Home | History | Annotate | Download | only in Sparc
      1 //===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
      2 // 
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 // 
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Sparc instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Instruction format superclass
     16 //===----------------------------------------------------------------------===//
     17 
     18 include "SparcInstrFormats.td"
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Feature predicates.
     22 //===----------------------------------------------------------------------===//
     23 
     24 // HasV9 - This predicate is true when the target processor supports V9
     25 // instructions.  Note that the machine may be running in 32-bit mode.
     26 def HasV9   : Predicate<"Subtarget.isV9()">;
     27 
     28 // HasNoV9 - This predicate is true when the target doesn't have V9
     29 // instructions.  Use of this is just a hack for the isel not having proper
     30 // costs for V8 instructions that are more expensive than their V9 ones.
     31 def HasNoV9 : Predicate<"!Subtarget.isV9()">;
     32 
     33 // HasVIS - This is true when the target processor has VIS extensions.
     34 def HasVIS : Predicate<"Subtarget.isVIS()">;
     35 
     36 // UseDeprecatedInsts - This predicate is true when the target processor is a
     37 // V8, or when it is V9 but the V8 deprecated instructions are efficient enough
     38 // to use when appropriate.  In either of these cases, the instruction selector
     39 // will pick deprecated instructions.
     40 def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
     41 
     42 //===----------------------------------------------------------------------===//
     43 // Instruction Pattern Stuff
     44 //===----------------------------------------------------------------------===//
     45 
     46 def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
     47 
     48 def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
     49 
     50 def LO10 : SDNodeXForm<imm, [{
     51   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
     52                                    MVT::i32);
     53 }]>;
     54 
     55 def HI22 : SDNodeXForm<imm, [{
     56   // Transformation function: shift the immediate value down into the low bits.
     57   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
     58 }]>;
     59 
     60 def SETHIimm : PatLeaf<(imm), [{
     61   return (((unsigned)N->getZExtValue() >> 10) << 10) ==
     62          (unsigned)N->getZExtValue();
     63 }], HI22>;
     64 
     65 // Addressing modes.
     66 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
     67 def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
     68 
     69 // Address operands
     70 def MEMrr : Operand<i32> {
     71   let PrintMethod = "printMemOperand";
     72   let MIOperandInfo = (ops IntRegs, IntRegs);
     73 }
     74 def MEMri : Operand<i32> {
     75   let PrintMethod = "printMemOperand";
     76   let MIOperandInfo = (ops IntRegs, i32imm);
     77 }
     78 
     79 // Branch targets have OtherVT type.
     80 def brtarget : Operand<OtherVT>;
     81 def calltarget : Operand<i32>;
     82 
     83 // Operand for printing out a condition code.
     84 let PrintMethod = "printCCOperand" in
     85   def CCOp : Operand<i32>;
     86 
     87 def SDTSPcmpfcc : 
     88 SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
     89 def SDTSPbrcc : 
     90 SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
     91 def SDTSPselectcc :
     92 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
     93 def SDTSPFTOI :
     94 SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
     95 def SDTSPITOF :
     96 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
     97 
     98 def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
     99 def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
    100 def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    101 def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    102 
    103 def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
    104 def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
    105 
    106 def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
    107 def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
    108 
    109 def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
    110 def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
    111 
    112 //  These are target-independent nodes, but have target-specific formats.
    113 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
    114 def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
    115                                         SDTCisVT<1, i32> ]>;
    116 
    117 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
    118                            [SDNPHasChain, SDNPOutGlue]>;
    119 def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
    120                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    121 
    122 def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
    123 def call          : SDNode<"SPISD::CALL", SDT_SPCall,
    124                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    125                             SDNPVariadic]>;
    126 
    127 def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
    128 def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
    129                            [SDNPHasChain, SDNPOptInGlue]>;
    130 
    131 def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
    132                            [SDNPHasChain]>;
    133 
    134 def getPCX        : Operand<i32> {
    135   let PrintMethod = "printGetPCX";
    136 }
    137 
    138 //===----------------------------------------------------------------------===//
    139 // SPARC Flag Conditions
    140 //===----------------------------------------------------------------------===//
    141 
    142 // Note that these values must be kept in sync with the CCOp::CondCode enum
    143 // values.
