Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "simplifycfg"
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/Instructions.h"
     18 #include "llvm/IntrinsicInst.h"
     19 #include "llvm/Type.h"
     20 #include "llvm/DerivedTypes.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/Target/TargetData.h"
     25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     26 #include "llvm/ADT/DenseMap.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/Support/CFG.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/ConstantRange.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/IRBuilder.h"
     36 #include "llvm/Support/NoFolder.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include <algorithm>
     39 #include <set>
     40 #include <map>
     41 using namespace llvm;
     42 
     43 static cl::opt<unsigned>
     44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
     45    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
     46 
     47 static cl::opt<bool>
     48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     49        cl::desc("Duplicate return instructions into unconditional branches"));
     50 
     51 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     52 
     53 namespace {
     54 class SimplifyCFGOpt {
     55   const TargetData *const TD;
     56 
     57   Value *isValueEqualityComparison(TerminatorInst *TI);
     58   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
     59     std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
     60   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
     61                                                      BasicBlock *Pred,
     62                                                      IRBuilder<> &Builder);
     63   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
     64                                            IRBuilder<> &Builder);
     65 
     66   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
     67   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
     68   bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
     69   bool SimplifyUnreachable(UnreachableInst *UI);
     70   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
     71   bool SimplifyIndirectBr(IndirectBrInst *IBI);
     72   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
     73   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
     74 
     75 public:
     76   explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
     77   bool run(BasicBlock *BB);
     78 };
     79 }
     80 
     81 /// SafeToMergeTerminators - Return true if it is safe to merge these two
     82 /// terminator instructions together.
     83 ///
     84 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
     85   if (SI1 == SI2) return false;  // Can't merge with self!
     86 
     87   // It is not safe to merge these two switch instructions if they have a common
     88   // successor, and if that successor has a PHI node, and if *that* PHI node has
     89   // conflicting incoming values from the two switch blocks.
     90   BasicBlock *SI1BB = SI1->getParent();
     91   BasicBlock *SI2BB = SI2->getParent();
     92   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
     93 
     94   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
     95     if (SI1Succs.count(*I))
     96       for (BasicBlock::iterator BBI = (*I)->begin();
     97            isa<PHINode>(BBI); ++BBI) {
     98         PHINode *PN = cast<PHINode>(BBI);
     99         if (PN->getIncomingValueForBlock(SI1BB) !=
    100             PN->getIncomingValueForBlock(SI2BB))
    101           return false;
    102       }
    103 
    104   return true;
    105 }
    106 
    107 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
    108 /// now be entries in it from the 'NewPred' block.  The values that will be
    109 /// flowing into the PHI nodes will be the same as those coming in from
    110 /// ExistPred, an existing predecessor of Succ.
    111 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    112                                   BasicBlock *ExistPred) {
    113   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    114 
    115   PHINode *PN;
    116   for (BasicBlock::iterator I = Succ->begin();
    117        (PN = dyn_cast<PHINode>(I)); ++I)
    118     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    119 }
    120 
    121 
    122 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
    123 /// least one PHI node in it), check to see if the merge at this block is due
    124 /// to an "if condition".  If so, return the boolean condition that determines
    125 /// which entry into BB will be taken.  Also, return by references the block
    126 /// that will be entered from if the condition is true, and the block that will
    127 /// be entered if the condition is false.
    128 ///
    129 /// This does no checking to see if the true/false blocks have large or unsavory
    130 /// instructions in them.
    131 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    132                              BasicBlock *&IfFalse) {
    133   PHINode *SomePHI = cast<PHINode>(BB->begin());
    134   assert(SomePHI->getNumIncomingValues() == 2 &&
    135          "Function can only handle blocks with 2 predecessors!");
    136   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
    137   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
    138 
    139   // We can only handle branches.  Other control flow will be lowered to
    140   // branches if possible anyway.
    141   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    142   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    143   if (Pred1Br == 0 || Pred2Br == 0)
    144     return 0;
    145 
    146   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    147   // either are.
    148   if (Pred2Br->isConditional()) {
    149     // If both branches are conditional, we don't have an "if statement".  In
    150     // reality, we could transform this case, but since the condition will be
    151     // required anyway, we stand no chance of eliminating it, so the xform is
    152     // probably not profitable.
    153     if (Pred1Br->isConditional())
    154       return 0;
    155 
    156     std::swap(Pred1, Pred2);
    157     std::swap(Pred1Br, Pred2Br);
    158   }
    159 
    160   if (Pred1Br->isConditional()) {
    161     // The only thing we have to watch out for here is to make sure that Pred2
    162     // doesn't have incoming edges from other blocks.  If it does, the condition
    163     // doesn't dominate BB.
    164     if (Pred2->getSinglePredecessor() == 0)
    165       return 0;
    166 
    167     // If we found a conditional branch predecessor, make sure that it branches
    168     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    169     if (Pred1Br->getSuccessor(0) == BB &&
    170         Pred1Br->getSuccessor(1) == Pred2) {
    171       IfTrue = Pred1;
    172       IfFalse = Pred2;
    173     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    174                Pred1Br->getSuccessor(1) == BB) {
    175       IfTrue = Pred2;
    176       IfFalse = Pred1;
    177     } else {
    178       // We know that one arm of the conditional goes to BB, so the other must
    179       // go somewhere unrelated, and this must not be an "if statement".
    180       return 0;
    181     }
    182 
    183     return Pred1Br->getCondition();
    184   }
    185 
    186   // Ok, if we got here, both predecessors end with an unconditional branch to
    187   // BB.  Don't panic!  If both blocks only have a single (identical)
    188   // predecessor, and THAT is a conditional branch, then we're all ok!
    189   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    190   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
    191     return 0;
    192 
    193   // Otherwise, if this is a conditional branch, then we can use it!
    194   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    195   if (BI == 0) return 0;
    196 
    197   assert(BI->isConditional() && "Two successors but not conditional?");
    198   if (BI->getSuccessor(0) == Pred1) {
    199     IfTrue = Pred1;
    200     IfFalse = Pred2;
    201   } else {
    202     IfTrue = Pred2;
    203     IfFalse = Pred1;
    204   }
    205   return BI->getCondition();
    206 }
    207 
    208 /// DominatesMergePoint - If we have a merge point of an "if condition" as
    209 /// accepted above, return true if the specified value dominates the block.  We
    210 /// don't handle the true generality of domination here, just a special case
    211 /// which works well enough for us.
    212 ///
    213 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    214 /// see if V (which must be an instruction) and its recursive operands
    215 /// that do not dominate BB have a combined cost lower than CostRemaining and
    216 /// are non-trapping.  If both are true, the instruction is inserted into the
    217 /// set and true is returned.
    218 ///
    219 /// The cost for most non-trapping instructions is defined as 1 except for
    220 /// Select whose cost is 2.
    221 ///
    222 /// After this function returns, CostRemaining is decreased by the cost of
    223 /// V plus its non-dominating operands.  If that cost is greater than
    224 /// CostRemaining, false is returned and CostRemaining is undefined.
    225 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    226                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
    227                                 unsigned &CostRemaining) {
    228   Instruction *I = dyn_cast<Instruction>(V);
    229   if (!I) {
    230     // Non-instructions all dominate instructions, but not all constantexprs
    231     // can be executed unconditionally.
    232     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    233       if (C->canTrap())
    234         return false;
    235     return true;
    236   }
    237   BasicBlock *PBB = I->getParent();
    238 
    239   // We don't want to allow weird loops that might have the "if condition" in
    240   // the bottom of this block.
    241   if (PBB == BB) return false;
    242 
    243   // If this instruction is defined in a block that contains an unconditional
    244   // branch to BB, then it must be in the 'conditional' part of the "if
    245   // statement".  If not, it definitely dominates the region.
    246   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    247   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
    248     return true;
    249 
    250   // If we aren't allowing aggressive promotion anymore, then don't consider
    251   // instructions in the 'if region'.
    252   if (AggressiveInsts == 0) return false;
    253 
    254   // If we have seen this instruction before, don't count it again.
    255   if (AggressiveInsts->count(I)) return true;
    256 
    257   // Okay, it looks like the instruction IS in the "condition".  Check to
    258   // see if it's a cheap instruction to unconditionally compute, and if it
    259   // only uses stuff defined outside of the condition.  If so, hoist it out.
    260   if (!I->isSafeToSpeculativelyExecute())
    261     return false;
    262 
    263   unsigned Cost = 0;
    264 
    265   switch (I->getOpcode()) {
    266   default: return false;  // Cannot hoist this out safely.
    267   case Instruction::Load:
    268     // We have to check to make sure there are no instructions before the
    269     // load in its basic block, as we are going to hoist the load out to its
    270     // predecessor.
    271     if (PBB->getFirstNonPHIOrDbg() != I)
    272       return false;
    273     Cost = 1;
    274     break;
    275   case Instruction::GetElementPtr:
    276     // GEPs are cheap if all indices are constant.
    277     if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
    278       return false;
    279     Cost = 1;
    280     break;
    281   case Instruction::Add:
    282   case Instruction::Sub:
    283   case Instruction::And:
    284   case Instruction::Or:
    285   case Instruction::Xor:
    286   case Instruction::Shl:
    287   case Instruction::LShr:
    288   case Instruction::AShr:
    289   case Instruction::ICmp:
    290   case Instruction::Trunc:
    291   case Instruction::ZExt:
    292   case Instruction::SExt:
    293     Cost = 1;
    294     break;   // These are all cheap and non-trapping instructions.
    295 
    296   case Instruction::Select:
    297     Cost = 2;
    298     break;
    299   }
    300 
    301   if (Cost > CostRemaining)
    302     return false;
    303 
    304   CostRemaining -= Cost;
    305 
    306   // Okay, we can only really hoist these out if their operands do
    307   // not take us over the cost threshold.
    308   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    309     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
    310       return false;
    311   // Okay, it's safe to do this!  Remember this instruction.
    312   AggressiveInsts->insert(I);
    313   return true;
    314 }
    315 
    316 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
    317 /// and PointerNullValue. Return NULL if value is not a constant int.
    318 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
    319   // Normal constant int.
    320   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    321   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
    322     return CI;
    323 
    324   // This is some kind of pointer constant. Turn it into a pointer-sized
    325   // ConstantInt if possible.
    326   IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
    327 
    328   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    329   if (isa<ConstantPointerNull>(V))
    330     return ConstantInt::get(PtrTy, 0);
    331 
    332   // IntToPtr const int.
    333   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    334     if (CE->getOpcode() == Instruction::IntToPtr)
    335       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    336         // The constant is very likely to have the right type already.
    337         if (CI->getType() == PtrTy)
    338           return CI;
    339         else
    340           return cast<ConstantInt>
    341             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    342       }
    343   return 0;
    344 }
    345 
    346 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
    347 /// collection of icmp eq/ne instructions that compare a value against a
    348 /// constant, return the value being compared, and stick the constant into the
    349 /// Values vector.
    350 static Value *
    351 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
    352                        const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
    353   Instruction *I = dyn_cast<Instruction>(V);
    354   if (I == 0) return 0;
    355 
    356   // If this is an icmp against a constant, handle this as one of the cases.
    357   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    358     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
    359       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    360         UsedICmps++;
    361         Vals.push_back(C);
    362         return I->getOperand(0);
    363       }
    364 
    365       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
    366       // the set.
    367       ConstantRange Span =
    368         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
    369 
    370       // If this is an and/!= check then we want to optimize "x ugt 2" into
    371       // x != 0 && x != 1.
    372       if (!isEQ)
    373         Span = Span.inverse();
    374 
    375       // If there are a ton of values, we don't want to make a ginormous switch.
    376       if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
    377           // We don't handle wrapped sets yet.
    378           Span.isWrappedSet())
    379         return 0;
    380 
    381       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    382         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
    383       UsedICmps++;
    384       return I->getOperand(0);
    385     }
    386     return 0;
    387   }
    388 
    389   // Otherwise, we can only handle an | or &, depending on isEQ.
    390   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
    391     return 0;
    392 
    393   unsigned NumValsBeforeLHS = Vals.size();
    394   unsigned UsedICmpsBeforeLHS = UsedICmps;
    395   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
    396                                           isEQ, UsedICmps)) {
    397     unsigned NumVals = Vals.size();
    398     unsigned UsedICmpsBeforeRHS = UsedICmps;
    399     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    400                                             isEQ, UsedICmps)) {
    401       if (LHS == RHS)
    402         return LHS;
    403       Vals.resize(NumVals);
    404       UsedICmps = UsedICmpsBeforeRHS;
    405     }
    406 
    407     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
    408     // set it and return success.
