Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // A Disassembler object is used to disassemble a block of code instruction by
     29 // instruction. The default implementation of the NameConverter object can be
     30 // overriden to modify register names or to do symbol lookup on addresses.
     31 //
     32 // The example below will disassemble a block of code and print it to stdout.
     33 //
     34 //   NameConverter converter;
     35 //   Disassembler d(converter);
     36 //   for (byte* pc = begin; pc < end;) {
     37 //     v8::internal::EmbeddedVector<char, 256> buffer;
     38 //     byte* prev_pc = pc;
     39 //     pc += d.InstructionDecode(buffer, pc);
     40 //     printf("%p    %08x      %s\n",
     41 //            prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
     42 //   }
     43 //
     44 // The Disassembler class also has a convenience method to disassemble a block
     45 // of code into a FILE*, meaning that the above functionality could also be
     46 // achieved by just calling Disassembler::Disassemble(stdout, begin, end);
     47 
     48 
     49 #include <assert.h>
     50 #include <stdio.h>
     51 #include <stdarg.h>
     52 #include <string.h>
     53 #ifndef WIN32
     54 #include <stdint.h>
     55 #endif
     56 
     57 #include "v8.h"
     58 
     59 #if defined(V8_TARGET_ARCH_ARM)
     60 
     61 #include "constants-arm.h"
     62 #include "disasm.h"
     63 #include "macro-assembler.h"
     64 #include "platform.h"
     65 
     66 
     67 namespace v8 {
     68 namespace internal {
     69 
     70 
     71 //------------------------------------------------------------------------------
     72 
     73 // Decoder decodes and disassembles instructions into an output buffer.
     74 // It uses the converter to convert register names and call destinations into
     75 // more informative description.
     76 class Decoder {
     77  public:
     78   Decoder(const disasm::NameConverter& converter,
     79           Vector<char> out_buffer)
     80     : converter_(converter),
     81       out_buffer_(out_buffer),
     82       out_buffer_pos_(0) {
     83     out_buffer_[out_buffer_pos_] = '\0';
     84   }
     85 
     86   ~Decoder() {}
     87 
     88   // Writes one disassembled instruction into 'buffer' (0-terminated).
     89   // Returns the length of the disassembled machine instruction in bytes.
     90   int InstructionDecode(byte* instruction);
     91 
     92   static bool IsConstantPoolAt(byte* instr_ptr);
     93   static int ConstantPoolSizeAt(byte* instr_ptr);
     94 
     95  private:
     96   // Bottleneck functions to print into the out_buffer.
     97   void PrintChar(const char ch);
     98   void Print(const char* str);
     99 
    100   // Printing of common values.
    101   void PrintRegister(int reg);
    102   void PrintSRegister(int reg);
    103   void PrintDRegister(int reg);
    104   int FormatVFPRegister(Instruction* instr, const char* format);
    105   void PrintMovwMovt(Instruction* instr);
    106   int FormatVFPinstruction(Instruction* instr, const char* format);
    107   void PrintCondition(Instruction* instr);
    108   void PrintShiftRm(Instruction* instr);
    109   void PrintShiftImm(Instruction* instr);
    110   void PrintShiftSat(Instruction* instr);
    111   void PrintPU(Instruction* instr);
    112   void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
    113 
    114   // Handle formatting of instructions and their options.
    115   int FormatRegister(Instruction* instr, const char* option);
    116   int FormatOption(Instruction* instr, const char* option);
    117   void Format(Instruction* instr, const char* format);
    118   void Unknown(Instruction* instr);
    119 
    120   // Each of these functions decodes one particular instruction type, a 3-bit
    121   // field in the instruction encoding.
    122   // Types 0 and 1 are combined as they are largely the same except for the way
    123   // they interpret the shifter operand.
    124   void DecodeType01(Instruction* instr);
    125   void DecodeType2(Instruction* instr);
    126   void DecodeType3(Instruction* instr);
    127   void DecodeType4(Instruction* instr);
    128   void DecodeType5(Instruction* instr);
    129   void DecodeType6(Instruction* instr);
    130   // Type 7 includes special Debugger instructions.
    131   int DecodeType7(Instruction* instr);
    132   // For VFP support.
