Home | History | Annotate | Download | only in Mips
      1 //===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Mips FPU instruction set.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Floating Point Instructions
     16 // ------------------------
     17 // * 64bit fp:
     18 //    - 32 64-bit registers (default mode)
     19 //    - 16 even 32-bit registers (32-bit compatible mode) for
     20 //      single and double access.
     21 // * 32bit fp:
     22 //    - 16 even 32-bit registers - single and double (aliased)
     23 //    - 32 32-bit registers (within single-only mode)
     24 //===----------------------------------------------------------------------===//
     25 
     26 // Floating Point Compare and Branch
     27 def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
     28                                             SDTCisVT<1, OtherVT>]>;
     29 def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
     30                                          SDTCisVT<2, i32>]>;
     31 def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
     32                                           SDTCisSameAs<1, 2>]>;
     33 def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
     34                                                 SDTCisVT<1, i32>,
     35                                                 SDTCisSameAs<1, 2>]>;
     36 def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
     37                                                      SDTCisVT<1, f64>,
     38                                                      SDTCisVT<2, i32>]>;
     39 
     40 def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
     41 def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
     42 def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
     43 def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
     44                           [SDNPHasChain, SDNPOptInGlue]>;
     45 def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
     46 def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
     47                                    SDT_MipsExtractElementF64>;
     48 
     49 // Operand for printing out a condition code.
     50 let PrintMethod = "printFCCOperand" in
     51   def condcode : Operand<i32>;
     52 
     53 //===----------------------------------------------------------------------===//
     54 // Feature predicates.
     55 //===----------------------------------------------------------------------===//
     56 
     57 def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">;
     58 def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">;
     59 def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">;
     60 def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
     61 
     62 //===----------------------------------------------------------------------===//
     63 // Instruction Class Templates
     64 //
     65 // A set of multiclasses is used to address the register usage.
     66 //
     67 // S32 - single precision in 16 32bit even fp registers
     68 //       single precision in 32 32bit fp registers in SingleOnly mode
     69 // S64 - single precision in 32 64bit fp registers (In64BitMode)
     70 // D32 - double precision in 16 32bit even fp registers
     71 // D64 - double precision in 32 64bit fp registers (In64BitMode)
     72 //
     73 // Only S32 and D32 are supported right now.
     74 //===----------------------------------------------------------------------===//
     75 
     76 // FP load.
     77 class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
     78              Operand MemOpnd>:
     79   FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
     80       !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (FOp addr:$addr))],
     81       IILoad>;
     82 
     83 // FP store.
     84 class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
     85               Operand MemOpnd>:
     86   FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
     87       !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
     88       IIStore>;
     89 
     90 // Instructions that convert an FP value to 32-bit fixed point.
     91 multiclass FFR1_W_M<bits<6> funct, string opstr> {
     92   def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
     93   def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
     94              Requires<[NotFP64bit]>;
     95   def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
     96              Requires<[IsFP64bit]>;
     97 }
     98 
     99 // Instructions that convert an FP value to 64-bit fixed point.
    100 let Predicates = [IsFP64bit] in
    101 multiclass FFR1_L_M<bits<6> funct, string opstr> {
    102   def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
    103   def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
    104 }
    105 
    106 // FP-to-FP conversion instructions.
    107 multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
    108   def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
    109   def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
    110              Requires<[NotFP64bit]>;
    111   def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
    112              Requires<[IsFP64bit]>;
    113 }
    114 
    115 multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
    116   let isCommutable = isComm in {
    117   def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
    118   def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
    119              Requires<[NotFP64bit]>;
    120   def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
    121              Requires<[IsFP64bit]>;
    122   }
    123 }
    124 
    125 //===----------------------------------------------------------------------===//
    126 // Floating Point Instructions
    127 //===----------------------------------------------------------------------===//
    128 defm ROUND_W : FFR1_W_M<0xc, "round">;
    129 defm ROUND_L : FFR1_L_M<0x8, "round">;
    130 defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
    131 defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
    132 defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
    133 defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
    134 defm FLOOR_W : FFR1_W_M<0xf, "floor">;
    135 defm FLOOR_L : FFR1_L_M<0xb, "floor">;
    136 defm CVT_W   : FFR1_W_M<0x24, "cvt">;
    137 defm CVT_L   : FFR1_L_M<0x25, "cvt">;
    138 
    139 def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
    140 
    141 let Predicates = [NotFP64bit] in {
    142   def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
    143   def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
    144   def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
    145 }
    146 
    147 let Predicates = [IsFP64bit] in {
    148  def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
    149  def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
    150  def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
    151  def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
    152  def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
    153 }
    154 
    155 defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
    156 defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
    157 defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;
    158 
    159 // The odd-numbered registers are only referenced when doing loads,
    160 // stores, and moves between floating-point and integer registers.
    161 // When defining instructions, we reference all 32-bit registers,
    162 // regardless of register aliasing.