    409     if (Extra == 0 || Extra == I->getOperand(1)) {
    410       Extra = I->getOperand(1);
    411       return LHS;
    412     }
    413 
    414     Vals.resize(NumValsBeforeLHS);
    415     UsedICmps = UsedICmpsBeforeLHS;
    416     return 0;
    417   }
    418 
    419   // If the LHS can't be folded in, but Extra is available and RHS can, try to
    420   // use LHS as Extra.
    421   if (Extra == 0 || Extra == I->getOperand(0)) {
    422     Value *OldExtra = Extra;
    423     Extra = I->getOperand(0);
    424     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    425                                             isEQ, UsedICmps))
    426       return RHS;
    427     assert(Vals.size() == NumValsBeforeLHS);
    428     Extra = OldExtra;
    429   }
    430 
    431   return 0;
    432 }
    433 
    434 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    435   Instruction* Cond = 0;
    436   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    437     Cond = dyn_cast<Instruction>(SI->getCondition());
    438   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    439     if (BI->isConditional())
    440       Cond = dyn_cast<Instruction>(BI->getCondition());
    441   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    442     Cond = dyn_cast<Instruction>(IBI->getAddress());
    443   }
    444 
    445   TI->eraseFromParent();
    446   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    447 }
    448 
    449 /// isValueEqualityComparison - Return true if the specified terminator checks
    450 /// to see if a value is equal to constant integer value.
    451 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    452   Value *CV = 0;
    453   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    454     // Do not permit merging of large switch instructions into their
    455     // predecessors unless there is only one predecessor.
    456     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    457                                              pred_end(SI->getParent())) <= 128)
    458       CV = SI->getCondition();
    459   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    460     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    461       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    462         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
    463              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
    464             GetConstantInt(ICI->getOperand(1), TD))
    465           CV = ICI->getOperand(0);
    466 
    467   // Unwrap any lossless ptrtoint cast.
    468   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
    469     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
    470       CV = PTII->getOperand(0);
    471   return CV;
    472 }
    473 
    474 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
    475 /// decode all of the 'cases' that it represents and return the 'default' block.
    476 BasicBlock *SimplifyCFGOpt::
    477 GetValueEqualityComparisonCases(TerminatorInst *TI,
    478                                 std::vector<std::pair<ConstantInt*,
    479                                                       BasicBlock*> > &Cases) {
    480   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    481     Cases.reserve(SI->getNumCases());
    482     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
    483       Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
    484     return SI->getDefaultDest();
    485   }
    486 
    487   BranchInst *BI = cast<BranchInst>(TI);
    488   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    489   Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
    490                                  BI->getSuccessor(ICI->getPredicate() ==
    491                                                   ICmpInst::ICMP_NE)));
    492   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    493 }
    494 
    495 
    496 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
    497 /// in the list that match the specified block.
    498 static void EliminateBlockCases(BasicBlock *BB,
    499                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
    500   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
    501     if (Cases[i].second == BB) {
    502       Cases.erase(Cases.begin()+i);
    503       --i; --e;
    504     }
    505 }
    506 
    507 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
    508 /// well.
    509 static bool
    510 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
    511               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
    512   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
    513 
    514   // Make V1 be smaller than V2.
    515   if (V1->size() > V2->size())
    516     std::swap(V1, V2);
    517 
    518   if (V1->size() == 0) return false;
    519   if (V1->size() == 1) {
    520     // Just scan V2.
    521     ConstantInt *TheVal = (*V1)[0].first;
    522     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    523       if (TheVal == (*V2)[i].first)
    524         return true;
    525   }
    526 
    527   // Otherwise, just sort both lists and compare element by element.
    528   array_pod_sort(V1->begin(), V1->end());
    529   array_pod_sort(V2->begin(), V2->end());
    530   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    531   while (i1 != e1 && i2 != e2) {
    532     if ((*V1)[i1].first == (*V2)[i2].first)
    533       return true;
    534     if ((*V1)[i1].first < (*V2)[i2].first)
    535       ++i1;
    536     else
    537       ++i2;
    538   }
    539   return false;
    540 }
    541 
    542 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
    543 /// terminator instruction and its block is known to only have a single
    544 /// predecessor block, check to see if that predecessor is also a value
    545 /// comparison with the same value, and if that comparison determines the
    546 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
    547 /// form of jump threading.
    548 bool SimplifyCFGOpt::
    549 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    550                                               BasicBlock *Pred,
    551                                               IRBuilder<> &Builder) {
    552   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    553   if (!PredVal) return false;  // Not a value comparison in predecessor.
    554 
    555   Value *ThisVal = isValueEqualityComparison(TI);
    556   assert(ThisVal && "This isn't a value comparison!!");
    557   if (ThisVal != PredVal) return false;  // Different predicates.
    558 
    559   // Find out information about when control will move from Pred to TI's block.
    560   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
    561   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    562                                                         PredCases);
    563   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    564 
    565   // Find information about how control leaves this block.
    566   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
    567   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    568   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    569 
    570   // If TI's block is the default block from Pred's comparison, potentially
    571   // simplify TI based on this knowledge.
    572   if (PredDef == TI->getParent()) {
    573     // If we are here, we know that the value is none of those cases listed in
    574     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    575     // can simplify TI.
    576     if (!ValuesOverlap(PredCases, ThisCases))
    577       return false;
    578 
    579     if (isa<BranchInst>(TI)) {
    580       // Okay, one of the successors of this condbr is dead.  Convert it to a
    581       // uncond br.
    582       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    583       // Insert the new branch.
    584       Instruction *NI = Builder.CreateBr(ThisDef);
    585       (void) NI;
    586 
    587       // Remove PHI node entries for the dead edge.
    588       ThisCases[0].second->removePredecessor(TI->getParent());
    589 
    590       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    591            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    592 
    593       EraseTerminatorInstAndDCECond(TI);
    594       return true;
    595     }
    596 
    597     SwitchInst *SI = cast<SwitchInst>(TI);
    598     // Okay, TI has cases that are statically dead, prune them away.
    599     SmallPtrSet<Constant*, 16> DeadCases;
    600     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    601       DeadCases.insert(PredCases[i].first);
    602 
    603     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    604                  << "Through successor TI: " << *TI);
    605 
    606     for (unsigned i = SI->getNumCases()-1; i != 0; --i)
    607       if (DeadCases.count(SI->getCaseValue(i))) {
    608         SI->getSuccessor(i)->removePredecessor(TI->getParent());
    609         SI->removeCase(i);
    610       }
    611 
    612     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    613     return true;
    614   }
    615 
    616   // Otherwise, TI's block must correspond to some matched value.  Find out
    617   // which value (or set of values) this is.
    618   ConstantInt *TIV = 0;
    619   BasicBlock *TIBB = TI->getParent();
    620   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    621     if (PredCases[i].second == TIBB) {
    622       if (TIV != 0)
    623         return false;  // Cannot handle multiple values coming to this block.
    624       TIV = PredCases[i].first;
    625     }
    626   assert(TIV && "No edge from pred to succ?");
    627 
    628   // Okay, we found the one constant that our value can be if we get into TI's
    629   // BB.  Find out which successor will unconditionally be branched to.
    630   BasicBlock *TheRealDest = 0;
    631   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    632     if (ThisCases[i].first == TIV) {
    633       TheRealDest = ThisCases[i].second;
    634       break;
    635     }
    636 
    637   // If not handled by any explicit cases, it is handled by the default case.
    638   if (TheRealDest == 0) TheRealDest = ThisDef;
    639 
    640   // Remove PHI node entries for dead edges.
    641   BasicBlock *CheckEdge = TheRealDest;
    642   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    643     if (*SI != CheckEdge)
    644       (*SI)->removePredecessor(TIBB);
    645     else
    646       CheckEdge = 0;
    647 
    648   // Insert the new branch.
    649   Instruction *NI = Builder.CreateBr(TheRealDest);
    650   (void) NI;
    651 
    652   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    653             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    654 
    655   EraseTerminatorInstAndDCECond(TI);
    656   return true;
    657 }
    658 
    659 namespace {
    660   /// ConstantIntOrdering - This class implements a stable ordering of constant
    661   /// integers that does not depend on their address.  This is important for
    662   /// applications that sort ConstantInt's to ensure uniqueness.
    663   struct ConstantIntOrdering {
    664     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    665       return LHS->getValue().ult(RHS->getValue());
    666     }
    667   };
    668 }
    669 
    670 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
    671   const ConstantInt *LHS = *(const ConstantInt**)P1;
    672   const ConstantInt *RHS = *(const ConstantInt**)P2;
    673   if (LHS->getValue().ult(RHS->getValue()))
    674     return 1;
    675   if (LHS->getValue() == RHS->getValue())
    676     return 0;
    677   return -1;
    678 }
    679 
    680 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
    681 /// equality comparison instruction (either a switch or a branch on "X == c").
    682 /// See if any of the predecessors of the terminator block are value comparisons
    683 /// on the same value.  If so, and if safe to do so, fold them together.
    684 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    685                                                          IRBuilder<> &Builder) {
    686   BasicBlock *BB = TI->getParent();
    687   Value *CV = isValueEqualityComparison(TI);  // CondVal
    688   assert(CV && "Not a comparison?");
    689   bool Changed = false;
    690 
    691   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    692   while (!Preds.empty()) {
    693     BasicBlock *Pred = Preds.pop_back_val();
    694 
    695     // See if the predecessor is a comparison with the same value.
    696     TerminatorInst *PTI = Pred->getTerminator();
    697     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    698 
    699     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    700       // Figure out which 'cases' to copy from SI to PSI.
    701       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
    702       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    703 
    704       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
    705       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    706 
    707       // Based on whether the default edge from PTI goes to BB or not, fill in
    708       // PredCases and PredDefault with the new switch cases we would like to
    709       // build.
    710       SmallVector<BasicBlock*, 8> NewSuccessors;
    711 
    712       if (PredDefault == BB) {
    713         // If this is the default destination from PTI, only the edges in TI
    714         // that don't occur in PTI, or that branch to BB will be activated.
    715         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    716         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    717           if (PredCases[i].second != BB)
    718             PTIHandled.insert(PredCases[i].first);
    719           else {
    720             // The default destination is BB, we don't need explicit targets.
    721             std::swap(PredCases[i], PredCases.back());
    722             PredCases.pop_back();
    723             --i; --e;
    724           }
    725 
    726         // Reconstruct the new switch statement we will be building.
    727         if (PredDefault != BBDefault) {
    728           PredDefault->removePredecessor(Pred);
    729           PredDefault = BBDefault;
    730           NewSuccessors.push_back(BBDefault);
    731         }
    732         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    733           if (!PTIHandled.count(BBCases[i].first) &&
    734               BBCases[i].second != BBDefault) {
    735             PredCases.push_back(BBCases[i]);
    736             NewSuccessors.push_back(BBCases[i].second);
    737           }
    738 
    739       } else {
    740         // If this is not the default destination from PSI, only the edges
    741         // in SI that occur in PSI with a destination of BB will be
    742         // activated.
    743         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    744         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    745           if (PredCases[i].second == BB) {
    746             PTIHandled.insert(PredCases[i].first);
    747             std::swap(PredCases[i], PredCases.back());
    748             PredCases.pop_back();
    749             --i; --e;
    750           }
    751 
    752         // Okay, now we know which constants were sent to BB from the
    753         // predecessor.  Figure out where they will all go now.
    754         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    755           if (PTIHandled.count(BBCases[i].first)) {
    756             // If this is one we are capable of getting...
    757             PredCases.push_back(BBCases[i]);
    758             NewSuccessors.push_back(BBCases[i].second);
    759             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
    760           }
    761 
    762         // If there are any constants vectored to BB that TI doesn't handle,
    763         // they must go to the default destination of TI.
    764         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    765                                     PTIHandled.begin(),
    766                E = PTIHandled.end(); I != E; ++I) {
    767           PredCases.push_back(std::make_pair(*I, BBDefault));
    768           NewSuccessors.push_back(BBDefault);
    769         }
    770       }
    771 
    772       // Okay, at this point, we know which new successor Pred will get.  Make
    773       // sure we update the number of entries in the PHI nodes for these
    774       // successors.
    775       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
    776         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
    777 
    778       Builder.SetInsertPoint(PTI);
    779       // Convert pointer to int before we switch.