    133   void DecodeTypeVFP(Instruction* instr);
    134   void DecodeType6CoprocessorIns(Instruction* instr);
    135 
    136   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
    137   void DecodeVCMP(Instruction* instr);
    138   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
    139   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
    140 
    141   const disasm::NameConverter& converter_;
    142   Vector<char> out_buffer_;
    143   int out_buffer_pos_;
    144 
    145   DISALLOW_COPY_AND_ASSIGN(Decoder);
    146 };
    147 
    148 
    149 // Support for assertions in the Decoder formatting functions.
    150 #define STRING_STARTS_WITH(string, compare_string) \
    151   (strncmp(string, compare_string, strlen(compare_string)) == 0)
    152 
    153 
    154 // Append the ch to the output buffer.
    155 void Decoder::PrintChar(const char ch) {
    156   out_buffer_[out_buffer_pos_++] = ch;
    157 }
    158 
    159 
    160 // Append the str to the output buffer.
    161 void Decoder::Print(const char* str) {
    162   char cur = *str++;
    163   while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    164     PrintChar(cur);
    165     cur = *str++;
    166   }
    167   out_buffer_[out_buffer_pos_] = 0;
    168 }
    169 
    170 
    171 // These condition names are defined in a way to match the native disassembler
    172 // formatting. See for example the command "objdump -d <binary file>".
    173 static const char* cond_names[kNumberOfConditions] = {
    174   "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
    175   "hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
    176 };
    177 
    178 
    179 // Print the condition guarding the instruction.
    180 void Decoder::PrintCondition(Instruction* instr) {
    181   Print(cond_names[instr->ConditionValue()]);
    182 }
    183 
    184 
    185 // Print the register name according to the active name converter.
    186 void Decoder::PrintRegister(int reg) {
    187   Print(converter_.NameOfCPURegister(reg));
    188 }
    189 
    190 // Print the VFP S register name according to the active name converter.
    191 void Decoder::PrintSRegister(int reg) {
    192   Print(VFPRegisters::Name(reg, false));
    193 }
    194 
    195 // Print the  VFP D register name according to the active name converter.
    196 void Decoder::PrintDRegister(int reg) {
    197   Print(VFPRegisters::Name(reg, true));
    198 }
    199 
    200 
    201 // These shift names are defined in a way to match the native disassembler
    202 // formatting. See for example the command "objdump -d <binary file>".
    203 static const char* shift_names[kNumberOfShifts] = {
    204   "lsl", "lsr", "asr", "ror"
    205 };
    206 
    207 
    208 // Print the register shift operands for the instruction. Generally used for
    209 // data processing instructions.
    210 void Decoder::PrintShiftRm(Instruction* instr) {
    211   ShiftOp shift = instr->ShiftField();
    212   int shift_index = instr->ShiftValue();
    213   int shift_amount = instr->ShiftAmountValue();
    214   int rm = instr->RmValue();
    215 
    216   PrintRegister(rm);
    217 
    218   if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) {
    219     // Special case for using rm only.
    220     return;
    221   }
    222   if (instr->RegShiftValue() == 0) {
    223     // by immediate
    224     if ((shift == ROR) && (shift_amount == 0)) {
    225       Print(", RRX");
    226       return;
    227     } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
    228       shift_amount = 32;
    229     }
    230     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    231                                     ", %s #%d",
    232                                     shift_names[shift_index],
    233                                     shift_amount);
    234   } else {
    235     // by register
    236     int rs = instr->RsValue();
    237     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    238                                     ", %s ", shift_names[shift_index]);
    239     PrintRegister(rs);
    240   }
    241 }
    242 
    243 
    244 // Print the immediate operand for the instruction. Generally used for data
    245 // processing instructions.
    246 void Decoder::PrintShiftImm(Instruction* instr) {
    247   int rotate = instr->RotateValue() * 2;
    248   int immed8 = instr->Immed8Value();
    249   int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
    250   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    251                                   "#%d", imm);
    252 }
    253 
    254 
    255 // Print the optional shift and immediate used by saturating instructions.
