Home | History | Annotate | Download | only in X86
      1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86 specific subclass of TargetSubtargetInfo.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "subtarget"
     15 #include "X86Subtarget.h"
     16 #include "X86InstrInfo.h"
     17 #include "llvm/GlobalValue.h"
     18 #include "llvm/Support/Debug.h"
     19 #include "llvm/Support/ErrorHandling.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 #include "llvm/Support/Host.h"
     22 #include "llvm/Target/TargetMachine.h"
     23 #include "llvm/Target/TargetOptions.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 
     26 #define GET_SUBTARGETINFO_TARGET_DESC
     27 #define GET_SUBTARGETINFO_CTOR
     28 #include "X86GenSubtargetInfo.inc"
     29 
     30 using namespace llvm;
     31 
     32 #if defined(_MSC_VER)
     33 #include <intrin.h>
     34 #endif
     35 
     36 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
     37 /// current subtarget according to how we should reference it in a non-pcrel
     38 /// context.
     39 unsigned char X86Subtarget::
     40 ClassifyBlockAddressReference() const {
     41   if (isPICStyleGOT())    // 32-bit ELF targets.
     42     return X86II::MO_GOTOFF;
     43 
     44   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
     45     return X86II::MO_PIC_BASE_OFFSET;
     46 
     47   // Direct static reference to label.
     48   return X86II::MO_NO_FLAG;
     49 }
     50 
     51 /// ClassifyGlobalReference - Classify a global variable reference for the
     52 /// current subtarget according to how we should reference it in a non-pcrel
     53 /// context.
     54 unsigned char X86Subtarget::
     55 ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
     56   // DLLImport only exists on windows, it is implemented as a load from a
     57   // DLLIMPORT stub.
     58   if (GV->hasDLLImportLinkage())
     59     return X86II::MO_DLLIMPORT;
     60 
     61   // Determine whether this is a reference to a definition or a declaration.
     62   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
     63   // load from stub.
     64   bool isDecl = GV->hasAvailableExternallyLinkage();
     65   if (GV->isDeclaration() && !GV->isMaterializable())
     66     isDecl = true;
     67 
     68   // X86-64 in PIC mode.
     69   if (isPICStyleRIPRel()) {
     70     // Large model never uses stubs.
     71     if (TM.getCodeModel() == CodeModel::Large)
     72       return X86II::MO_NO_FLAG;
     73 
     74     if (isTargetDarwin()) {
     75       // If symbol visibility is hidden, the extra load is not needed if
     76       // target is x86-64 or the symbol is definitely defined in the current
     77       // translation unit.
     78       if (GV->hasDefaultVisibility() &&
     79           (isDecl || GV->isWeakForLinker()))
     80         return X86II::MO_GOTPCREL;
     81     } else if (!isTargetWin64()) {
     82       assert(isTargetELF() && "Unknown rip-relative target");
     83 
     84       // Extra load is needed for all externally visible.
     85       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
     86         return X86II::MO_GOTPCREL;
     87     }
     88 
     89     return X86II::MO_NO_FLAG;
     90   }
     91 
     92   if (isPICStyleGOT()) {   // 32-bit ELF targets.
     93     // Extra load is needed for all externally visible.
     94     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
     95       return X86II::MO_GOTOFF;
     96     return X86II::MO_GOT;
     97   }
     98 
     99   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
    100     // Determine whether we have a stub reference and/or whether the reference
    101     // is relative to the PIC base or not.
    102 
    103     // If this is a strong reference to a definition, it is definitely not
    104     // through a stub.
    105     if (!isDecl && !GV->isWeakForLinker())
    106       return X86II::MO_PIC_BASE_OFFSET;
    107 
    108     // Unless we have a symbol with hidden visibility, we have to go through a
    109     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    110     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    111       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
    112 
    113     // If symbol visibility is hidden, we have a stub for common symbol
    114     // references and external declarations.
    115     if (isDecl || GV->hasCommonLinkage()) {
    116       // Hidden $non_lazy_ptr reference.
    117       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
    118     }
    119 
    120     // Otherwise, no stub.
    121     return X86II::MO_PIC_BASE_OFFSET;
    122   }
    123 
    124   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
    125     // Determine whether we have a stub reference.
    126 
    127     // If this is a strong reference to a definition, it is definitely not
    128     // through a stub.
    129     if (!isDecl && !GV->isWeakForLinker())
    130       return X86II::MO_NO_FLAG;
    131 
    132     // Unless we have a symbol with hidden visibility, we have to go through a
    133     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    134     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    135       return X86II::MO_DARWIN_NONLAZY;
    136 
    137     // Otherwise, no stub.
    138     return X86II::MO_NO_FLAG;
    139   }
    140 
    141   // Direct static reference to global.
    142   return X86II::MO_NO_FLAG;
    143 }
    144 
    145 
    146 /// getBZeroEntry - This function returns the name of a function which has an
    147 /// interface like the non-standard bzero function, if such a function exists on
    148 /// the current subtarget and it is considered prefereable over memset with zero
    149 /// passed as the second argument. Otherwise it returns null.