    780       if (CV->getType()->isPointerTy()) {
    781         assert(TD && "Cannot switch on pointer without TargetData");
    782         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
    783                                     "magicptr");
    784       }
    785 
    786       // Now that the successors are updated, create the new Switch instruction.
    787       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
    788                                                PredCases.size());
    789       NewSI->setDebugLoc(PTI->getDebugLoc());
    790       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    791         NewSI->addCase(PredCases[i].first, PredCases[i].second);
    792 
    793       EraseTerminatorInstAndDCECond(PTI);
    794 
    795       // Okay, last check.  If BB is still a successor of PSI, then we must
    796       // have an infinite loop case.  If so, add an infinitely looping block
    797       // to handle the case to preserve the behavior of the code.
    798       BasicBlock *InfLoopBlock = 0;
    799       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
    800         if (NewSI->getSuccessor(i) == BB) {
    801           if (InfLoopBlock == 0) {
    802             // Insert it at the end of the function, because it's either code,
    803             // or it won't matter if it's hot. :)
    804             InfLoopBlock = BasicBlock::Create(BB->getContext(),
    805                                               "infloop", BB->getParent());
    806             BranchInst::Create(InfLoopBlock, InfLoopBlock);
    807           }
    808           NewSI->setSuccessor(i, InfLoopBlock);
    809         }
    810 
    811       Changed = true;
    812     }
    813   }
    814   return Changed;
    815 }
    816 
    817 // isSafeToHoistInvoke - If we would need to insert a select that uses the
    818 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
    819 // would need to do this), we can't hoist the invoke, as there is nowhere
    820 // to put the select in this case.
    821 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
    822                                 Instruction *I1, Instruction *I2) {
    823   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    824     PHINode *PN;
    825     for (BasicBlock::iterator BBI = SI->begin();
    826          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    827       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    828       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    829       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
    830         return false;
    831       }
    832     }
    833   }
    834   return true;
    835 }
    836 
    837 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
    838 /// BB2, hoist any common code in the two blocks up into the branch block.  The
    839 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
    840 static bool HoistThenElseCodeToIf(BranchInst *BI) {
    841   // This does very trivial matching, with limited scanning, to find identical
    842   // instructions in the two blocks.  In particular, we don't want to get into
    843   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
    844   // such, we currently just scan for obviously identical instructions in an
    845   // identical order.
    846   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
    847   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
    848 
    849   BasicBlock::iterator BB1_Itr = BB1->begin();
    850   BasicBlock::iterator BB2_Itr = BB2->begin();
    851 
    852   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
    853   // Skip debug info if it is not identical.
    854   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    855   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    856   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    857     while (isa<DbgInfoIntrinsic>(I1))
    858       I1 = BB1_Itr++;
    859     while (isa<DbgInfoIntrinsic>(I2))
    860       I2 = BB2_Itr++;
    861   }
    862   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
    863       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
    864     return false;
    865 
    866   // If we get here, we can hoist at least one instruction.
    867   BasicBlock *BIParent = BI->getParent();
    868 
    869   do {
    870     // If we are hoisting the terminator instruction, don't move one (making a
    871     // broken BB), instead clone it, and remove BI.
    872     if (isa<TerminatorInst>(I1))
    873       goto HoistTerminator;
    874 
    875     // For a normal instruction, we just move one to right before the branch,
    876     // then replace all uses of the other with the first.  Finally, we remove
    877     // the now redundant second instruction.
    878     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
    879     if (!I2->use_empty())
    880       I2->replaceAllUsesWith(I1);
    881     I1->intersectOptionalDataWith(I2);
    882     I2->eraseFromParent();
    883 
    884     I1 = BB1_Itr++;
    885     I2 = BB2_Itr++;
    886     // Skip debug info if it is not identical.
    887     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    888     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    889     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    890       while (isa<DbgInfoIntrinsic>(I1))
    891         I1 = BB1_Itr++;
    892       while (isa<DbgInfoIntrinsic>(I2))
    893         I2 = BB2_Itr++;
    894     }
    895   } while (I1->isIdenticalToWhenDefined(I2));
    896 
    897   return true;
    898 
    899 HoistTerminator:
    900   // It may not be possible to hoist an invoke.
    901   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
    902     return true;
    903 
    904   // Okay, it is safe to hoist the terminator.
    905   Instruction *NT = I1->clone();
    906   BIParent->getInstList().insert(BI, NT);
    907   if (!NT->getType()->isVoidTy()) {
    908     I1->replaceAllUsesWith(NT);
    909     I2->replaceAllUsesWith(NT);
    910     NT->takeName(I1);
    911   }
    912 
    913   IRBuilder<true, NoFolder> Builder(NT);
    914   // Hoisting one of the terminators from our successor is a great thing.
    915   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
    916   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
    917   // nodes, so we insert select instruction to compute the final result.
    918   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
    919   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    920     PHINode *PN;
    921     for (BasicBlock::iterator BBI = SI->begin();
    922          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    923       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    924       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    925       if (BB1V == BB2V) continue;
    926 
    927       // These values do not agree.  Insert a select instruction before NT
    928       // that determines the right value.
    929       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
    930       if (SI == 0)
    931         SI = cast<SelectInst>
    932           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
    933                                 BB1V->getName()+"."+BB2V->getName()));
    934 
    935       // Make the PHI node use the select for all incoming values for BB1/BB2
    936       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    937         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
    938           PN->setIncomingValue(i, SI);
    939     }
    940   }
    941 
    942   // Update any PHI nodes in our new successors.
    943   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
    944     AddPredecessorToBlock(*SI, BIParent, BB1);
    945 
    946   EraseTerminatorInstAndDCECond(BI);
    947   return true;
    948 }
    949 
    950 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
    951 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
    952 /// (for now, restricted to a single instruction that's side effect free) from
    953 /// the BB1 into the branch block to speculatively execute it.
    954 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
    955   // Only speculatively execution a single instruction (not counting the
    956   // terminator) for now.
    957   Instruction *HInst = NULL;
    958   Instruction *Term = BB1->getTerminator();
    959   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
    960        BBI != BBE; ++BBI) {
    961     Instruction *I = BBI;
    962     // Skip debug info.
    963     if (isa<DbgInfoIntrinsic>(I)) continue;
    964     if (I == Term) break;
    965 
    966     if (HInst)
    967       return false;
    968     HInst = I;
    969   }
    970   if (!HInst)
    971     return false;
    972 
    973   // Be conservative for now. FP select instruction can often be expensive.
    974   Value *BrCond = BI->getCondition();
    975   if (isa<FCmpInst>(BrCond))
    976     return false;
    977 
    978   // If BB1 is actually on the false edge of the conditional branch, remember
    979   // to swap the select operands later.
    980   bool Invert = false;
    981   if (BB1 != BI->getSuccessor(0)) {
    982     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
    983     Invert = true;
    984   }
    985 
    986   // Turn
    987   // BB:
    988   //     %t1 = icmp
    989   //     br i1 %t1, label %BB1, label %BB2
    990   // BB1:
    991   //     %t3 = add %t2, c
    992   //     br label BB2
    993   // BB2:
    994   // =>
    995   // BB:
    996   //     %t1 = icmp
    997   //     %t4 = add %t2, c
    998   //     %t3 = select i1 %t1, %t2, %t3
    999   switch (HInst->getOpcode()) {
   1000   default: return false;  // Not safe / profitable to hoist.
   1001   case Instruction::Add:
   1002   case Instruction::Sub:
   1003     // Not worth doing for vector ops.
   1004     if (HInst->getType()->isVectorTy())
   1005       return false;
   1006     break;
   1007   case Instruction::And:
   1008   case Instruction::Or:
   1009   case Instruction::Xor:
   1010   case Instruction::Shl:
   1011   case Instruction::LShr:
   1012   case Instruction::AShr:
   1013     // Don't mess with vector operations.
   1014     if (HInst->getType()->isVectorTy())
   1015       return false;
   1016     break;   // These are all cheap and non-trapping instructions.
   1017   }
   1018 
   1019   // If the instruction is obviously dead, don't try to predicate it.
   1020   if (HInst->use_empty()) {
   1021     HInst->eraseFromParent();
   1022     return true;
   1023   }
   1024 
   1025   // Can we speculatively execute the instruction? And what is the value
   1026   // if the condition is false? Consider the phi uses, if the incoming value
   1027   // from the "if" block are all the same V, then V is the value of the
   1028   // select if the condition is false.
   1029   BasicBlock *BIParent = BI->getParent();
   1030   SmallVector<PHINode*, 4> PHIUses;
   1031   Value *FalseV = NULL;
   1032 
   1033   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
   1034   for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
   1035        UI != E; ++UI) {
   1036     // Ignore any user that is not a PHI node in BB2.  These can only occur in
   1037     // unreachable blocks, because they would not be dominated by the instr.
   1038     PHINode *PN = dyn_cast<PHINode>(*UI);
   1039     if (!PN || PN->getParent() != BB2)
   1040       return false;
   1041     PHIUses.push_back(PN);
   1042 
   1043     Value *PHIV = PN->getIncomingValueForBlock(BIParent);
   1044     if (!FalseV)
   1045       FalseV = PHIV;
   1046     else if (FalseV != PHIV)
   1047       return false;  // Inconsistent value when condition is false.
   1048   }
   1049 
   1050   assert(FalseV && "Must have at least one user, and it must be a PHI");
   1051 
   1052   // Do not hoist the instruction if any of its operands are defined but not
   1053   // used in this BB. The transformation will prevent the operand from
   1054   // being sunk into the use block.
   1055   for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
   1056        i != e; ++i) {
   1057     Instruction *OpI = dyn_cast<Instruction>(*i);
   1058     if (OpI && OpI->getParent() == BIParent &&
   1059         !OpI->isUsedInBasicBlock(BIParent))
   1060       return false;
   1061   }
   1062 
   1063   // If we get here, we can hoist the instruction. Try to place it
   1064   // before the icmp instruction preceding the conditional branch.
   1065   BasicBlock::iterator InsertPos = BI;
   1066   if (InsertPos != BIParent->begin())
   1067     --InsertPos;
   1068   // Skip debug info between condition and branch.
   1069   while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
   1070     --InsertPos;
   1071   if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
   1072     SmallPtrSet<Instruction *, 4> BB1Insns;
   1073     for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
   1074         BB1I != BB1E; ++BB1I)
   1075       BB1Insns.insert(BB1I);
   1076     for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
   1077         UI != UE; ++UI) {
   1078       Instruction *Use = cast<Instruction>(*UI);
   1079       if (!BB1Insns.count(Use)) continue;
   1080 
   1081       // If BrCond uses the instruction that place it just before
   1082       // branch instruction.
   1083       InsertPos = BI;
   1084       break;
   1085     }
   1086   } else
   1087     InsertPos = BI;
   1088   BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
   1089 
   1090   // Create a select whose true value is the speculatively executed value and
   1091   // false value is the previously determined FalseV.
   1092   IRBuilder<true, NoFolder> Builder(BI);
   1093   SelectInst *SI;
   1094   if (Invert)
   1095     SI = cast<SelectInst>
   1096       (Builder.CreateSelect(BrCond, FalseV, HInst,
   1097                             FalseV->getName() + "." + HInst->getName()));
   1098   else
   1099     SI = cast<SelectInst>
   1100       (Builder.CreateSelect(BrCond, HInst, FalseV,
   1101                             HInst->getName() + "." + FalseV->getName()));
   1102 
   1103   // Make the PHI node use the select for all incoming values for "then" and
   1104   // "if" blocks.
   1105   for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
   1106     PHINode *PN = PHIUses[i];
   1107     for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
   1108       if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
   1109         PN->setIncomingValue(j, SI);
   1110   }
   1111 
   1112   ++NumSpeculations;
   1113   return true;
   1114 }
   1115 
   1116 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
   1117 /// across this block.
   1118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1119   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1120   unsigned Size = 0;
   1121 
   1122   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1123     if (isa<DbgInfoIntrinsic>(BBI))
   1124       continue;
   1125     if (Size > 10) return false;  // Don't clone large BB's.
   1126     ++Size;
   1127 
   1128     // We can only support instructions that do not define values that are
   1129     // live outside of the current basic block.
   1130     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
   1131          UI != E; ++UI) {
   1132       Instruction *U = cast<Instruction>(*UI);
   1133       if (U->getParent() != BB || isa<PHINode>(U)) return false;
   1134     }
   1135 
   1136     // Looks ok, continue checking.