    256 void Decoder::PrintShiftSat(Instruction* instr) {
    257   int shift = instr->Bits(11, 7);
    258   if (shift > 0) {
    259     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    260                                     ", %s #%d",
    261                                     shift_names[instr->Bit(6) * 2],
    262                                     instr->Bits(11, 7));
    263   }
    264 }
    265 
    266 
    267 // Print PU formatting to reduce complexity of FormatOption.
    268 void Decoder::PrintPU(Instruction* instr) {
    269   switch (instr->PUField()) {
    270     case da_x: {
    271       Print("da");
    272       break;
    273     }
    274     case ia_x: {
    275       Print("ia");
    276       break;
    277     }
    278     case db_x: {
    279       Print("db");
    280       break;
    281     }
    282     case ib_x: {
    283       Print("ib");
    284       break;
    285     }
    286     default: {
    287       UNREACHABLE();
    288       break;
    289     }
    290   }
    291 }
    292 
    293 
    294 // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
    295 // the FormatOption method.
    296 void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
    297   switch (svc) {
    298     case kCallRtRedirected:
    299       Print("call rt redirected");
    300       return;
    301     case kBreakpoint:
    302       Print("breakpoint");
    303       return;
    304     default:
    305       if (svc >= kStopCode) {
    306         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    307                                         "%d - 0x%x",
    308                                         svc & kStopCodeMask,
    309                                         svc & kStopCodeMask);
    310       } else {
    311         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    312                                         "%d",
    313                                         svc);
    314       }
    315       return;
    316   }
    317 }
    318 
    319 
    320 // Handle all register based formatting in this function to reduce the
    321 // complexity of FormatOption.
    322 int Decoder::FormatRegister(Instruction* instr, const char* format) {
    323   ASSERT(format[0] == 'r');
    324   if (format[1] == 'n') {  // 'rn: Rn register
    325     int reg = instr->RnValue();
    326     PrintRegister(reg);
    327     return 2;
    328   } else if (format[1] == 'd') {  // 'rd: Rd register
    329     int reg = instr->RdValue();
    330     PrintRegister(reg);
    331     return 2;
    332   } else if (format[1] == 's') {  // 'rs: Rs register
    333     int reg = instr->RsValue();
    334     PrintRegister(reg);
    335     return 2;
    336   } else if (format[1] == 'm') {  // 'rm: Rm register
    337     int reg = instr->RmValue();
    338     PrintRegister(reg);
    339     return 2;
    340   } else if (format[1] == 't') {  // 'rt: Rt register
    341     int reg = instr->RtValue();
    342     PrintRegister(reg);
    343     return 2;
    344   } else if (format[1] == 'l') {
    345     // 'rlist: register list for load and store multiple instructions
    346     ASSERT(STRING_STARTS_WITH(format, "rlist"));
    347     int rlist = instr->RlistValue();
    348     int reg = 0;
    349     Print("{");
    350     // Print register list in ascending order, by scanning the bit mask.
    351     while (rlist != 0) {
    352       if ((rlist & 1) != 0) {
    353         PrintRegister(reg);
    354         if ((rlist >> 1) != 0) {
    355           Print(", ");
    356         }
    357       }
    358       reg++;
    359       rlist >>= 1;
    360     }
    361     Print("}");
    362     return 5;
    363   }
    364   UNREACHABLE();
    365   return -1;
    366 }
    367 
    368 
    369 // Handle all VFP register based formatting in this function to reduce the
    370 // complexity of FormatOption.
    371 int Decoder::FormatVFPRegister(Instruction* instr, const char* format) {
    372   ASSERT((format[0] == 'S') || (format[0] == 'D'));
    373 
    374   VFPRegPrecision precision =
    375       format[0] == 'D' ? kDoublePrecision : kSinglePrecision;
    376 
    377   int retval = 2;
    378   int reg = -1;
    379   if (format[1] == 'n') {
    380     reg = instr->VFPNRegValue(precision);
    381   } else if (format[1] == 'm') {
    382     reg = instr->VFPMRegValue(precision);
    383   } else if (format[1] == 'd') {
    384     reg = instr->VFPDRegValue(precision);
    385     if (format[2] == '+') {
    386       int immed8 = instr->Immed8Value();
    387       if (format[0] == 'S') reg += immed8 - 1;
    388       if (format[0] == 'D') reg += (immed8 / 2 - 1);
    389     }
    390     if (format[2] == '+') retval = 3;
    391   } else {
    392     UNREACHABLE();
    393   }
    394 
    395   if (precision == kSinglePrecision) {
    396     PrintSRegister(reg);
    397   } else {
    398     PrintDRegister(reg);
    399   }
    400 
    401   return retval;
    402 }
    403 
    404 
    405 int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) {
    406     Print(format);
    407     return 0;
    408 }
    409 
    410 
    411 // Print the movw or movt instruction.