    150 const char *X86Subtarget::getBZeroEntry() const {
    151   // Darwin 10 has a __bzero entry point for this purpose.
    152   if (getTargetTriple().isMacOSX() &&
    153       !getTargetTriple().isMacOSXVersionLT(10, 6))
    154     return "__bzero";
    155 
    156   return 0;
    157 }
    158 
    159 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
    160 /// to immediate address.
    161 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
    162   if (In64BitMode)
    163     return false;
    164   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
    165 }
    166 
    167 /// getSpecialAddressLatency - For targets where it is beneficial to
    168 /// backschedule instructions that compute addresses, return a value
    169 /// indicating the number of scheduling cycles of backscheduling that
    170 /// should be attempted.
    171 unsigned X86Subtarget::getSpecialAddressLatency() const {
    172   // For x86 out-of-order targets, back-schedule address computations so
    173   // that loads and stores aren't blocked.
    174   // This value was chosen arbitrarily.
    175   return 200;
    176 }
    177 
    178 void X86Subtarget::AutoDetectSubtargetFeatures() {
    179   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
    180   unsigned MaxLevel;
    181   union {
    182     unsigned u[3];
    183     char     c[12];
    184   } text;
    185 
    186   if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
    187       MaxLevel < 1)
    188     return;
    189 
    190   X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
    191 
    192   if ((EDX >> 15) & 1) { HasCMov = true;      ToggleFeature(X86::FeatureCMOV); }
    193   if ((EDX >> 23) & 1) { X86SSELevel = MMX;   ToggleFeature(X86::FeatureMMX);  }
    194   if ((EDX >> 25) & 1) { X86SSELevel = SSE1;  ToggleFeature(X86::FeatureSSE1); }
    195   if ((EDX >> 26) & 1) { X86SSELevel = SSE2;  ToggleFeature(X86::FeatureSSE2); }
    196   if (ECX & 0x1)       { X86SSELevel = SSE3;  ToggleFeature(X86::FeatureSSE3); }
    197   if ((ECX >> 9)  & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
    198   if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
    199   if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
    200   // FIXME: AVX codegen support is not ready.
    201   //if ((ECX >> 28) & 1) { HasAVX = true;  ToggleFeature(X86::FeatureAVX); }
    202 
    203   bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
    204   bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
    205 
    206   if (IsIntel && ((ECX >> 1) & 0x1)) {
    207     HasCLMUL = true;
    208     ToggleFeature(X86::FeatureCLMUL);
    209   }
    210   if (IsIntel && ((ECX >> 12) & 0x1)) {
    211     HasFMA3 = true;
    212     ToggleFeature(X86::FeatureFMA3);
    213   }
    214   if (IsIntel && ((ECX >> 22) & 0x1)) {
    215     HasMOVBE = true;
    216     ToggleFeature(X86::FeatureMOVBE);
    217   }
    218   if (IsIntel && ((ECX >> 23) & 0x1)) {
    219     HasPOPCNT = true;
    220     ToggleFeature(X86::FeaturePOPCNT);
    221   }
    222   if (IsIntel && ((ECX >> 25) & 0x1)) {
    223     HasAES = true;
    224     ToggleFeature(X86::FeatureAES);
    225   }
    226   if (IsIntel && ((ECX >> 29) & 0x1)) {
    227     HasF16C = true;
    228     ToggleFeature(X86::FeatureF16C);
    229   }
    230   if (IsIntel && ((ECX >> 30) & 0x1)) {
    231     HasRDRAND = true;
    232     ToggleFeature(X86::FeatureRDRAND);
    233   }
    234 
    235   if ((ECX >> 13) & 0x1) {
    236     HasCmpxchg16b = true;
    237     ToggleFeature(X86::FeatureCMPXCHG16B);
    238   }
    239 
    240   if (IsIntel || IsAMD) {
    241     // Determine if bit test memory instructions are slow.
    242     unsigned Family = 0;
    243     unsigned Model  = 0;
    244     X86_MC::DetectFamilyModel(EAX, Family, Model);
    245     if (IsAMD || (Family == 6 && Model >= 13)) {
    246       IsBTMemSlow = true;
    247       ToggleFeature(X86::FeatureSlowBTMem);
    248     }
    249     // If it's Nehalem, unaligned memory access is fast.
    250     // FIXME: Nehalem is family 6. Also include Westmere and later processors?