   1137   }
   1138 
   1139   return true;
   1140 }
   1141 
   1142 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
   1143 /// that is defined in the same block as the branch and if any PHI entries are
   1144 /// constants, thread edges corresponding to that entry to be branches to their
   1145 /// ultimate destination.
   1146 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
   1147   BasicBlock *BB = BI->getParent();
   1148   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1149   // NOTE: we currently cannot transform this case if the PHI node is used
   1150   // outside of the block.
   1151   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1152     return false;
   1153 
   1154   // Degenerate case of a single entry PHI.
   1155   if (PN->getNumIncomingValues() == 1) {
   1156     FoldSingleEntryPHINodes(PN->getParent());
   1157     return true;
   1158   }
   1159 
   1160   // Now we know that this block has multiple preds and two succs.
   1161   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1162 
   1163   // Okay, this is a simple enough basic block.  See if any phi values are
   1164   // constants.
   1165   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1166     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1167     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
   1168 
   1169     // Okay, we now know that all edges from PredBB should be revectored to
   1170     // branch to RealDest.
   1171     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1172     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1173 
   1174     if (RealDest == BB) continue;  // Skip self loops.
   1175     // Skip if the predecessor's terminator is an indirect branch.
   1176     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1177 
   1178     // The dest block might have PHI nodes, other predecessors and other
   1179     // difficult cases.  Instead of being smart about this, just insert a new
   1180     // block that jumps to the destination block, effectively splitting
   1181     // the edge we are about to create.
   1182     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1183                                             RealDest->getName()+".critedge",
   1184                                             RealDest->getParent(), RealDest);
   1185     BranchInst::Create(RealDest, EdgeBB);
   1186 
   1187     // Update PHI nodes.
   1188     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1189 
   1190     // BB may have instructions that are being threaded over.  Clone these
   1191     // instructions into EdgeBB.  We know that there will be no uses of the
   1192     // cloned instructions outside of EdgeBB.
   1193     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1194     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1195     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1196       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1197         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1198         continue;
   1199       }
   1200       // Clone the instruction.
   1201       Instruction *N = BBI->clone();
   1202       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1203 
   1204       // Update operands due to translation.
   1205       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1206            i != e; ++i) {
   1207         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1208         if (PI != TranslateMap.end())
   1209           *i = PI->second;
   1210       }
   1211 
   1212       // Check for trivial simplification.
   1213       if (Value *V = SimplifyInstruction(N, TD)) {
   1214         TranslateMap[BBI] = V;
   1215         delete N;   // Instruction folded away, don't need actual inst
   1216       } else {
   1217         // Insert the new instruction into its new home.
   1218         EdgeBB->getInstList().insert(InsertPt, N);
   1219         if (!BBI->use_empty())
   1220           TranslateMap[BBI] = N;
   1221       }
   1222     }
   1223 
   1224     // Loop over all of the edges from PredBB to BB, changing them to branch
   1225     // to EdgeBB instead.
   1226     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1227     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1228       if (PredBBTI->getSuccessor(i) == BB) {
   1229         BB->removePredecessor(PredBB);
   1230         PredBBTI->setSuccessor(i, EdgeBB);
   1231       }
   1232 
   1233     // Recurse, simplifying any other constants.
   1234     return FoldCondBranchOnPHI(BI, TD) | true;
   1235   }
   1236 
   1237   return false;
   1238 }
   1239 
   1240 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
   1241 /// PHI node, see if we can eliminate it.
   1242 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
   1243   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1244   // statement", which has a very simple dominance structure.  Basically, we
   1245   // are trying to find the condition that is being branched on, which
   1246   // subsequently causes this merge to happen.  We really want control
   1247   // dependence information for this check, but simplifycfg can't keep it up
   1248   // to date, and this catches most of the cases we care about anyway.
   1249   BasicBlock *BB = PN->getParent();
   1250   BasicBlock *IfTrue, *IfFalse;
   1251   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1252   if (!IfCond ||
   1253       // Don't bother if the branch will be constant folded trivially.
   1254       isa<ConstantInt>(IfCond))
   1255     return false;
   1256 
   1257   // Okay, we found that we can merge this two-entry phi node into a select.
   1258   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1259   // At some point this becomes non-profitable (particularly if the target
   1260   // doesn't support cmov's).  Only do this transformation if there are two or
   1261   // fewer PHI nodes in this block.
   1262   unsigned NumPhis = 0;
   1263   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1264     if (NumPhis > 2)
   1265       return false;
   1266 
   1267   // Loop over the PHI's seeing if we can promote them all to select
   1268   // instructions.  While we are at it, keep track of the instructions
   1269   // that need to be moved to the dominating block.
   1270   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1271   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1272            MaxCostVal1 = PHINodeFoldingThreshold;
   1273 
   1274   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1275     PHINode *PN = cast<PHINode>(II++);
   1276     if (Value *V = SimplifyInstruction(PN, TD)) {
   1277       PN->replaceAllUsesWith(V);
   1278       PN->eraseFromParent();
   1279       continue;
   1280     }
   1281 
   1282     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1283                              MaxCostVal0) ||
   1284         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1285                              MaxCostVal1))
   1286       return false;
   1287   }
   1288 
   1289   // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
   1290   // we ran out of PHIs then we simplified them all.
   1291   PN = dyn_cast<PHINode>(BB->begin());
   1292   if (PN == 0) return true;
   1293 
   1294   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1295   // often be turned into switches and other things.
   1296   if (PN->getType()->isIntegerTy(1) &&
   1297       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1298        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1299        isa<BinaryOperator>(IfCond)))
   1300     return false;
   1301 
   1302   // If we all PHI nodes are promotable, check to make sure that all
   1303   // instructions in the predecessor blocks can be promoted as well.  If
   1304   // not, we won't be able to get rid of the control flow, so it's not
   1305   // worth promoting to select instructions.
   1306   BasicBlock *DomBlock = 0;
   1307   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1308   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1309   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1310     IfBlock1 = 0;
   1311   } else {
   1312     DomBlock = *pred_begin(IfBlock1);
   1313     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1314       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1315         // This is not an aggressive instruction that we can promote.
   1316         // Because of this, we won't be able to get rid of the control
   1317         // flow, so the xform is not worth it.
   1318         return false;
   1319       }
   1320   }
   1321 
   1322   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1323     IfBlock2 = 0;
   1324   } else {
   1325     DomBlock = *pred_begin(IfBlock2);
   1326     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1327       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1328         // This is not an aggressive instruction that we can promote.
   1329         // Because of this, we won't be able to get rid of the control
   1330         // flow, so the xform is not worth it.
   1331         return false;
   1332       }
   1333   }
   1334 
   1335   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1336                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1337 
   1338   // If we can still promote the PHI nodes after this gauntlet of tests,
   1339   // do all of the PHI's now.
   1340   Instruction *InsertPt = DomBlock->getTerminator();
   1341   IRBuilder<true, NoFolder> Builder(InsertPt);
   1342 
   1343   // Move all 'aggressive' instructions, which are defined in the
   1344   // conditional parts of the if's up to the dominating block.
   1345   if (IfBlock1)
   1346     DomBlock->getInstList().splice(InsertPt,
   1347                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1348                                    IfBlock1->getTerminator());
   1349   if (IfBlock2)
   1350     DomBlock->getInstList().splice(InsertPt,
   1351                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1352                                    IfBlock2->getTerminator());
   1353 
   1354   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1355     // Change the PHI node into a select instruction.
   1356     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1357     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1358 
   1359     SelectInst *NV =
   1360       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1361     PN->replaceAllUsesWith(NV);
   1362     NV->takeName(PN);
   1363     PN->eraseFromParent();
   1364   }
   1365 
   1366   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1367   // has been flattened.  Change DomBlock to jump directly to our new block to
   1368   // avoid other simplifycfg's kicking in on the diamond.
   1369   TerminatorInst *OldTI = DomBlock->getTerminator();
   1370   Builder.SetInsertPoint(OldTI);
   1371   Builder.CreateBr(BB);
   1372   OldTI->eraseFromParent();
   1373   return true;
   1374 }
   1375 
   1376 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
   1377 /// to two returning blocks, try to merge them together into one return,
   1378 /// introducing a select if the return values disagree.
   1379 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1380                                            IRBuilder<> &Builder) {
   1381   assert(BI->isConditional() && "Must be a conditional branch");
   1382   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1383   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1384   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1385   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1386 
   1387   // Check to ensure both blocks are empty (just a return) or optionally empty
   1388   // with PHI nodes.  If there are other instructions, merging would cause extra
   1389   // computation on one path or the other.
   1390   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1391     return false;
   1392   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1393     return false;
   1394 
   1395   Builder.SetInsertPoint(BI);
   1396   // Okay, we found a branch that is going to two return nodes.  If
   1397   // there is no return value for this function, just change the
   1398   // branch into a return.
   1399   if (FalseRet->getNumOperands() == 0) {
   1400     TrueSucc->removePredecessor(BI->getParent());
   1401     FalseSucc->removePredecessor(BI->getParent());
   1402     Builder.CreateRetVoid();
   1403     EraseTerminatorInstAndDCECond(BI);
   1404     return true;
   1405   }
   1406 
   1407   // Otherwise, figure out what the true and false return values are
   1408   // so we can insert a new select instruction.
   1409   Value *TrueValue = TrueRet->getReturnValue();
   1410   Value *FalseValue = FalseRet->getReturnValue();
   1411 
   1412   // Unwrap any PHI nodes in the return blocks.
   1413   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1414     if (TVPN->getParent() == TrueSucc)
   1415       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1416   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1417     if (FVPN->getParent() == FalseSucc)
   1418       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1419 
   1420   // In order for this transformation to be safe, we must be able to
   1421   // unconditionally execute both operands to the return.  This is
   1422   // normally the case, but we could have a potentially-trapping
   1423   // constant expression that prevents this transformation from being
   1424   // safe.
   1425   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1426     if (TCV->canTrap())
   1427       return false;
   1428   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   1429     if (FCV->canTrap())
   1430       return false;
   1431 
   1432   // Okay, we collected all the mapped values and checked them for sanity, and
   1433   // defined to really do this transformation.  First, update the CFG.
   1434   TrueSucc->removePredecessor(BI->getParent());
   1435   FalseSucc->removePredecessor(BI->getParent());
   1436 
   1437   // Insert select instructions where needed.
   1438   Value *BrCond = BI->getCondition();
   1439   if (TrueValue) {
   1440     // Insert a select if the results differ.
   1441     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   1442     } else if (isa<UndefValue>(TrueValue)) {
   1443       TrueValue = FalseValue;
   1444     } else {
   1445       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   1446                                        FalseValue, "retval");
   1447     }
   1448   }
   1449 
   1450   Value *RI = !TrueValue ?
   1451     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   1452 
   1453   (void) RI;
   1454 
   1455   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   1456                << "\n  " << *BI << "NewRet = " << *RI
   1457                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   1458 
   1459   EraseTerminatorInstAndDCECond(BI);
   1460 
   1461   return true;
   1462 }
   1463 
   1464 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
   1465 /// predecessor branches to us and one of our successors, fold the block into
   1466 /// the predecessor and use logical operations to pick the right destination.
   1467 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
   1468   BasicBlock *BB = BI->getParent();
   1469 
   1470   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   1471   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   1472     Cond->getParent() != BB || !Cond->hasOneUse())
   1473   return false;
   1474 
   1475   // Only allow this if the condition is a simple instruction that can be
   1476   // executed unconditionally.  It must be in the same block as the branch, and
   1477   // must be at the front of the block.
   1478   BasicBlock::iterator FrontIt = BB->front();
   1479 
   1480   // Ignore dbg intrinsics.
   1481   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1482 
   1483   // Allow a single instruction to be hoisted in addition to the compare
   1484   // that feeds the branch.  We later ensure that any values that _it_ uses
   1485   // were also live in the predecessor, so that we don't unnecessarily create
   1486   // register pressure or inhibit out-of-order execution.
   1487   Instruction *BonusInst = 0;
   1488   if (&*FrontIt != Cond &&
   1489       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
   1490       FrontIt->isSafeToSpeculativelyExecute()) {
   1491     BonusInst = &*FrontIt;
   1492     ++FrontIt;
   1493 
   1494     // Ignore dbg intrinsics.
   1495     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1496   }
   1497 
   1498   // Only a single bonus inst is allowed.
   1499   if (&*FrontIt != Cond)
   1500     return false;
   1501 
   1502   // Make sure the instruction after the condition is the cond branch.
