regulating the resident code size
   1684 when running on the target system. Therefore, it becomes desirable to
   1685 selectively use some passes, while omitting others and maintain the flexibility
   1686 to change configurations later on. You want to be able to do all this, and,
   1687 provide feedback to the user. This is where pass registration comes into
   1688 play.</p>
   1689 
   1690 <p>The fundamental mechanisms for pass registration are the
   1691 <tt>MachinePassRegistry</tt> class and subclasses of
   1692 <tt>MachinePassRegistryNode</tt>.</p>
   1693 
   1694 <p>An instance of <tt>MachinePassRegistry</tt> is used to maintain a list of
   1695 <tt>MachinePassRegistryNode</tt> objects.  This instance maintains the list and
   1696 communicates additions and deletions to the command line interface.</p>
   1697 
   1698 <p>An instance of <tt>MachinePassRegistryNode</tt> subclass is used to maintain
   1699 information provided about a particular pass.  This information includes the
   1700 command line name, the command help string and the address of the function used
   1701 to create an instance of the pass.  A global static constructor of one of these
   1702 instances <i>registers</i> with a corresponding <tt>MachinePassRegistry</tt>,
   1703 the static destructor <i>unregisters</i>. Thus a pass that is statically linked
   1704 in the tool will be registered at start up. A dynamically loaded pass will
   1705 register on load and unregister at unload.</p>
   1706 
   1707 <!-- _______________________________________________________________________ -->
   1708 <h3>
   1709   <a name="registering_existing">Using existing registries</a>
   1710 </h3>
   1711 
   1712 <div>
   1713 
   1714 <p>There are predefined registries to track instruction scheduling
   1715 (<tt>RegisterScheduler</tt>) and register allocation (<tt>RegisterRegAlloc</tt>)
   1716 machine passes.  Here we will describe how to <i>register</i> a register
   1717 allocator machine pass.</p>
   1718 
   1719 <p>Implement your register allocator machine pass.  In your register allocator
   1720 .cpp file add the following include;</p>
   1721 
   1722 <div class="doc_code"><pre>
   1723   #include "llvm/CodeGen/RegAllocRegistry.h"
   1724 </pre></div>
   1725 
   1726 <p>Also in your register allocator .cpp file, define a creator function in the
   1727 form; </p>
   1728 
   1729 <div class="doc_code"><pre>
   1730   FunctionPass *createMyRegisterAllocator() {
   1731     return new MyRegisterAllocator();
   1732   }
   1733 </pre></div>
   1734 
   1735 <p>Note that the signature of this function should match the type of
   1736 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.  In the same file add the
   1737 "installing" declaration, in the form;</p>
   1738 
   1739 <div class="doc_code"><pre>
   1740   static RegisterRegAlloc myRegAlloc("myregalloc",
   1741     "  my register allocator help string",
   1742     createMyRegisterAllocator);
   1743 </pre></div>
   1744 
   1745 <p>Note the two spaces prior to the help string produces a tidy result on the
   1746 -help query.</p>
   1747 
   1748 <div class="doc_code"><pre>
   1749 $ llc -help
   1750   ...
   1751   -regalloc                    - Register allocator to use (default=linearscan)
   1752     =linearscan                -   linear scan register allocator
   1753     =local                     -   local register allocator
   1754     =simple                    -   simple register allocator
   1755     =myregalloc                -   my register allocator help string
   1756   ...