    144 class ICC_VAL<int N> : PatLeaf<(i32 N)>;
    145 def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    146 def ICC_E   : ICC_VAL< 1>;  // Equal
    147 def ICC_G   : ICC_VAL<10>;  // Greater
    148 def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
    149 def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
    150 def ICC_L   : ICC_VAL< 3>;  // Less
    151 def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
    152 def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
    153 def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
    154 def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
    155 def ICC_POS : ICC_VAL<14>;  // Positive
    156 def ICC_NEG : ICC_VAL< 6>;  // Negative
    157 def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
    158 def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
    159 
    160 class FCC_VAL<int N> : PatLeaf<(i32 N)>;
    161 def FCC_U   : FCC_VAL<23>;  // Unordered
    162 def FCC_G   : FCC_VAL<22>;  // Greater
    163 def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    164 def FCC_L   : FCC_VAL<20>;  // Less
    165 def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
    166 def FCC_LG  : FCC_VAL<18>;  // Less or Greater
    167 def FCC_NE  : FCC_VAL<17>;  // Not Equal
    168 def FCC_E   : FCC_VAL<25>;  // Equal
    169 def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
    170 def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
    171 def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
    172 def FCC_LE  : FCC_VAL<27>;  // Less or Equal
    173 def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
    174 def FCC_O   : FCC_VAL<29>;  // Ordered
    175 
    176 //===----------------------------------------------------------------------===//
    177 // Instruction Class Templates
    178 //===----------------------------------------------------------------------===//
    179 
    180 /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
    181 multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
    182   def rr  : F3_1<2, Op3Val, 
    183                  (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    184                  !strconcat(OpcStr, " $b, $c, $dst"),
    185                  [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
    186   def ri  : F3_2<2, Op3Val,
    187                  (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    188                  !strconcat(OpcStr, " $b, $c, $dst"),
    189                  [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
    190 }
    191 
    192 /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
    193 /// pattern.
    194 multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
    195   def rr  : F3_1<2, Op3Val, 
    196                  (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    197                  !strconcat(OpcStr, " $b, $c, $dst"), []>;
    198   def ri  : F3_2<2, Op3Val,
    199                  (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    200                  !strconcat(OpcStr, " $b, $c, $dst"), []>;
    201 }
    202 
    203 //===----------------------------------------------------------------------===//
    204 // Instructions
    205 //===----------------------------------------------------------------------===//
    206 
    207 // Pseudo instructions.
    208 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    209    : InstSP<outs, ins, asmstr, pattern>;
    210 
    211 // GETPCX for PIC
    212 let Defs = [O7] in {
    213   def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
    214 }
    215 
    216 let Defs = [O6], Uses = [O6] in {
    217 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
    218                                "!ADJCALLSTACKDOWN $amt",
    219                                [(callseq_start timm:$amt)]>;
    220 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    221                             "!ADJCALLSTACKUP $amt1",
    222                             [(callseq_end timm:$amt1, timm:$amt2)]>;
    223 }
    224 
    225 let hasSideEffects = 1, mayStore = 1 in {
    226   let rd = 0, rs1 = 0, rs2 = 0 in
    227     def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
    228                       "flushw",
    229                       [(flushw)]>, Requires<[HasV9]>;
    230   let rd = 0, rs1 = 1, simm13 = 3 in
    231     def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
    232                    "ta 3",
    233                    [(flushw)]>;
    234 }
    235 
    236 def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
    237                 "unimp $val", []>;
    238 
    239 // FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
    240 // fpmover pass.