   1503   BasicBlock::iterator CondIt = Cond; ++CondIt;
   1504 
   1505   // Ingore dbg intrinsics.
   1506   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   1507 
   1508   if (&*CondIt != BI)
   1509     return false;
   1510 
   1511   // Cond is known to be a compare or binary operator.  Check to make sure that
   1512   // neither operand is a potentially-trapping constant expression.
   1513   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   1514     if (CE->canTrap())
   1515       return false;
   1516   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   1517     if (CE->canTrap())
   1518       return false;
   1519 
   1520   // Finally, don't infinitely unroll conditional loops.
   1521   BasicBlock *TrueDest  = BI->getSuccessor(0);
   1522   BasicBlock *FalseDest = BI->getSuccessor(1);
   1523   if (TrueDest == BB || FalseDest == BB)
   1524     return false;
   1525 
   1526   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   1527     BasicBlock *PredBlock = *PI;
   1528     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   1529 
   1530     // Check that we have two conditional branches.  If there is a PHI node in
   1531     // the common successor, verify that the same value flows in from both
   1532     // blocks.
   1533     if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
   1534       continue;
   1535 
   1536     // Determine if the two branches share a common destination.
   1537     Instruction::BinaryOps Opc;
   1538     bool InvertPredCond = false;
   1539 
   1540     if (PBI->getSuccessor(0) == TrueDest)
   1541       Opc = Instruction::Or;
   1542     else if (PBI->getSuccessor(1) == FalseDest)
   1543       Opc = Instruction::And;
   1544     else if (PBI->getSuccessor(0) == FalseDest)
   1545       Opc = Instruction::And, InvertPredCond = true;
   1546     else if (PBI->getSuccessor(1) == TrueDest)
   1547       Opc = Instruction::Or, InvertPredCond = true;
   1548     else
   1549       continue;
   1550 
   1551     // Ensure that any values used in the bonus instruction are also used
   1552     // by the terminator of the predecessor.  This means that those values
   1553     // must already have been resolved, so we won't be inhibiting the
   1554     // out-of-order core by speculating them earlier.
   1555     if (BonusInst) {
   1556       // Collect the values used by the bonus inst
   1557       SmallPtrSet<Value*, 4> UsedValues;
   1558       for (Instruction::op_iterator OI = BonusInst->op_begin(),
   1559            OE = BonusInst->op_end(); OI != OE; ++OI) {
   1560         Value* V = *OI;
   1561         if (!isa<Constant>(V))
   1562           UsedValues.insert(V);
   1563       }
   1564 
   1565       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
   1566       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
   1567 
   1568       // Walk up to four levels back up the use-def chain of the predecessor's
   1569       // terminator to see if all those values were used.  The choice of four
   1570       // levels is arbitrary, to provide a compile-time-cost bound.
   1571       while (!Worklist.empty()) {
   1572         std::pair<Value*, unsigned> Pair = Worklist.back();
   1573         Worklist.pop_back();
   1574 
   1575         if (Pair.second >= 4) continue;
   1576         UsedValues.erase(Pair.first);
   1577         if (UsedValues.empty()) break;
   1578 
   1579         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
   1580           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
   1581                OI != OE; ++OI)
   1582             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
   1583         }
   1584       }
   1585 
   1586       if (!UsedValues.empty()) return false;
   1587     }
   1588 
   1589     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   1590     IRBuilder<> Builder(PBI);
   1591 
   1592     // If we need to invert the condition in the pred block to match, do so now.
   1593     if (InvertPredCond) {
   1594       Value *NewCond = PBI->getCondition();
   1595 
   1596       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   1597         CmpInst *CI = cast<CmpInst>(NewCond);
   1598         CI->setPredicate(CI->getInversePredicate());
   1599       } else {
   1600         NewCond = Builder.CreateNot(NewCond,
   1601                                     PBI->getCondition()->getName()+".not");
   1602       }
   1603 
   1604       PBI->setCondition(NewCond);
   1605       BasicBlock *OldTrue = PBI->getSuccessor(0);
   1606       BasicBlock *OldFalse = PBI->getSuccessor(1);
   1607       PBI->setSuccessor(0, OldFalse);
   1608       PBI->setSuccessor(1, OldTrue);
   1609     }
   1610 
   1611     // If we have a bonus inst, clone it into the predecessor block.
   1612     Instruction *NewBonus = 0;
   1613     if (BonusInst) {
   1614       NewBonus = BonusInst->clone();
   1615       PredBlock->getInstList().insert(PBI, NewBonus);
   1616       NewBonus->takeName(BonusInst);
   1617       BonusInst->setName(BonusInst->getName()+".old");
   1618     }
   1619 
   1620     // Clone Cond into the predecessor basic block, and or/and the
   1621     // two conditions together.
   1622     Instruction *New = Cond->clone();
   1623     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
   1624     PredBlock->getInstList().insert(PBI, New);
   1625     New->takeName(Cond);
   1626     Cond->setName(New->getName()+".old");
   1627 
   1628     Instruction *NewCond =
   1629       cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   1630                                             New, "or.cond"));
   1631     PBI->setCondition(NewCond);
   1632     if (PBI->getSuccessor(0) == BB) {
   1633       AddPredecessorToBlock(TrueDest, PredBlock, BB);
   1634       PBI->setSuccessor(0, TrueDest);
   1635     }
   1636     if (PBI->getSuccessor(1) == BB) {
   1637       AddPredecessorToBlock(FalseDest, PredBlock, BB);
   1638       PBI->setSuccessor(1, FalseDest);
   1639     }
   1640 
   1641     // Copy any debug value intrinsics into the end of PredBlock.
   1642     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   1643       if (isa<DbgInfoIntrinsic>(*I))
   1644         I->clone()->insertBefore(PBI);
   1645 
   1646     return true;
   1647   }
   1648   return false;
   1649 }
   1650 
   1651 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
   1652 /// predecessor of another block, this function tries to simplify it.  We know
   1653 /// that PBI and BI are both conditional branches, and BI is in one of the
   1654 /// successor blocks of PBI - PBI branches to BI.
   1655 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
   1656   assert(PBI->isConditional() && BI->isConditional());
   1657   BasicBlock *BB = BI->getParent();
   1658 
   1659   // If this block ends with a branch instruction, and if there is a
   1660   // predecessor that ends on a branch of the same condition, make
   1661   // this conditional branch redundant.
   1662   if (PBI->getCondition() == BI->getCondition() &&
   1663       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   1664     // Okay, the outcome of this conditional branch is statically
   1665     // knowable.  If this block had a single pred, handle specially.
   1666     if (BB->getSinglePredecessor()) {
   1667       // Turn this into a branch on constant.
   1668       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   1669       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   1670                                         CondIsTrue));
   1671       return true;  // Nuke the branch on constant.
   1672     }
   1673 
   1674     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   1675     // in the constant and simplify the block result.  Subsequent passes of
   1676     // simplifycfg will thread the block.
   1677     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   1678       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   1679       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
   1680                                        std::distance(PB, PE),
   1681                                        BI->getCondition()->getName() + ".pr",
   1682                                        BB->begin());
   1683       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   1684       // predecessor, compute the PHI'd conditional value for all of the preds.
   1685       // Any predecessor where the condition is not computable we keep symbolic.
   1686       for (pred_iterator PI = PB; PI != PE; ++PI) {
   1687         BasicBlock *P = *PI;
   1688         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   1689             PBI != BI && PBI->isConditional() &&
   1690             PBI->getCondition() == BI->getCondition() &&
   1691             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   1692           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   1693           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   1694                                               CondIsTrue), P);
   1695         } else {
   1696           NewPN->addIncoming(BI->getCondition(), P);
   1697         }
   1698       }
   1699 
   1700       BI->setCondition(NewPN);
   1701       return true;
   1702     }
   1703   }
   1704 
   1705   // If this is a conditional branch in an empty block, and if any
   1706   // predecessors is a conditional branch to one of our destinations,
   1707   // fold the conditions into logical ops and one cond br.
   1708   BasicBlock::iterator BBI = BB->begin();
   1709   // Ignore dbg intrinsics.
   1710   while (isa<DbgInfoIntrinsic>(BBI))
   1711     ++BBI;
   1712   if (&*BBI != BI)
   1713     return false;
   1714 
   1715 
   1716   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   1717     if (CE->canTrap())
   1718       return false;
   1719 
   1720   int PBIOp, BIOp;
   1721   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   1722     PBIOp = BIOp = 0;
   1723   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   1724     PBIOp = 0, BIOp = 1;
   1725   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   1726     PBIOp = 1, BIOp = 0;
   1727   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   1728     PBIOp = BIOp = 1;
   1729   else
   1730     return false;
   1731 
   1732   // Check to make sure that the other destination of this branch
   1733   // isn't BB itself.  If so, this is an infinite loop that will
   1734   // keep getting unwound.
   1735   if (PBI->getSuccessor(PBIOp) == BB)
   1736     return false;
   1737 
   1738   // Do not perform this transformation if it would require
   1739   // insertion of a large number of select instructions. For targets
   1740   // without predication/cmovs, this is a big pessimization.
   1741   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   1742 
   1743   unsigned NumPhis = 0;
   1744   for (BasicBlock::iterator II = CommonDest->begin();
   1745        isa<PHINode>(II); ++II, ++NumPhis)
   1746     if (NumPhis > 2) // Disable this xform.
   1747       return false;
   1748 
   1749   // Finally, if everything is ok, fold the branches to logical ops.
   1750   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
   1751 
   1752   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   1753                << "AND: " << *BI->getParent());
   1754 
   1755 
   1756   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   1757   // branch in it, where one edge (OtherDest) goes back to itself but the other
   1758   // exits.  We don't *know* that the program avoids the infinite loop
   1759   // (even though that seems likely).  If we do this xform naively, we'll end up
   1760   // recursively unpeeling the loop.  Since we know that (after the xform is
   1761   // done) that the block *is* infinite if reached, we just make it an obviously
   1762   // infinite loop with no cond branch.
   1763   if (OtherDest == BB) {
   1764     // Insert it at the end of the function, because it's either code,
   1765     // or it won't matter if it's hot. :)
   1766     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   1767                                                   "infloop", BB->getParent());
   1768     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1769     OtherDest = InfLoopBlock;
   1770   }
   1771 
   1772   DEBUG(dbgs() << *PBI->getParent()->getParent());
   1773 
   1774   // BI may have other predecessors.  Because of this, we leave
   1775   // it alone, but modify PBI.
   1776 
   1777   // Make sure we get to CommonDest on True&True directions.
   1778   Value *PBICond = PBI->getCondition();
   1779   IRBuilder<true, NoFolder> Builder(PBI);
   1780   if (PBIOp)
   1781     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   1782 
   1783   Value *BICond = BI->getCondition();
   1784   if (BIOp)
   1785     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   1786 
   1787   // Merge the conditions.
   1788   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   1789 
   1790   // Modify PBI to branch on the new condition to the new dests.
   1791   PBI->setCondition(Cond);
   1792   PBI->setSuccessor(0, CommonDest);
   1793   PBI->setSuccessor(1, OtherDest);
   1794 
   1795   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   1796   // block that are identical to the entries for BI's block.
   1797   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   1798 
   1799   // We know that the CommonDest already had an edge from PBI to
   1800   // it.  If it has PHIs though, the PHIs may have different
   1801   // entries for BB and PBI's BB.  If so, insert a select to make
   1802   // them agree.
   1803   PHINode *PN;
   1804   for (BasicBlock::iterator II = CommonDest->begin();
   1805        (PN = dyn_cast<PHINode>(II)); ++II) {
   1806     Value *BIV = PN->getIncomingValueForBlock(BB);
   1807     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   1808     Value *PBIV = PN->getIncomingValue(PBBIdx);
   1809     if (BIV != PBIV) {
   1810       // Insert a select in PBI to pick the right value.
   1811       Value *NV = cast<SelectInst>
   1812         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   1813       PN->setIncomingValue(PBBIdx, NV);
   1814     }
   1815   }
   1816 
   1817   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   1818   DEBUG(dbgs() << *PBI->getParent()->getParent());
   1819 
   1820   // This basic block is probably dead.  We know it has at least
   1821   // one fewer predecessor.
   1822   return true;
   1823 }
   1824 
   1825 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
   1826 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
   1827 // Takes care of updating the successors and removing the old terminator.
   1828 // Also makes sure not to introduce new successors by assuming that edges to
   1829 // non-successor TrueBBs and FalseBBs aren't reachable.