   1757 </pre></div>
   1758 
   1759 <p>And that's it.  The user is now free to use <tt>-regalloc=myregalloc</tt> as
   1760 an option.  Registering instruction schedulers is similar except use the
   1761 <tt>RegisterScheduler</tt> class.  Note that the
   1762 <tt>RegisterScheduler::FunctionPassCtor</tt> is significantly different from
   1763 <tt>RegisterRegAlloc::FunctionPassCtor</tt>.</p>
   1764 
   1765 <p>To force the load/linking of your register allocator into the llc/lli tools,
   1766 add your creator function's global declaration to "Passes.h" and add a "pseudo"
   1767 call line to <tt>llvm/Codegen/LinkAllCodegenComponents.h</tt>.</p>
   1768 
   1769 </div>
   1770 
   1771 
   1772 <!-- _______________________________________________________________________ -->
   1773 <h3>
   1774   <a name="registering_new">Creating new registries</a>
   1775 </h3>
   1776 
   1777 <div>
   1778 
   1779 <p>The easiest way to get started is to clone one of the existing registries; we
   1780 recommend <tt>llvm/CodeGen/RegAllocRegistry.h</tt>.  The key things to modify
   1781 are the class name and the <tt>FunctionPassCtor</tt> type.</p>
   1782 
   1783 <p>Then you need to declare the registry.  Example: if your pass registry is
   1784 <tt>RegisterMyPasses</tt> then define;</p>
   1785 
   1786 <div class="doc_code"><pre>
   1787 MachinePassRegistry RegisterMyPasses::Registry;
   1788 </pre></div>
   1789 
   1790 <p>And finally, declare the command line option for your passes.  Example:</p> 
   1791 
   1792 <div class="doc_code"><pre>
   1793   cl::opt&lt;RegisterMyPasses::FunctionPassCtor, false,
   1794           RegisterPassParser&lt;RegisterMyPasses&gt; &gt;
   1795   MyPassOpt("mypass",
   1796             cl::init(&amp;createDefaultMyPass),
   1797             cl::desc("my pass option help")); 
   1798 </pre></div>
   1799 
   1800 <p>Here the command option is "mypass", with createDefaultMyPass as the default
   1801 creator.</p>
   1802 
   1803 </div>
   1804 
   1805 </div>
   1806 
   1807 <!-- *********************************************************************** -->
   1808 <h2>
   1809   <a name="debughints">Using GDB with dynamically loaded passes</a>
   1810 </h2>
   1811 <!-- *********************************************************************** -->
   1812 
   1813 <div>
   1814 
   1815 <p>Unfortunately, using GDB with dynamically loaded passes is not as easy as it
   1816 should be.  First of all, you can't set a breakpoint in a shared object that has
   1817 not been loaded yet, and second of all there are problems with inlined functions
   1818 in shared objects.  Here are some suggestions to debugging your pass with
   1819 GDB.</p>
   1820 
   1821 <p>For sake of discussion, I'm going to assume that you are debugging a
   1822 transformation invoked by <tt>opt</tt>, although nothing described here depends
   1823 on that.</p>
   1824 
   1825 <!-- _______________________________________________________________________ -->
   1826 <h4>
   1827   <a name="breakpoint">Setting a breakpoint in your pass</a>
   1828 </h4>
   1829 
   1830 <div>
   1831 
   1832 <p>First thing you do is start <tt>gdb</tt> on the <tt>opt</tt> process:</p>
   1833 
   1834 <div class="doc_code"><pre>
   1835 $ <b>gdb opt</b>
   1836 GNU gdb 5.0
   1837 Copyright 2000 Free Software Foundation, Inc.
   1838 GDB is free software, covered by the GNU General Public License, and you are
   1839 welcome to change it and/or distribute copies of it under certain conditions.
   1840 Type "show copying" to see the conditions.
   1841 There is absolutely no warranty for GDB.  Type "show warranty" for details.
   1842 This GDB was configured as "sparc-sun-solaris2.6"...
   1843 (gdb)
   1844 </pre></div>
   1845 
   1846 <p>Note that <tt>opt</tt> has a lot of debugging information in it, so it takes
   1847 time to load.  Be patient.  Since we cannot set a breakpoint in our pass yet
   1848 (the shared object isn't loaded until runtime), we must execute the process, and