    241 let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
    242   def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
    243                       "!FpMOVD $src, $dst", []>;
    244   def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
    245                       "!FpNEGD $src, $dst",
    246                       [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
    247   def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
    248                       "!FpABSD $src, $dst",
    249                       [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
    250 }
    251 
    252 // SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
    253 // instruction selection into a branch sequence.  This has to handle all
    254 // permutations of selection between i32/f32/f64 on ICC and FCC.
    255   // Expanded after instruction selection.
    256 let Uses = [ICC], usesCustomInserter = 1 in { 
    257   def SELECT_CC_Int_ICC
    258    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    259             "; SELECT_CC_Int_ICC PSEUDO!",
    260             [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
    261                                              imm:$Cond))]>;
    262   def SELECT_CC_FP_ICC
    263    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    264             "; SELECT_CC_FP_ICC PSEUDO!",
    265             [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
    266                                             imm:$Cond))]>;
    267 
    268   def SELECT_CC_DFP_ICC
    269    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    270             "; SELECT_CC_DFP_ICC PSEUDO!",
    271             [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
    272                                              imm:$Cond))]>;
    273 }
    274 
    275 let usesCustomInserter = 1, Uses = [FCC] in {
    276 
    277   def SELECT_CC_Int_FCC
    278    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    279             "; SELECT_CC_Int_FCC PSEUDO!",
    280             [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
    281                                              imm:$Cond))]>;
    282 
    283   def SELECT_CC_FP_FCC
    284    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    285             "; SELECT_CC_FP_FCC PSEUDO!",
    286             [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
    287                                             imm:$Cond))]>;
    288   def SELECT_CC_DFP_FCC
    289    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    290             "; SELECT_CC_DFP_FCC PSEUDO!",
    291             [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
    292                                              imm:$Cond))]>;
    293 }
    294 
    295 
    296 // Section A.3 - Synthetic Instructions, p. 85
    297 // special cases of JMPL:
    298 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
    299   let rd = O7.Num, rs1 = G0.Num in
    300     def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    301                    "jmp %o7+$val", [(retflag simm13:$val)]>;
    302 
    303   let rd = I7.Num, rs1 = G0.Num in
    304     def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    305                   "jmp %i7+$val", []>;
    306 }
    307 
    308 // Section B.1 - Load Integer Instructions, p. 90
    309 def LDSBrr : F3_1<3, 0b001001,
    310                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    311                   "ldsb [$addr], $dst",
    312                   [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
    313 def LDSBri : F3_2<3, 0b001001,
    314                   (outs IntRegs:$dst), (ins MEMri:$addr),
    315                   "ldsb [$addr], $dst",
    316                   [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
    317 def LDSHrr : F3_1<3, 0b001010,
    318                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    319                   "ldsh [$addr], $dst",
    320                   [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
    321 def LDSHri : F3_2<3, 0b001010,
    322                   (outs IntRegs:$dst), (ins MEMri:$addr),
    323                   "ldsh [$addr], $dst",
    324                   [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
    325 def LDUBrr : F3_1<3, 0b000001,
    326                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    327                   "ldub [$addr], $dst",
    328                   [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
    329 def LDUBri : F3_2<3, 0b000001,
    330                   (outs IntRegs:$dst), (ins MEMri:$addr),
    331                   "ldub [$addr], $dst",
    332                   [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