   1830 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   1831                                        BasicBlock *TrueBB, BasicBlock *FalseBB){
   1832   // Remove any superfluous successor edges from the CFG.
   1833   // First, figure out which successors to preserve.
   1834   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   1835   // successor.
   1836   BasicBlock *KeepEdge1 = TrueBB;
   1837   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
   1838 
   1839   // Then remove the rest.
   1840   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
   1841     BasicBlock *Succ = OldTerm->getSuccessor(I);
   1842     // Make sure only to keep exactly one copy of each edge.
   1843     if (Succ == KeepEdge1)
   1844       KeepEdge1 = 0;
   1845     else if (Succ == KeepEdge2)
   1846       KeepEdge2 = 0;
   1847     else
   1848       Succ->removePredecessor(OldTerm->getParent());
   1849   }
   1850 
   1851   IRBuilder<> Builder(OldTerm);
   1852   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   1853 
   1854   // Insert an appropriate new terminator.
   1855   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
   1856     if (TrueBB == FalseBB)
   1857       // We were only looking for one successor, and it was present.
   1858       // Create an unconditional branch to it.
   1859       Builder.CreateBr(TrueBB);
   1860     else
   1861       // We found both of the successors we were looking for.
   1862       // Create a conditional branch sharing the condition of the select.
   1863       Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   1864   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   1865     // Neither of the selected blocks were successors, so this
   1866     // terminator must be unreachable.
   1867     new UnreachableInst(OldTerm->getContext(), OldTerm);
   1868   } else {
   1869     // One of the selected values was a successor, but the other wasn't.
   1870     // Insert an unconditional branch to the one that was found;
   1871     // the edge to the one that wasn't must be unreachable.
   1872     if (KeepEdge1 == 0)
   1873       // Only TrueBB was found.
   1874       Builder.CreateBr(TrueBB);
   1875     else
   1876       // Only FalseBB was found.
   1877       Builder.CreateBr(FalseBB);
   1878   }
   1879 
   1880   EraseTerminatorInstAndDCECond(OldTerm);
   1881   return true;
   1882 }
   1883 
   1884 // SimplifySwitchOnSelect - Replaces
   1885 //   (switch (select cond, X, Y)) on constant X, Y
   1886 // with a branch - conditional if X and Y lead to distinct BBs,
   1887 // unconditional otherwise.
   1888 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   1889   // Check for constant integer values in the select.
   1890   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   1891   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   1892   if (!TrueVal || !FalseVal)
   1893     return false;
   1894 
   1895   // Find the relevant condition and destinations.
   1896   Value *Condition = Select->getCondition();
   1897   BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
   1898   BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
   1899 
   1900   // Perform the actual simplification.
   1901   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
   1902 }
   1903 
   1904 // SimplifyIndirectBrOnSelect - Replaces
   1905 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   1906 //                             blockaddress(@fn, BlockB)))
   1907 // with
   1908 //   (br cond, BlockA, BlockB).
   1909 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   1910   // Check that both operands of the select are block addresses.
   1911   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   1912   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   1913   if (!TBA || !FBA)
   1914     return false;
   1915 
   1916   // Extract the actual blocks.
   1917   BasicBlock *TrueBB = TBA->getBasicBlock();
   1918   BasicBlock *FalseBB = FBA->getBasicBlock();
   1919 
   1920   // Perform the actual simplification.
   1921   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
   1922 }
   1923 
   1924 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
   1925 /// instruction (a seteq/setne with a constant) as the only instruction in a
   1926 /// block that ends with an uncond branch.  We are looking for a very specific
   1927 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   1928 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   1929 /// default value goes to an uncond block with a seteq in it, we get something
   1930 /// like:
   1931 ///
   1932 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   1933 /// DEFAULT:
   1934 ///   %tmp = icmp eq i8 %A, 92
   1935 ///   br label %end
   1936 /// end:
   1937 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   1938 ///
   1939 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   1940 /// the PHI, merging the third icmp into the switch.
   1941 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
   1942                                                   const TargetData *TD,
   1943                                                   IRBuilder<> &Builder) {
   1944   BasicBlock *BB = ICI->getParent();
   1945 
   1946   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   1947   // complex.
   1948   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   1949 
   1950   Value *V = ICI->getOperand(0);
   1951   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   1952 
   1953   // The pattern we're looking for is where our only predecessor is a switch on
   1954   // 'V' and this block is the default case for the switch.  In this case we can
   1955   // fold the compared value into the switch to simplify things.
   1956   BasicBlock *Pred = BB->getSinglePredecessor();
   1957   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
   1958 
   1959   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   1960   if (SI->getCondition() != V)
   1961     return false;
   1962 
   1963   // If BB is reachable on a non-default case, then we simply know the value of
   1964   // V in this block.  Substitute it and constant fold the icmp instruction
   1965   // away.
   1966   if (SI->getDefaultDest() != BB) {
   1967     ConstantInt *VVal = SI->findCaseDest(BB);
   1968     assert(VVal && "Should have a unique destination value");
   1969     ICI->setOperand(0, VVal);
   1970 
   1971     if (Value *V = SimplifyInstruction(ICI, TD)) {
   1972       ICI->replaceAllUsesWith(V);
   1973       ICI->eraseFromParent();
   1974     }
   1975     // BB is now empty, so it is likely to simplify away.
   1976     return SimplifyCFG(BB) | true;
   1977   }
   1978 
   1979   // Ok, the block is reachable from the default dest.  If the constant we're
   1980   // comparing exists in one of the other edges, then we can constant fold ICI
   1981   // and zap it.
   1982   if (SI->findCaseValue(Cst) != 0) {
   1983     Value *V;
   1984     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   1985       V = ConstantInt::getFalse(BB->getContext());
   1986     else
   1987       V = ConstantInt::getTrue(BB->getContext());
   1988 
   1989     ICI->replaceAllUsesWith(V);
   1990     ICI->eraseFromParent();
   1991     // BB is now empty, so it is likely to simplify away.
   1992     return SimplifyCFG(BB) | true;
   1993   }
   1994 
   1995   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   1996   // the block.
   1997   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   1998   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
   1999   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
   2000       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   2001     return false;
   2002 
   2003   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   2004   // true in the PHI.
   2005   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   2006   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   2007 
   2008   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2009     std::swap(DefaultCst, NewCst);
   2010 
   2011   // Replace ICI (which is used by the PHI for the default value) with true or
   2012   // false depending on if it is EQ or NE.
   2013   ICI->replaceAllUsesWith(DefaultCst);
   2014   ICI->eraseFromParent();
   2015 
   2016   // Okay, the switch goes to this block on a default value.  Add an edge from
   2017   // the switch to the merge point on the compared value.
   2018   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   2019                                          BB->getParent(), BB);
   2020   SI->addCase(Cst, NewBB);
   2021 
   2022   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   2023   Builder.SetInsertPoint(NewBB);
   2024   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   2025   Builder.CreateBr(SuccBlock);
   2026   PHIUse->addIncoming(NewCst, NewBB);
   2027   return true;
   2028 }
   2029 
   2030 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
   2031 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   2032 /// fold it into a switch instruction if so.
   2033 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
   2034                                       IRBuilder<> &Builder) {
   2035   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   2036   if (Cond == 0) return false;
   2037 
   2038 
   2039   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   2040   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   2041   // 'setne's and'ed together, collect them.
   2042   Value *CompVal = 0;
   2043   std::vector<ConstantInt*> Values;
   2044   bool TrueWhenEqual = true;
   2045   Value *ExtraCase = 0;
   2046   unsigned UsedICmps = 0;
   2047 
   2048   if (Cond->getOpcode() == Instruction::Or) {
   2049     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
   2050                                      UsedICmps);
   2051   } else if (Cond->getOpcode() == Instruction::And) {
   2052     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
   2053                                      UsedICmps);
   2054     TrueWhenEqual = false;
   2055   }
   2056 
   2057   // If we didn't have a multiply compared value, fail.
   2058   if (CompVal == 0) return false;
   2059 
   2060   // Avoid turning single icmps into a switch.
   2061   if (UsedICmps <= 1)
   2062     return false;
   2063 
   2064   // There might be duplicate constants in the list, which the switch
   2065   // instruction can't handle, remove them now.
   2066   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   2067   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   2068 
   2069   // If Extra was used, we require at least two switch values to do the
   2070   // transformation.  A switch with one value is just an cond branch.
   2071   if (ExtraCase && Values.size() < 2) return false;
   2072 
   2073   // Figure out which block is which destination.
   2074   BasicBlock *DefaultBB = BI->getSuccessor(1);
   2075   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   2076   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   2077 
   2078   BasicBlock *BB = BI->getParent();
   2079 
   2080   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   2081                << " cases into SWITCH.  BB is:\n" << *BB);
   2082 
   2083   // If there are any extra values that couldn't be folded into the switch
   2084   // then we evaluate them with an explicit branch first.  Split the block
   2085   // right before the condbr to handle it.
   2086   if (ExtraCase) {
   2087     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
   2088     // Remove the uncond branch added to the old block.
   2089     TerminatorInst *OldTI = BB->getTerminator();
   2090     Builder.SetInsertPoint(OldTI);
   2091 
   2092     if (TrueWhenEqual)
   2093       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   2094     else
   2095       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   2096 
   2097     OldTI->eraseFromParent();
   2098 
   2099     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   2100     // for the edge we just added.
   2101     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   2102 
   2103     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   2104           << "\nEXTRABB = " << *BB);
   2105     BB = NewBB;
   2106   }
   2107 
   2108   Builder.SetInsertPoint(BI);
   2109   // Convert pointer to int before we switch.
   2110   if (CompVal->getType()->isPointerTy()) {
   2111     assert(TD && "Cannot switch on pointer without TargetData");
   2112     CompVal = Builder.CreatePtrToInt(CompVal,
   2113                                      TD->getIntPtrType(CompVal->getContext()),
   2114                                      "magicptr");
   2115   }
   2116 
   2117   // Create the new switch instruction now.
   2118   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   2119 
   2120   // Add all of the 'cases' to the switch instruction.
   2121   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   2122     New->addCase(Values[i], EdgeBB);
   2123 
   2124   // We added edges from PI to the EdgeBB.  As such, if there were any
   2125   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   2126   // the number of edges added.
   2127   for (BasicBlock::iterator BBI = EdgeBB->begin();
   2128        isa<PHINode>(BBI); ++BBI) {
   2129     PHINode *PN = cast<PHINode>(BBI);
   2130     Value *InVal = PN->getIncomingValueForBlock(BB);
   2131     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   2132       PN->addIncoming(InVal, BB);
   2133   }
   2134 
   2135   // Erase the old branch instruction.
   2136   EraseTerminatorInstAndDCECond(BI);
   2137 
   2138   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   2139   return true;
   2140 }
   2141 
   2142 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   2143   // If this is a trivial landing pad that just continues unwinding the caught
   2144   // exception then zap the landing pad, turning its invokes into calls.
   2145   BasicBlock *BB = RI->getParent();
   2146   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   2147   if (RI->getValue() != LPInst)
   2148     // Not a landing pad, or the resume is not unwinding the exception that
   2149     // caused control to branch here.
   2150     return false;
   2151 
   2152   // Check that there are no other instructions except for debug intrinsics.
   2153   BasicBlock::iterator I = LPInst, E = RI;
   2154   while (++I != E)
   2155     if (!isa<DbgInfoIntrinsic>(I))
   2156       return false;
   2157 
   2158   // Turn all invokes that unwind here into calls and delete the basic block.
   2159   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   2160     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
   2161     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   2162     // Insert a call instruction before the invoke.
   2163     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
   2164     Call->takeName(II);
   2165     Call->setCallingConv(II->getCallingConv());
   2166     Call->setAttributes(II->getAttributes());
   2167     Call->setDebugLoc(II->getDebugLoc());
   2168 
   2169     // Anything that used the value produced by the invoke instruction now uses
   2170     // the value produced by the call instruction.  Note that we do this even
   2171     // for void functions and calls with no uses so that the callgraph edge is
   2172     // updated.
   2173     II->replaceAllUsesWith(Call);
   2174     BB->removePredecessor(II->getParent());
   2175 
   2176     // Insert a branch to the normal destination right before the invoke.
   2177     BranchInst::Create(II->getNormalDest(), II);
   2178 
   2179     // Finally, delete the invoke instruction!
   2180     II->eraseFromParent();
   2181   }
   2182 
   2183   // The landingpad is now unreachable.  Zap it.