   1849 have it stop before it invokes our pass, but after it has loaded the shared
   1850 object.  The most foolproof way of doing this is to set a breakpoint in
   1851 <tt>PassManager::run</tt> and then run the process with the arguments you
   1852 want:</p>
   1853 
   1854 <div class="doc_code"><pre>
   1855 (gdb) <b>break llvm::PassManager::run</b>
   1856 Breakpoint 1 at 0x2413bc: file Pass.cpp, line 70.
   1857 (gdb) <b>run test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]</b>
   1858 Starting program: opt test.bc -load $(LLVMTOP)/llvm/Debug+Asserts/lib/[libname].so -[passoption]
   1859 Breakpoint 1, PassManager::run (this=0xffbef174, M=@0x70b298) at Pass.cpp:70
   1860 70      bool PassManager::run(Module &amp;M) { return PM-&gt;run(M); }
   1861 (gdb)
   1862 </pre></div>
   1863 
   1864 <p>Once the <tt>opt</tt> stops in the <tt>PassManager::run</tt> method you are
   1865 now free to set breakpoints in your pass so that you can trace through execution
   1866 or do other standard debugging stuff.</p>
   1867 
   1868 </div>
   1869 
   1870 <!-- _______________________________________________________________________ -->
   1871 <h4>
   1872   <a name="debugmisc">Miscellaneous Problems</a>
   1873 </h4>
   1874 
   1875 <div>
   1876 
   1877 <p>Once you have the basics down, there are a couple of problems that GDB has,
   1878 some with solutions, some without.</p>
   1879 
   1880 <ul>
   1881 <li>Inline functions have bogus stack information.  In general, GDB does a
   1882 pretty good job getting stack traces and stepping through inline functions.
   1883 When a pass is dynamically loaded however, it somehow completely loses this
   1884 capability.  The only solution I know of is to de-inline a function (move it
   1885 from the body of a class to a .cpp file).</li>
   1886 
   1887 <li>Restarting the program breaks breakpoints.  After following the information
   1888 above, you have succeeded in getting some breakpoints planted in your pass.  Nex
   1889 thing you know, you restart the program (i.e., you type '<tt>run</tt>' again),
   1890 and you start getting errors about breakpoints being unsettable.  The only way I
   1891 have found to "fix" this problem is to <tt>delete</tt> the breakpoints that are
   1892 already set in your pass, run the program, and re-set the breakpoints once
   1893 execution stops in <tt>PassManager::run</tt>.</li>
   1894 
   1895 </ul>
   1896 
   1897 <p>Hopefully these tips will help with common case debugging situations.  If
   1898 you'd like to contribute some tips of your own, just contact <a
   1899 href="mailto:sabre (a] nondot.org">Chris</a>.</p>
   1900 
   1901 </div>
   1902 
   1903 </div>
   1904 
   1905 <!-- *********************************************************************** -->
   1906 <h2>
   1907   <a name="future">Future extensions planned</a>
   1908 </h2>
   1909 <!-- *********************************************************************** -->
   1910 
   1911 <div>
   1912 
   1913 <p>Although the LLVM Pass Infrastructure is very capable as it stands, and does
   1914 some nifty stuff, there are things we'd like to add in the future.  Here is
   1915 where we are going:</p>
   1916 
   1917 <!-- _______________________________________________________________________ -->
   1918 <h4>
   1919   <a name="SMP">Multithreaded LLVM</a>
   1920 </h4>
   1921 
   1922 <div>
   1923 
   1924 <p>Multiple CPU machines are becoming more common and compilation can never be
   1925 fast enough: obviously we should allow for a multithreaded compiler.  Because of
   1926 the semantics defined for passes above (specifically they cannot maintain state
   1927 across invocations of their <tt>run*</tt> methods), a nice clean way to
   1928 implement a multithreaded compiler would be for the <tt>PassManager</tt> class
   1929 to create multiple instances of each pass object, and allow the separate
   1930 instances to be hacking on different parts of the program at the same time.</p>
   1931 
   1932 <p>This implementation would prevent each of the passes from having to implement
   1933 multithreaded constructs, requiring only the LLVM core to have locking in a few
   1934 places (for global resources).  Although this is a simple extension, we simply
   1935 haven't had time (or multiprocessor machines, thus a reason) to implement this.
   1936 Despite that, we have kept the LLVM passes SMP ready, and you should too.</p>
   1937 
   1938 </div>
   1939 
   1940 </div>
   1941 
   1942 <!-- *********************************************************************** -->
   1943 <hr>
   1944 <address>
   1945   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1946   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   1947   <a href="http://validator.w3.org/check/referer"><img
   1948   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   1949 
   1950   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1951   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1952   Last modified: $Date$
   1953 </address>
   1954 
   1955 </body>
   1956 </html>
   1957