    251     if (Family == 15 && Model == 26) {
    252       IsUAMemFast = true;
    253       ToggleFeature(X86::FeatureFastUAMem);
    254     }
    255 
    256     unsigned MaxExtLevel;
    257     X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
    258 
    259     if (MaxExtLevel >= 0x80000001) {
    260       X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
    261       if ((EDX >> 29) & 0x1) {
    262         HasX86_64 = true;
    263         ToggleFeature(X86::Feature64Bit);
    264       }
    265       if ((ECX >> 5) & 0x1) {
    266         HasLZCNT = true;
    267         ToggleFeature(X86::FeatureLZCNT);
    268       }
    269       if (IsAMD && ((ECX >> 6) & 0x1)) {
    270         HasSSE4A = true;
    271         ToggleFeature(X86::FeatureSSE4A);
    272       }
    273       if (IsAMD && ((ECX >> 16) & 0x1)) {
    274         HasFMA4 = true;
    275         ToggleFeature(X86::FeatureFMA4);
    276       }
    277     }
    278   }
    279 
    280   if (IsIntel && MaxLevel >= 7) {
    281     if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
    282       if ((EBX >> 3) & 0x1) {
    283         HasBMI = true;
    284         ToggleFeature(X86::FeatureBMI);
    285       }
    286       if ((EBX >> 8) & 0x1) {
    287         HasBMI2 = true;
    288         ToggleFeature(X86::FeatureBMI2);
    289       }
    290     }
    291   }
    292 }
    293 
    294 X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
    295                            const std::string &FS,
    296                            unsigned StackAlignOverride, bool is64Bit)
    297   : X86GenSubtargetInfo(TT, CPU, FS)
    298   , PICStyle(PICStyles::None)
    299   , X86SSELevel(NoMMXSSE)
    300   , X863DNowLevel(NoThreeDNow)
    301   , HasCMov(false)
    302   , HasX86_64(false)
    303   , HasPOPCNT(false)
    304   , HasSSE4A(false)
    305   , HasAVX(false)
    306   , HasAES(false)
    307   , HasCLMUL(false)
    308   , HasFMA3(false)
    309   , HasFMA4(false)
    310   , HasMOVBE(false)
    311   , HasRDRAND(false)
    312   , HasF16C(false)
    313   , HasLZCNT(false)
    314   , HasBMI(false)
    315   , HasBMI2(false)
    316   , IsBTMemSlow(false)
    317   , IsUAMemFast(false)
    318   , HasVectorUAMem(false)
    319   , HasCmpxchg16b(false)
    320   , stackAlignment(8)
    321   // FIXME: this is a known good value for Yonah. How about others?
    322   , MaxInlineSizeThreshold(128)
    323   , TargetTriple(TT)
    324   , In64BitMode(is64Bit) {
    325   // Determine default and user specified characteristics
    326   if (!FS.empty() || !CPU.empty()) {
    327     std::string CPUName = CPU;
    328     if (CPUName.empty()) {
    329 #if defined (__x86_64__) || defined(__i386__)
    330       CPUName = sys::getHostCPUName();
    331 #else
    332       CPUName = "generic";
    333 #endif
    334     }
    335 
    336     // Make sure 64-bit features are available in 64-bit mode. (But make sure
    337     // SSE2 can be turned off explicitly.)
    338     std::string FullFS = FS;
    339     if (In64BitMode) {
    340       if (!FullFS.empty())
    341         FullFS = "+64bit,+sse2," + FullFS;
    342       else
    343         FullFS = "+64bit,+sse2";
    344     }
    345 
    346     // If feature string is not empty, parse features string.
    347     ParseSubtargetFeatures(CPUName, FullFS);
    348   } else {
    349     // Otherwise, use CPUID to auto-detect feature set.
    350     AutoDetectSubtargetFeatures();
    351 
    352     // Make sure 64-bit features are available in 64-bit mode.
    353     if (In64BitMode) {
    354       HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
    355       HasCMov = true;   ToggleFeature(X86::FeatureCMOV);
    356 
    357       if (!HasAVX && X86SSELevel < SSE2) {
    358         X86SSELevel = SSE2;
    359         ToggleFeature(X86::FeatureSSE1);
    360         ToggleFeature(X86::FeatureSSE2);
    361       }
    362     }
    363   }
    364 
    365   // It's important to keep the MCSubtargetInfo feature bits in sync with
    366   // target data structure which is shared with MC code emitter, etc.
    367   if (In64BitMode)
    368     ToggleFeature(X86::Mode64Bit);
    369 
    370   if (HasAVX)
    371     X86SSELevel = NoMMXSSE;
    372 
    373   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
    374                << ", 3DNowLevel " << X863DNowLevel
    375                << ", 64bit " << HasX86_64 << "\n");
    376   assert((!In64BitMode || HasX86_64) &&
    377          "64-bit code requested on a subtarget that doesn't support it!");
    378 
    379   if(EnableSegmentedStacks && !isTargetELF())
    380     report_fatal_error("Segmented stacks are only implemented on ELF.");
    381 
    382   // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
    383   // 32 and 64 bit) and for all 64-bit targets.
    384   if (StackAlignOverride)
    385     stackAlignment = StackAlignOverride;
    386   else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
    387            isTargetSolaris() || In64BitMode)
    388     stackAlignment = 16;
    389 }
    390