    333 def LDUHrr : F3_1<3, 0b000010,
    334                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    335                   "lduh [$addr], $dst",
    336                   [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
    337 def LDUHri : F3_2<3, 0b000010,
    338                   (outs IntRegs:$dst), (ins MEMri:$addr),
    339                   "lduh [$addr], $dst",
    340                   [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
    341 def LDrr   : F3_1<3, 0b000000,
    342                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    343                   "ld [$addr], $dst",
    344                   [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
    345 def LDri   : F3_2<3, 0b000000,
    346                   (outs IntRegs:$dst), (ins MEMri:$addr),
    347                   "ld [$addr], $dst",
    348                   [(set IntRegs:$dst, (load ADDRri:$addr))]>;
    349 
    350 // Section B.2 - Load Floating-point Instructions, p. 92
    351 def LDFrr  : F3_1<3, 0b100000,
    352                   (outs FPRegs:$dst), (ins MEMrr:$addr),
    353                   "ld [$addr], $dst",
    354                   [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
    355 def LDFri  : F3_2<3, 0b100000,
    356                   (outs FPRegs:$dst), (ins MEMri:$addr),
    357                   "ld [$addr], $dst",
    358                   [(set FPRegs:$dst, (load ADDRri:$addr))]>;
    359 def LDDFrr : F3_1<3, 0b100011,
    360                   (outs DFPRegs:$dst), (ins MEMrr:$addr),
    361                   "ldd [$addr], $dst",
    362                   [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
    363 def LDDFri : F3_2<3, 0b100011,
    364                   (outs DFPRegs:$dst), (ins MEMri:$addr),
    365                   "ldd [$addr], $dst",
    366                   [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
    367 
    368 // Section B.4 - Store Integer Instructions, p. 95
    369 def STBrr : F3_1<3, 0b000101,
    370                  (outs), (ins MEMrr:$addr, IntRegs:$src),
    371                  "stb $src, [$addr]",
    372                  [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
    373 def STBri : F3_2<3, 0b000101,
    374                  (outs), (ins MEMri:$addr, IntRegs:$src),
    375                  "stb $src, [$addr]",
    376                  [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
    377 def STHrr : F3_1<3, 0b000110,
    378                  (outs), (ins MEMrr:$addr, IntRegs:$src),
    379                  "sth $src, [$addr]",
    380                  [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
    381 def STHri : F3_2<3, 0b000110,
    382                  (outs), (ins MEMri:$addr, IntRegs:$src),
    383                  "sth $src, [$addr]",
    384                  [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
    385 def STrr  : F3_1<3, 0b000100,
    386                  (outs), (ins MEMrr:$addr, IntRegs:$src),
    387                  "st $src, [$addr]",
    388                  [(store IntRegs:$src, ADDRrr:$addr)]>;
    389 def STri  : F3_2<3, 0b000100,
    390                  (outs), (ins MEMri:$addr, IntRegs:$src),
    391                  "st $src, [$addr]",
    392                  [(store IntRegs:$src, ADDRri:$addr)]>;
    393 
    394 // Section B.5 - Store Floating-point Instructions, p. 97
    395 def STFrr   : F3_1<3, 0b100100,
    396                    (outs), (ins MEMrr:$addr, FPRegs:$src),
    397                    "st $src, [$addr]",
    398                    [(store FPRegs:$src, ADDRrr:$addr)]>;
    399 def STFri   : F3_2<3, 0b100100,
    400                    (outs), (ins MEMri:$addr, FPRegs:$src),
    401                    "st $src, [$addr]",
    402                    [(store FPRegs:$src, ADDRri:$addr)]>;
    403 def STDFrr  : F3_1<3, 0b100111,
    404                    (outs), (ins MEMrr:$addr, DFPRegs:$src),
    405                    "std  $src, [$addr]",
    406                    [(store DFPRegs:$src, ADDRrr:$addr)]>;
    407 def STDFri  : F3_2<3, 0b100111,
    408                    (outs), (ins MEMri:$addr, DFPRegs:$src),
    409                    "std $src, [$addr]",
    410                    [(store DFPRegs:$src, ADDRri:$addr)]>;
    411 
    412 // Section B.9 - SETHI Instruction, p. 104
    413 def SETHIi: F2_1<0b100,
    414                  (outs IntRegs:$dst), (ins i32imm:$src),
    415                  "sethi $src, $dst",
    416                  [(set IntRegs:$dst, SETHIimm:$src)]>;
    417 
    418 // Section B.10 - NOP Instruction, p. 105
    419 // (It's a special case of SETHI)
    420 let rd = 0, imm22 = 0 in
    421   def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