   2184   BB->eraseFromParent();
   2185   return true;
   2186 }
   2187 
   2188 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   2189   BasicBlock *BB = RI->getParent();
   2190   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2191 
   2192   // Find predecessors that end with branches.
   2193   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   2194   SmallVector<BranchInst*, 8> CondBranchPreds;
   2195   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2196     BasicBlock *P = *PI;
   2197     TerminatorInst *PTI = P->getTerminator();
   2198     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   2199       if (BI->isUnconditional())
   2200         UncondBranchPreds.push_back(P);
   2201       else
   2202         CondBranchPreds.push_back(BI);
   2203     }
   2204   }
   2205 
   2206   // If we found some, do the transformation!
   2207   if (!UncondBranchPreds.empty() && DupRet) {
   2208     while (!UncondBranchPreds.empty()) {
   2209       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   2210       DEBUG(dbgs() << "FOLDING: " << *BB
   2211             << "INTO UNCOND BRANCH PRED: " << *Pred);
   2212       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   2213     }
   2214 
   2215     // If we eliminated all predecessors of the block, delete the block now.
   2216     if (pred_begin(BB) == pred_end(BB))
   2217       // We know there are no successors, so just nuke the block.
   2218       BB->eraseFromParent();
   2219 
   2220     return true;
   2221   }
   2222 
   2223   // Check out all of the conditional branches going to this return
   2224   // instruction.  If any of them just select between returns, change the
   2225   // branch itself into a select/return pair.
   2226   while (!CondBranchPreds.empty()) {
   2227     BranchInst *BI = CondBranchPreds.pop_back_val();
   2228 
   2229     // Check to see if the non-BB successor is also a return block.
   2230     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   2231         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   2232         SimplifyCondBranchToTwoReturns(BI, Builder))
   2233       return true;
   2234   }
   2235   return false;
   2236 }
   2237 
   2238 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
   2239   // Check to see if the first instruction in this block is just an unwind.
   2240   // If so, replace any invoke instructions which use this as an exception
   2241   // destination with call instructions.
   2242   BasicBlock *BB = UI->getParent();
   2243   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2244 
   2245   bool Changed = false;
   2246   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   2247   while (!Preds.empty()) {
   2248     BasicBlock *Pred = Preds.back();
   2249     InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
   2250     if (II && II->getUnwindDest() == BB) {
   2251       // Insert a new branch instruction before the invoke, because this
   2252       // is now a fall through.
   2253       Builder.SetInsertPoint(II);
   2254       BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   2255       Pred->getInstList().remove(II);   // Take out of symbol table
   2256 
   2257       // Insert the call now.
   2258       SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
   2259       Builder.SetInsertPoint(BI);
   2260       CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   2261                                         Args, II->getName());
   2262       CI->setCallingConv(II->getCallingConv());
   2263       CI->setAttributes(II->getAttributes());
   2264       // If the invoke produced a value, the Call now does instead.
   2265       II->replaceAllUsesWith(CI);
   2266       delete II;
   2267       Changed = true;
   2268     }
   2269 
   2270     Preds.pop_back();
   2271   }
   2272 
   2273   // If this block is now dead (and isn't the entry block), remove it.
   2274   if (pred_begin(BB) == pred_end(BB) &&
   2275       BB != &BB->getParent()->getEntryBlock()) {
   2276     // We know there are no successors, so just nuke the block.
   2277     BB->eraseFromParent();
   2278     return true;
   2279   }
   2280 
   2281   return Changed;
   2282 }
   2283 
   2284 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   2285   BasicBlock *BB = UI->getParent();
   2286 
   2287   bool Changed = false;
   2288 
   2289   // If there are any instructions immediately before the unreachable that can
   2290   // be removed, do so.
   2291   while (UI != BB->begin()) {
   2292     BasicBlock::iterator BBI = UI;
   2293     --BBI;
   2294     // Do not delete instructions that can have side effects which might cause
   2295     // the unreachable to not be reachable; specifically, calls and volatile
   2296     // operations may have this effect.
   2297     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   2298 
   2299     if (BBI->mayHaveSideEffects()) {
   2300       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   2301         if (SI->isVolatile())
   2302           break;
   2303       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
   2304         if (LI->isVolatile())
   2305           break;
   2306       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   2307         if (RMWI->isVolatile())
   2308           break;
   2309       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   2310         if (CXI->isVolatile())
   2311           break;
   2312       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   2313                  !isa<LandingPadInst>(BBI)) {
   2314         break;
   2315       }
   2316       // Note that deleting LandingPad's here is in fact okay, although it
   2317       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   2318       // all the predecessors of this block will be the unwind edges of Invokes,
   2319       // and we can therefore guarantee this block will be erased.
   2320     }
   2321 
   2322     // Delete this instruction (any uses are guaranteed to be dead)
   2323     if (!BBI->use_empty())
   2324       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   2325     BBI->eraseFromParent();
   2326     Changed = true;
   2327   }
   2328 
   2329   // If the unreachable instruction is the first in the block, take a gander
   2330   // at all of the predecessors of this instruction, and simplify them.
   2331   if (&BB->front() != UI) return Changed;
   2332 
   2333   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   2334   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   2335     TerminatorInst *TI = Preds[i]->getTerminator();
   2336     IRBuilder<> Builder(TI);
   2337     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2338       if (BI->isUnconditional()) {
   2339         if (BI->getSuccessor(0) == BB) {
   2340           new UnreachableInst(TI->getContext(), TI);
   2341           TI->eraseFromParent();
   2342           Changed = true;
   2343         }
   2344       } else {
   2345         if (BI->getSuccessor(0) == BB) {
   2346           Builder.CreateBr(BI->getSuccessor(1));
   2347           EraseTerminatorInstAndDCECond(BI);
   2348         } else if (BI->getSuccessor(1) == BB) {
   2349           Builder.CreateBr(BI->getSuccessor(0));
   2350           EraseTerminatorInstAndDCECond(BI);
   2351           Changed = true;
   2352         }
   2353       }
   2354     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   2355       for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
   2356         if (SI->getSuccessor(i) == BB) {
   2357           BB->removePredecessor(SI->getParent());
   2358           SI->removeCase(i);
   2359           --i; --e;
   2360           Changed = true;
   2361         }
   2362       // If the default value is unreachable, figure out the most popular
   2363       // destination and make it the default.
   2364       if (SI->getSuccessor(0) == BB) {
   2365         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
   2366         for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
   2367           std::pair<unsigned, unsigned>& entry =
   2368               Popularity[SI->getSuccessor(i)];
   2369           if (entry.first == 0) {
   2370             entry.first = 1;
   2371             entry.second = i;
   2372           } else {
   2373             entry.first++;
   2374           }
   2375         }
   2376 
   2377         // Find the most popular block.
   2378         unsigned MaxPop = 0;
   2379         unsigned MaxIndex = 0;
   2380         BasicBlock *MaxBlock = 0;
   2381         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
   2382              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
   2383           if (I->second.first > MaxPop ||
   2384               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
   2385             MaxPop = I->second.first;
   2386             MaxIndex = I->second.second;
   2387             MaxBlock = I->first;
   2388           }
   2389         }
   2390         if (MaxBlock) {
   2391           // Make this the new default, allowing us to delete any explicit
   2392           // edges to it.
   2393           SI->setSuccessor(0, MaxBlock);
   2394           Changed = true;
   2395 
   2396           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
   2397           // it.
   2398           if (isa<PHINode>(MaxBlock->begin()))
   2399             for (unsigned i = 0; i != MaxPop-1; ++i)
   2400               MaxBlock->removePredecessor(SI->getParent());
   2401 
   2402           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
   2403             if (SI->getSuccessor(i) == MaxBlock) {
   2404               SI->removeCase(i);
   2405               --i; --e;
   2406             }
   2407         }
   2408       }
   2409     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
   2410       if (II->getUnwindDest() == BB) {
   2411         // Convert the invoke to a call instruction.  This would be a good
   2412         // place to note that the call does not throw though.
   2413         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   2414         II->removeFromParent();   // Take out of symbol table
   2415 
   2416         // Insert the call now...
   2417         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
   2418         Builder.SetInsertPoint(BI);
   2419         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   2420                                           Args, II->getName());
   2421         CI->setCallingConv(II->getCallingConv());
   2422         CI->setAttributes(II->getAttributes());
   2423         // If the invoke produced a value, the call does now instead.
   2424         II->replaceAllUsesWith(CI);
   2425         delete II;
   2426         Changed = true;
   2427       }
   2428     }
   2429   }
   2430 
   2431   // If this block is now dead, remove it.
   2432   if (pred_begin(BB) == pred_end(BB) &&
   2433       BB != &BB->getParent()->getEntryBlock()) {
   2434     // We know there are no successors, so just nuke the block.
   2435     BB->eraseFromParent();
   2436     return true;
   2437   }
   2438 
   2439   return Changed;
   2440 }
   2441 
   2442 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
   2443 /// integer range comparison into a sub, an icmp and a branch.
   2444 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   2445   assert(SI->getNumCases() > 2 && "Degenerate switch?");
   2446 
   2447   // Make sure all cases point to the same destination and gather the values.
   2448   SmallVector<ConstantInt *, 16> Cases;
   2449   Cases.push_back(SI->getCaseValue(1));
   2450   for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
   2451     if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
   2452       return false;
   2453     Cases.push_back(SI->getCaseValue(I));
   2454   }
   2455   assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
   2456 
   2457   // Sort the case values, then check if they form a range we can transform.
   2458   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   2459   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
   2460     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
   2461       return false;
   2462   }
   2463 
   2464   Constant *Offset = ConstantExpr::getNeg(Cases.back());
   2465   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
   2466 
   2467   Value *Sub = SI->getCondition();
   2468   if (!Offset->isNullValue())
   2469     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
   2470   Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   2471   Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
   2472 
   2473   // Prune obsolete incoming values off the successor's PHI nodes.
   2474   for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
   2475        isa<PHINode>(BBI); ++BBI) {
   2476     for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
   2477       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   2478   }
   2479   SI->eraseFromParent();
   2480 
   2481   return true;
   2482 }
   2483 
   2484 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
   2485 /// and use it to remove dead cases.
   2486 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
   2487   Value *Cond = SI->getCondition();
   2488   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
   2489   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   2490   ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
   2491 
   2492   // Gather dead cases.
   2493   SmallVector<ConstantInt*, 8> DeadCases;
   2494   for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
   2495     if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
   2496         (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
   2497       DeadCases.push_back(SI->getCaseValue(I));
   2498       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   2499                    << SI->getCaseValue(I)->getValue() << "' is dead.\n");
   2500     }
   2501   }
   2502 
   2503   // Remove dead cases from the switch.
   2504   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   2505     unsigned Case = SI->findCaseValue(DeadCases[I]);
   2506     // Prune unused values from PHI nodes.
   2507     SI->getSuccessor(Case)->removePredecessor(SI->getParent());
   2508     SI->removeCase(Case);
   2509   }
   2510 
   2511   return !DeadCases.empty();
   2512 }
   2513 
   2514 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
   2515 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   2516 /// by an unconditional branch), look at the phi node for BB in the successor
   2517 /// block and see if the incoming value is equal to CaseValue. If so, return
   2518 /// the phi node, and set PhiIndex to BB's index in the phi node.
   2519 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   2520                                               BasicBlock *BB,
   2521                                               int *PhiIndex) {
   2522   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   2523     return NULL; // BB must be empty to be a candidate for simplification.
   2524   if (!BB->getSinglePredecessor())
   2525     return NULL; // BB must be dominated by the switch.
   2526 
   2527   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   2528   if (!Branch || !Branch->isUnconditional())
   2529     return NULL; // Terminator must be unconditional branch.
   2530 
   2531   BasicBlock *Succ = Branch->getSuccessor(0);
   2532 
   2533   BasicBlock::iterator I = Succ->begin();
   2534   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   2535     int Idx = PHI->getBasicBlockIndex(BB);
   2536     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   2537 
   2538     Value *InValue = PHI->getIncomingValue(Idx);
   2539     if (InValue != CaseValue) continue;
   2540 
   2541     *PhiIndex = Idx;
   2542     return PHI;
   2543   }
   2544 
   2545   return NULL;
   2546 }
   2547 
   2548 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
   2549 /// instruction to a phi node dominated by the switch, if that would mean that
   2550 /// some of the destination blocks of the switch can be folded away.
   2551 /// Returns true if a change is made.