    163 
    164 class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
    165              FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
    166   bits<5> rt;
    167   let ft = rt;
    168   let fd = 0;
    169 }
    170 
    171 /// Move Control Registers From/To CPU Registers
    172 def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
    173                   "cfc1\t$rt, $fs", []>;
    174 
    175 def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
    176                   "ctc1\t$rt, $fs", []>;
    177 
    178 def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
    179                   "mfc1\t$rt, $fs",
    180                   [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
    181 
    182 def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
    183                   "mtc1\t$rt, $fs",
    184                   [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
    185 
    186 def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
    187 def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
    188                Requires<[NotFP64bit]>;
    189 def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
    190                Requires<[IsFP64bit]>;
    191 
    192 /// Floating Point Memory Instructions
    193 let Predicates = [IsN64] in {
    194   def LWC1_P8   : FPLoad<0x31, "lwc1", load, FGR32, mem64>;
    195   def SWC1_P8   : FPStore<0x39, "swc1", store, FGR32, mem64>;
    196   def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>;
    197   def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>;
    198 }
    199 
    200 let Predicates = [NotN64] in {
    201   def LWC1   : FPLoad<0x31, "lwc1", load, FGR32, mem>;
    202   def SWC1   : FPStore<0x39, "swc1", store, FGR32, mem>;
    203   let Predicates = [HasMips64] in {
    204     def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>;
    205     def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>;
    206   }
    207   let Predicates = [NotMips64] in {
    208     def LDC1   : FPLoad<0x35, "ldc1", load, AFGR64, mem>;
    209     def SDC1   : FPStore<0x3d, "sdc1", store, AFGR64, mem>;
    210   }
    211 }
    212 
    213 /// Floating-point Aritmetic
    214 defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
    215 defm FDIV : FFR2P_M<0x03, "div", fdiv>;
    216 defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
    217 defm FSUB : FFR2P_M<0x01, "sub", fsub>;
    218 
    219 //===----------------------------------------------------------------------===//
    220 // Floating Point Branch Codes
    221 //===----------------------------------------------------------------------===//
    222 // Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
    223 // They must be kept in synch.
    224 def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
    225 def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
    226 
    227 /// Floating Point Branch of False/True (Likely)
    228 let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
    229   class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
    230       FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
    231         [(MipsFPBrcond op, bb:$dst)]> {
    232   let Inst{20-18} = 0;
    233   let Inst{17} = nd;
    234   let Inst{16} = tf;
    235 }
    236 
    237 def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
    238 def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
    239 
    240 //===----------------------------------------------------------------------===//
    241 // Floating Point Flag Conditions
    242 //===----------------------------------------------------------------------===//
    243 // Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
    244 // They must be kept in synch.
    245 def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
    246 def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
    247 def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
    248 def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
    249 def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
    250 def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
    251 def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
    252 def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
    253 def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
    254 def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
    255 def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
    256 def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
    257 def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
    258 def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
    259 def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
    260 def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
    261 
    262 /// Floating Point Compare
    263 let Defs=[FCR31] in {
    264   def FCMP_S32 : FCC<0x10, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
    265                      "c.$cc.s\t$fs, $ft",
    266                      [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>;
    267 
    268   def FCMP_D32 : FCC<0x11, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
    269                      "c.$cc.d\t$fs, $ft",
    270                      [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>,
    271                      Requires<[NotFP64bit]>;
    272 }
    273 
    274 //===----------------------------------------------------------------------===//
    275 // Floating Point Pseudo-Instructions
    276 //===----------------------------------------------------------------------===//
    277 def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
    278                              "# MOVCCRToCCR", []>;
    279 
    280 // This pseudo instr gets expanded into 2 mtc1 instrs after register
    281 // allocation.
    282 def BuildPairF64 :
    283   MipsPseudo<(outs AFGR64:$dst),
    284              (ins CPURegs:$lo, CPURegs:$hi), "",
    285              [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
    286 
    287 // This pseudo instr gets expanded into 2 mfc1 instrs after register
    288 // allocation.
    289 // if n is 0, lower part of src is extracted.
    290 // if n is 1, higher part of src is extracted.
    291 def ExtractElementF64 :
    292   MipsPseudo<(outs CPURegs:$dst),
    293              (ins AFGR64:$src, i32imm:$n), "",
    294              [(set CPURegs:$dst,
    295                (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
    296 
    297 //===----------------------------------------------------------------------===//
    298 // Floating Point Patterns
    299 //===----------------------------------------------------------------------===//
    300 def fpimm0 : PatLeaf<(fpimm), [{
    301   return N->isExactlyValue(+0.0);
    302 }]>;
    303 
    304 def fpimm0neg : PatLeaf<(fpimm), [{
    305   return N->isExactlyValue(-0.0);
    306 }]>;
    307 
    308 def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
    309 def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
    310 
    311 def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
    312 def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
    313 
    314 def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
    315 def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
    316 
    317 let Predicates = [NotFP64bit] in {
    318   def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
    319   def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
    320 }
    321 
    322