    422 
    423 // Section B.11 - Logical Instructions, p. 106
    424 defm AND    : F3_12<"and", 0b000001, and>;
    425 
    426 def ANDNrr  : F3_1<2, 0b000101,
    427                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    428                    "andn $b, $c, $dst",
    429                    [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
    430 def ANDNri  : F3_2<2, 0b000101,
    431                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    432                    "andn $b, $c, $dst", []>;
    433 
    434 defm OR     : F3_12<"or", 0b000010, or>;
    435 
    436 def ORNrr   : F3_1<2, 0b000110,
    437                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    438                    "orn $b, $c, $dst",
    439                    [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
    440 def ORNri   : F3_2<2, 0b000110,
    441                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    442                    "orn $b, $c, $dst", []>;
    443 defm XOR    : F3_12<"xor", 0b000011, xor>;
    444 
    445 def XNORrr  : F3_1<2, 0b000111,
    446                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    447                    "xnor $b, $c, $dst",
    448                    [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
    449 def XNORri  : F3_2<2, 0b000111,
    450                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    451                    "xnor $b, $c, $dst", []>;
    452 
    453 // Section B.12 - Shift Instructions, p. 107
    454 defm SLL : F3_12<"sll", 0b100101, shl>;
    455 defm SRL : F3_12<"srl", 0b100110, srl>;
    456 defm SRA : F3_12<"sra", 0b100111, sra>;
    457 
    458 // Section B.13 - Add Instructions, p. 108
    459 defm ADD   : F3_12<"add", 0b000000, add>;
    460 
    461 // "LEA" forms of add (patterns to make tblgen happy)
    462 def LEA_ADDri   : F3_2<2, 0b000000,
    463                    (outs IntRegs:$dst), (ins MEMri:$addr),
    464                    "add ${addr:arith}, $dst",
    465                    [(set IntRegs:$dst, ADDRri:$addr)]>;
    466 
    467 let Defs = [ICC] in                   
    468   defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
    469 
    470 let Uses = [ICC] in
    471   defm ADDX  : F3_12<"addx", 0b001000, adde>;
    472 
    473 // Section B.15 - Subtract Instructions, p. 110
    474 defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
    475 let Uses = [ICC] in 
    476   defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
    477 
    478 let Defs = [ICC] in 
    479   defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
    480 
    481 let Uses = [ICC], Defs = [ICC] in
    482   def SUBXCCrr: F3_1<2, 0b011100, 
    483                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    484                 "subxcc $b, $c, $dst", []>;
    485 
    486 
    487 // Section B.18 - Multiply Instructions, p. 113
    488 let Defs = [Y] in {
    489   defm UMUL : F3_12np<"umul", 0b001010>;
    490   defm SMUL : F3_12  <"smul", 0b001011, mul>;
    491 }
    492 
    493 // Section B.19 - Divide Instructions, p. 115
    494 let Defs = [Y] in {
    495   defm UDIV : F3_12np<"udiv", 0b001110>;
    496   defm SDIV : F3_12np<"sdiv", 0b001111>;
    497 }
    498 
    499 // Section B.20 - SAVE and RESTORE, p. 117
    500 defm SAVE    : F3_12np<"save"   , 0b111100>;
    501 defm RESTORE : F3_12np<"restore", 0b111101>;
    502 
    503 // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
    504 
    505 // conditional branch class:
    506 class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
    507  : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
    508   let isBranch = 1;
    509   let isTerminator = 1;
    510   let hasDelaySlot = 1;
    511 }
    512 
    513 let isBarrier = 1 in
    514   def BA   : BranchSP<0b1000, (ins brtarget:$dst),
    515                       "ba $dst",
    516                       [(br bb:$dst)]>;
    517 
    518 // FIXME: the encoding for the JIT should look at the condition field.
    519 let Uses = [ICC] in
    520   def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
    521                          "b$cc $dst",
    522                         [(SPbricc bb:$dst, imm:$cc)]>;
    523 
    524 
    525 // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
    526 
    527 // floating-point conditional branch class:
    528 class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
    529  : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
    530   let isBranch = 1;
    531   let isTerminator = 1;
    532   let hasDelaySlot = 1;
    533 }
    534 
    535 // FIXME: the encoding for the JIT should look at the condition field.