   2552 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   2553   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   2554   ForwardingNodesMap ForwardingNodes;
   2555 
   2556   for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case.
   2557     ConstantInt *CaseValue = SI->getCaseValue(I);
   2558     BasicBlock *CaseDest = SI->getSuccessor(I);
   2559 
   2560     int PhiIndex;
   2561     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   2562                                                  &PhiIndex);
   2563     if (!PHI) continue;
   2564 
   2565     ForwardingNodes[PHI].push_back(PhiIndex);
   2566   }
   2567 
   2568   bool Changed = false;
   2569 
   2570   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   2571        E = ForwardingNodes.end(); I != E; ++I) {
   2572     PHINode *Phi = I->first;
   2573     SmallVector<int,4> &Indexes = I->second;
   2574 
   2575     if (Indexes.size() < 2) continue;
   2576 
   2577     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   2578       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   2579     Changed = true;
   2580   }
   2581 
   2582   return Changed;
   2583 }
   2584 
   2585 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   2586   // If this switch is too complex to want to look at, ignore it.
   2587   if (!isValueEqualityComparison(SI))
   2588     return false;
   2589 
   2590   BasicBlock *BB = SI->getParent();
   2591 
   2592   // If we only have one predecessor, and if it is a branch on this value,
   2593   // see if that predecessor totally determines the outcome of this switch.
   2594   if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   2595     if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   2596       return SimplifyCFG(BB) | true;
   2597 
   2598   Value *Cond = SI->getCondition();
   2599   if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   2600     if (SimplifySwitchOnSelect(SI, Select))
   2601       return SimplifyCFG(BB) | true;
   2602 
   2603   // If the block only contains the switch, see if we can fold the block
   2604   // away into any preds.
   2605   BasicBlock::iterator BBI = BB->begin();
   2606   // Ignore dbg intrinsics.
   2607   while (isa<DbgInfoIntrinsic>(BBI))
   2608     ++BBI;
   2609   if (SI == &*BBI)
   2610     if (FoldValueComparisonIntoPredecessors(SI, Builder))
   2611       return SimplifyCFG(BB) | true;
   2612 
   2613   // Try to transform the switch into an icmp and a branch.
   2614   if (TurnSwitchRangeIntoICmp(SI, Builder))
   2615     return SimplifyCFG(BB) | true;
   2616 
   2617   // Remove unreachable cases.
   2618   if (EliminateDeadSwitchCases(SI))
   2619     return SimplifyCFG(BB) | true;
   2620 
   2621   if (ForwardSwitchConditionToPHI(SI))
   2622     return SimplifyCFG(BB) | true;
   2623 
   2624   return false;
   2625 }
   2626 
   2627 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   2628   BasicBlock *BB = IBI->getParent();
   2629   bool Changed = false;
   2630 
   2631   // Eliminate redundant destinations.
   2632   SmallPtrSet<Value *, 8> Succs;
   2633   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   2634     BasicBlock *Dest = IBI->getDestination(i);
   2635     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
   2636       Dest->removePredecessor(BB);
   2637       IBI->removeDestination(i);
   2638       --i; --e;
   2639       Changed = true;
   2640     }
   2641   }
   2642 
   2643   if (IBI->getNumDestinations() == 0) {
   2644     // If the indirectbr has no successors, change it to unreachable.
   2645     new UnreachableInst(IBI->getContext(), IBI);
   2646     EraseTerminatorInstAndDCECond(IBI);
   2647     return true;
   2648   }
   2649 
   2650   if (IBI->getNumDestinations() == 1) {
   2651     // If the indirectbr has one successor, change it to a direct branch.
   2652     BranchInst::Create(IBI->getDestination(0), IBI);
   2653     EraseTerminatorInstAndDCECond(IBI);
   2654     return true;
   2655   }
   2656 
   2657   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   2658     if (SimplifyIndirectBrOnSelect(IBI, SI))
   2659       return SimplifyCFG(BB) | true;
   2660   }
   2661   return Changed;
   2662 }
   2663 
   2664 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   2665   BasicBlock *BB = BI->getParent();
   2666 
   2667   // If the Terminator is the only non-phi instruction, simplify the block.
   2668   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
   2669   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   2670       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   2671     return true;
   2672 
   2673   // If the only instruction in the block is a seteq/setne comparison
   2674   // against a constant, try to simplify the block.
   2675   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   2676     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   2677       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   2678         ;
   2679       if (I->isTerminator()
   2680           && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
   2681         return true;
   2682     }
   2683 
   2684   return false;
   2685 }
   2686 
   2687 
   2688 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   2689   BasicBlock *BB = BI->getParent();
   2690 
   2691   // Conditional branch
   2692   if (isValueEqualityComparison(BI)) {
   2693     // If we only have one predecessor, and if it is a branch on this value,
   2694     // see if that predecessor totally determines the outcome of this
   2695     // switch.
   2696     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   2697       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   2698         return SimplifyCFG(BB) | true;
   2699 
   2700     // This block must be empty, except for the setcond inst, if it exists.
   2701     // Ignore dbg intrinsics.
   2702     BasicBlock::iterator I = BB->begin();
   2703     // Ignore dbg intrinsics.
   2704     while (isa<DbgInfoIntrinsic>(I))
   2705       ++I;
   2706     if (&*I == BI) {
   2707       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   2708         return SimplifyCFG(BB) | true;
   2709     } else if (&*I == cast<Instruction>(BI->getCondition())){
   2710       ++I;
   2711       // Ignore dbg intrinsics.
   2712       while (isa<DbgInfoIntrinsic>(I))
   2713         ++I;
   2714       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   2715         return SimplifyCFG(BB) | true;
   2716     }
   2717   }
   2718 
   2719   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   2720   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
   2721     return true;
   2722 
   2723   // We have a conditional branch to two blocks that are only reachable
   2724   // from BI.  We know that the condbr dominates the two blocks, so see if
   2725   // there is any identical code in the "then" and "else" blocks.  If so, we
   2726   // can hoist it up to the branching block.
   2727   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
   2728     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   2729       if (HoistThenElseCodeToIf(BI))
   2730         return SimplifyCFG(BB) | true;
   2731     } else {
   2732       // If Successor #1 has multiple preds, we may be able to conditionally
   2733       // execute Successor #0 if it branches to successor #1.
   2734       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   2735       if (Succ0TI->getNumSuccessors() == 1 &&
   2736           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   2737         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
   2738           return SimplifyCFG(BB) | true;
   2739     }
   2740   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   2741     // If Successor #0 has multiple preds, we may be able to conditionally
   2742     // execute Successor #1 if it branches to successor #0.
   2743     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   2744     if (Succ1TI->getNumSuccessors() == 1 &&
   2745         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   2746       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
   2747         return SimplifyCFG(BB) | true;
   2748   }
   2749 
   2750   // If this is a branch on a phi node in the current block, thread control
   2751   // through this block if any PHI node entries are constants.
   2752   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   2753     if (PN->getParent() == BI->getParent())
   2754       if (FoldCondBranchOnPHI(BI, TD))
   2755         return SimplifyCFG(BB) | true;
   2756 
   2757   // If this basic block is ONLY a setcc and a branch, and if a predecessor
   2758   // branches to us and one of our successors, fold the setcc into the
   2759   // predecessor and use logical operations to pick the right destination.
   2760   if (FoldBranchToCommonDest(BI))
   2761     return SimplifyCFG(BB) | true;
   2762 
   2763   // Scan predecessor blocks for conditional branches.
   2764   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   2765     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   2766       if (PBI != BI && PBI->isConditional())
   2767         if (SimplifyCondBranchToCondBranch(PBI, BI))
   2768           return SimplifyCFG(BB) | true;
   2769 
   2770   return false;
   2771 }
   2772 
   2773 /// Check if passing a value to an instruction will cause undefined behavior.
   2774 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   2775   Constant *C = dyn_cast<Constant>(V);
   2776   if (!C)
   2777     return false;
   2778 
   2779   if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
   2780     return false;
   2781 
   2782   if (C->isNullValue()) {
   2783     Instruction *Use = I->use_back();
   2784 
   2785     // Now make sure that there are no instructions in between that can alter
   2786     // control flow (eg. calls)
   2787     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   2788       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   2789         return false;
   2790 
   2791     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   2792     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   2793       if (GEP->getPointerOperand() == I)
   2794         return passingValueIsAlwaysUndefined(V, GEP);
   2795 
   2796     // Look through bitcasts.
   2797     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   2798       return passingValueIsAlwaysUndefined(V, BC);
   2799 
   2800     // Load from null is undefined.
   2801     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   2802       return LI->getPointerAddressSpace() == 0;
   2803 
   2804     // Store to null is undefined.
   2805     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   2806       return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
   2807   }
   2808   return false;
   2809 }
   2810 
   2811 /// If BB has an incoming value that will always trigger undefined behavior
   2812 /// (eg. null pointer derefence), remove the branch leading here.
   2813 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   2814   for (BasicBlock::iterator i = BB->begin();
   2815        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   2816     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   2817       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   2818         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   2819         IRBuilder<> Builder(T);
   2820         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   2821           BB->removePredecessor(PHI->getIncomingBlock(i));
   2822           // Turn uncoditional branches into unreachables and remove the dead
   2823           // destination from conditional branches.
   2824           if (BI->isUnconditional())
   2825             Builder.CreateUnreachable();
   2826           else
   2827             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
   2828                                                          BI->getSuccessor(0));
   2829           BI->eraseFromParent();
   2830           return true;
   2831         }
   2832         // TODO: SwitchInst.
   2833       }
   2834 
   2835   return false;
   2836 }
   2837 
   2838 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   2839   bool Changed = false;
   2840 
   2841   assert(BB && BB->getParent() && "Block not embedded in function!");
   2842   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   2843 
   2844   // Remove basic blocks that have no predecessors (except the entry block)...
   2845   // or that just have themself as a predecessor.  These are unreachable.
   2846   if ((pred_begin(BB) == pred_end(BB) &&
   2847        BB != &BB->getParent()->getEntryBlock()) ||
   2848       BB->getSinglePredecessor() == BB) {
   2849     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   2850     DeleteDeadBlock(BB);
   2851     return true;
   2852   }
   2853 
   2854   // Check to see if we can constant propagate this terminator instruction
   2855   // away...
   2856   Changed |= ConstantFoldTerminator(BB, true);
   2857 
   2858   // Check for and eliminate duplicate PHI nodes in this block.
   2859   Changed |= EliminateDuplicatePHINodes(BB);
   2860 
   2861   // Check for and remove branches that will always cause undefined behavior.
   2862   Changed |= removeUndefIntroducingPredecessor(BB);
   2863 
   2864   // Merge basic blocks into their predecessor if there is only one distinct
   2865   // pred, and if there is only one distinct successor of the predecessor, and
   2866   // if there are no PHI nodes.
   2867   //
   2868   if (MergeBlockIntoPredecessor(BB))
   2869     return true;
   2870 
   2871   IRBuilder<> Builder(BB);
   2872 
   2873   // If there is a trivial two-entry PHI node in this basic block, and we can
   2874   // eliminate it, do so now.
   2875   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   2876     if (PN->getNumIncomingValues() == 2)
   2877       Changed |= FoldTwoEntryPHINode(PN, TD);
   2878 
   2879   Builder.SetInsertPoint(BB->getTerminator());
   2880   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   2881     if (BI->isUnconditional()) {
   2882       if (SimplifyUncondBranch(BI, Builder)) return true;
   2883     } else {
   2884       if (SimplifyCondBranch(BI, Builder)) return true;
   2885     }
   2886   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   2887     if (SimplifyResume(RI, Builder)) return true;
   2888   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   2889     if (SimplifyReturn(RI, Builder)) return true;
   2890   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   2891     if (SimplifySwitch(SI, Builder)) return true;
   2892   } else if (UnreachableInst *UI =
   2893                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   2894     if (SimplifyUnreachable(UI)) return true;
   2895   } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
   2896     if (SimplifyUnwind(UI, Builder)) return true;
   2897   } else if (IndirectBrInst *IBI =
   2898                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   2899     if (SimplifyIndirectBr(IBI)) return true;
   2900   }
   2901 
   2902   return Changed;
   2903 }
   2904 
   2905 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
   2906 /// example, it adjusts branches to branches to eliminate the extra hop, it
   2907 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   2908 /// of the CFG.  It returns true if a modification was made.
   2909 ///
   2910 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
   2911   return SimplifyCFGOpt(TD).run(BB);
   2912 }
   2913