    536 let Uses = [FCC] in
    537   def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
    538                               "fb$cc $dst",
    539                               [(SPbrfcc bb:$dst, imm:$cc)]>;
    540 
    541 
    542 // Section B.24 - Call and Link Instruction, p. 125
    543 // This is the only Format 1 instruction
    544 let Uses = [O6],
    545     hasDelaySlot = 1, isCall = 1,
    546     Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
    547     D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
    548         ICC, FCC, Y] in {
    549   def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
    550                     "call $dst", []> {
    551     bits<30> disp;
    552     let op = 1;
    553     let Inst{29-0} = disp;
    554   }
    555   
    556   // indirect calls
    557   def JMPLrr : F3_1<2, 0b111000,
    558                     (outs), (ins MEMrr:$ptr, variable_ops),
    559                     "call $ptr",
    560                     [(call ADDRrr:$ptr)]>;
    561   def JMPLri : F3_2<2, 0b111000,
    562                     (outs), (ins MEMri:$ptr, variable_ops),
    563                     "call $ptr",
    564                     [(call ADDRri:$ptr)]>;
    565 }
    566 
    567 // Section B.28 - Read State Register Instructions
    568 let Uses = [Y] in 
    569   def RDY : F3_1<2, 0b101000,
    570                  (outs IntRegs:$dst), (ins),
    571                  "rd %y, $dst", []>;
    572 
    573 // Section B.29 - Write State Register Instructions
    574 let Defs = [Y] in {
    575   def WRYrr : F3_1<2, 0b110000,
    576                    (outs), (ins IntRegs:$b, IntRegs:$c),
    577                    "wr $b, $c, %y", []>;
    578   def WRYri : F3_2<2, 0b110000,
    579                    (outs), (ins IntRegs:$b, i32imm:$c),
    580                    "wr $b, $c, %y", []>;
    581 }
    582 // Convert Integer to Floating-point Instructions, p. 141
    583 def FITOS : F3_3<2, 0b110100, 0b011000100,
    584                  (outs FPRegs:$dst), (ins FPRegs:$src),
    585                  "fitos $src, $dst",
    586                  [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
    587 def FITOD : F3_3<2, 0b110100, 0b011001000, 
    588                  (outs DFPRegs:$dst), (ins FPRegs:$src),
    589                  "fitod $src, $dst",
    590                  [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
    591 
    592 // Convert Floating-point to Integer Instructions, p. 142
    593 def FSTOI : F3_3<2, 0b110100, 0b011010001,
    594                  (outs FPRegs:$dst), (ins FPRegs:$src),
    595                  "fstoi $src, $dst",
    596                  [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
    597 def FDTOI : F3_3<2, 0b110100, 0b011010010,
    598                  (outs FPRegs:$dst), (ins DFPRegs:$src),
    599                  "fdtoi $src, $dst",
    600                  [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
    601 
    602 // Convert between Floating-point Formats Instructions, p. 143
    603 def FSTOD : F3_3<2, 0b110100, 0b011001001, 
    604                  (outs DFPRegs:$dst), (ins FPRegs:$src),
    605                  "fstod $src, $dst",
    606                  [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
    607 def FDTOS : F3_3<2, 0b110100, 0b011000110,
    608                  (outs FPRegs:$dst), (ins DFPRegs:$src),
    609                  "fdtos $src, $dst",
    610                  [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
    611 
    612 // Floating-point Move Instructions, p. 144
    613 def FMOVS : F3_3<2, 0b110100, 0b000000001,
    614                  (outs FPRegs:$dst), (ins FPRegs:$src),
    615                  "fmovs $src, $dst", []>;
    616 def FNEGS : F3_3<2, 0b110100, 0b000000101, 
    617                  (outs FPRegs:$dst), (ins FPRegs:$src),
    618                  "fnegs $src, $dst",
    619                  [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
    620 def FABSS : F3_3<2, 0b110100, 0b000001001, 
    621                  (outs FPRegs:$dst), (ins FPRegs:$src),
    622                  "fabss $src, $dst",
    623                  [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
    624 
    625 
    626 // Floating-point Square Root Instructions, p.145
    627 def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
    628                   (outs FPRegs:$dst), (ins FPRegs:$src),
    629                   "fsqrts $src, $dst",
    630                   [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
    631 def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
    632                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
    633                   "fsqrtd $src, $dst",
    634                   [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
    635 
    636 
    637 
    638 // Floating-point Add and Subtract Instructions, p. 146
    639 def FADDS  : F3_3<2, 0b110100, 0b001000001,
    640                   (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    641                   "fadds $src1, $src2, $dst",
    642                   [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
    643 def FADDD  : F3_3<2, 0b110100, 0b001000010,
    644                   (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    645                   "faddd $src1, $src2, $dst",
    646                   [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
    647 def FSUBS  : F3_3<2, 0b110100, 0b001000101,
    648                   (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    649                   "fsubs $src1, $src2, $dst",
    650                   [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
    651 def FSUBD  : F3_3<2, 0b110100, 0b001000110,
    652                   (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    653                   "fsubd $src1, $src2, $dst",
    654                   [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
    655 
    656 // Floating-point Multiply and Divide Instructions, p. 147
    657 def FMULS  : F3_3<2, 0b110100, 0b001001001,
    658                   (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    659                   "fmuls $src1, $src2, $dst",
    660                   [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
    661 def FMULD  : F3_3<2, 0b110100, 0b001001010,
    662                   (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    663                   "fmuld $src1, $src2, $dst",
    664                   [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
    665 def FSMULD : F3_3<2, 0b110100, 0b001101001,
    666                   (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    667                   "fsmuld $src1, $src2, $dst",
    668                   [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
    669                                             (fextend FPRegs:$src2)))]>;
    670 def FDIVS  : F3_3<2, 0b110100, 0b001001101,
    671                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    672                  "fdivs $src1, $src2, $dst",
    673                  [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
    674 def FDIVD  : F3_3<2, 0b110100, 0b001001110,
    675                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    676                  "fdivd $src1, $src2, $dst",
    677                  [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
    678 
    679 // Floating-point Compare Instructions, p. 148
    680 // Note: the 2nd template arg is different for these guys.
    681 // Note 2: the result of a FCMP is not available until the 2nd cycle
    682 // after the instr is retired, but there is no interlock. This behavior
    683 // is modelled with a forced noop after the instruction.
    684 let Defs = [FCC] in {
    685   def FCMPS  : F3_3<2, 0b110101, 0b001010001,
    686                    (outs), (ins FPRegs:$src1, FPRegs:$src2),
    687                    "fcmps $src1, $src2\n\tnop",
    688                    [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
    689   def FCMPD  : F3_3<2, 0b110101, 0b001010010,
    690                    (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
    691                    "fcmpd $src1, $src2\n\tnop",
    692                    [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
    693 }
    694 
    695 //===----------------------------------------------------------------------===//
    696 // V9 Instructions
    697 //===----------------------------------------------------------------------===//
    698 
    699 // V9 Conditional Moves.
    700 let Predicates = [HasV9], Constraints = "$T = $dst" in {
    701   // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
    702   // FIXME: Add instruction encodings for the JIT some day.
    703   let Uses = [ICC] in {
    704     def MOVICCrr
    705       : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
    706                "mov$cc %icc, $F, $dst",
    707                [(set IntRegs:$dst,
    708                            (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
    709     def MOVICCri
    710       : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
    711                "mov$cc %icc, $F, $dst",
    712                [(set IntRegs:$dst,
    713                             (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
    714   }
    715 
    716   let Uses = [FCC] in {
    717     def MOVFCCrr
    718       : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
    719                "mov$cc %fcc0, $F, $dst",
    720                [(set IntRegs:$dst,
    721                            (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
    722     def MOVFCCri
    723       : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
    724                "mov$cc %fcc0, $F, $dst",
    725                [(set IntRegs:$dst,
    726                             (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
    727   }
    728 
    729   let Uses = [ICC] in {
    730     def FMOVS_ICC
    731       : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
    732                "fmovs$cc %icc, $F, $dst",
    733                [(set FPRegs:$dst,
    734                            (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
    735     def FMOVD_ICC
    736       : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
    737                "fmovd$cc %icc, $F, $dst",
    738                [(set DFPRegs:$dst,
    739                            (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
    740   }
    741 
    742   let Uses = [FCC] in {
    743     def FMOVS_FCC
    744       : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
    745                "fmovs$cc %fcc0, $F, $dst",
    746                [(set FPRegs:$dst,
    747                            (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
    748     def FMOVD_FCC
    749       : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
    750                "fmovd$cc %fcc0, $F, $dst",
    751                [(set DFPRegs:$dst,
    752                            (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
    753   }
    754 
    755 }
    756 
    757 // Floating-Point Move Instructions, p. 164 of the V9 manual.
    758 let Predicates = [HasV9] in {
    759   def FMOVD : F3_3<2, 0b110100, 0b000000010,
    760                    (outs DFPRegs:$dst), (ins DFPRegs:$src),
    761                    "fmovd $src, $dst", []>;
    762   def FNEGD : F3_3<2, 0b110100, 0b000000110, 
    763                    (outs DFPRegs:$dst), (ins DFPRegs:$src),
    764                    "fnegd $src, $dst",
    765                    [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
    766   def FABSD : F3_3<2, 0b110100, 0b000001010, 
    767                    (outs DFPRegs:$dst), (ins DFPRegs:$src),
    768                    "fabsd $src, $dst",
    769                    [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
    770 }
    771 
    772 // POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
    773 // the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
    774 def POPCrr : F3_1<2, 0b101110, 
    775                   (outs IntRegs:$dst), (ins IntRegs:$src),
    776                   "popc $src, $dst", []>, Requires<[HasV9]>;
    777 def : Pat<(ctpop IntRegs:$src),
    778           (POPCrr (SLLri IntRegs:$src, 0))>;
    779 
    780 //===----------------------------------------------------------------------===//
    781 // Non-Instruction Patterns
    782 //===----------------------------------------------------------------------===//
    783 
    784 // Small immediates.
    785 def : Pat<(i32 simm13:$val),
    786           (ORri G0, imm:$val)>;
    787 // Arbitrary immediates.
    788 def : Pat<(i32 imm:$val),
    789           (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
    790 
    791 // subc
    792 def : Pat<(subc IntRegs:$b, IntRegs:$c),
    793           (SUBCCrr IntRegs:$b, IntRegs:$c)>;
    794 def : Pat<(subc IntRegs:$b, simm13:$val),
    795           (SUBCCri IntRegs:$b, imm:$val)>;
    796 
    797 // Global addresses, constant pool entries
    798 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
    799 def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
    800 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
    801 def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
    802 
    803 // Add reg, lo.  This is used when taking the addr of a global/constpool entry.
    804 def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
    805           (ADDri IntRegs:$r, tglobaladdr:$in)>;
    806 def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
    807           (ADDri IntRegs:$r, tconstpool:$in)>;
    808 
    809 // Calls: 
    810 def : Pat<(call tglobaladdr:$dst),
    811           (CALL tglobaladdr:$dst)>;
    812 def : Pat<(call texternalsym:$dst),
    813           (CALL texternalsym:$dst)>;
    814 
    815 // Map integer extload's to zextloads.
    816 def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
    817 def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
    818 def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
    819 def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
    820 def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
    821 def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
    822 
    823 // zextload bool -> zextload byte
    824 def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
    825 def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
    826