    412 void Decoder::PrintMovwMovt(Instruction* instr) {
    413   int imm = instr->ImmedMovwMovtValue();
    414   int rd = instr->RdValue();
    415   PrintRegister(rd);
    416   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    417                                   ", #%d", imm);
    418 }
    419 
    420 
    421 // FormatOption takes a formatting string and interprets it based on
    422 // the current instructions. The format string points to the first
    423 // character of the option string (the option escape has already been
    424 // consumed by the caller.)  FormatOption returns the number of
    425 // characters that were consumed from the formatting string.
    426 int Decoder::FormatOption(Instruction* instr, const char* format) {
    427   switch (format[0]) {
    428     case 'a': {  // 'a: accumulate multiplies
    429       if (instr->Bit(21) == 0) {
    430         Print("ul");
    431       } else {
    432         Print("la");
    433       }
    434       return 1;
    435     }
    436     case 'b': {  // 'b: byte loads or stores
    437       if (instr->HasB()) {
    438         Print("b");
    439       }
    440       return 1;
    441     }
    442     case 'c': {  // 'cond: conditional execution
    443       ASSERT(STRING_STARTS_WITH(format, "cond"));
    444       PrintCondition(instr);
    445       return 4;
    446     }
    447     case 'd': {  // 'd: vmov double immediate.
    448       double d = instr->DoubleImmedVmov();
    449       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    450                                       "#%g", d);
    451       return 1;
    452     }
    453     case 'f': {  // 'f: bitfield instructions - v7 and above.
    454       uint32_t lsbit = instr->Bits(11, 7);
    455       uint32_t width = instr->Bits(20, 16) + 1;
    456       if (instr->Bit(21) == 0) {
    457         // BFC/BFI:
    458         // Bits 20-16 represent most-significant bit. Covert to width.
    459         width -= lsbit;
    460         ASSERT(width > 0);
    461       }
    462       ASSERT((width + lsbit) <= 32);
    463       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    464                                       "#%d, #%d", lsbit, width);
    465       return 1;
    466     }
    467     case 'h': {  // 'h: halfword operation for extra loads and stores
    468       if (instr->HasH()) {
    469         Print("h");
    470       } else {
    471         Print("b");
    472       }
    473       return 1;
    474     }
    475     case 'i': {  // 'i: immediate value from adjacent bits.
    476       // Expects tokens in the form imm%02d@%02d, ie. imm05@07, imm10@16
    477       int width = (format[3] - '0') * 10 + (format[4] - '0');
    478       int lsb   = (format[6] - '0') * 10 + (format[7] - '0');
    479 
    480       ASSERT((width >= 1) && (width <= 32));
    481       ASSERT((lsb >= 0) && (lsb <= 31));
    482       ASSERT((width + lsb) <= 32);
    483 
    484       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    485                                       "%d",
    486                                       instr->Bits(width + lsb - 1, lsb));
    487       return 8;
    488     }
    489     case 'l': {  // 'l: branch and link
    490       if (instr->HasLink()) {
    491         Print("l");
    492       }
    493       return 1;
    494     }
    495     case 'm': {
    496       if (format[1] == 'w') {
    497         // 'mw: movt/movw instructions.
    498         PrintMovwMovt(instr);
    499         return 2;
    500       }
    501       if (format[1] == 'e') {  // 'memop: load/store instructions.
    502         ASSERT(STRING_STARTS_WITH(format, "memop"));
    503         if (instr->HasL()) {
    504           Print("ldr");
    505         } else if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0)) {
    506           if (instr->Bits(7, 4) == 0xf) {
    507             Print("strd");
    508           } else {
    509             Print("ldrd");
    510           }
    511         } else {
    512           Print("str");
    513         }
    514         return 5;
    515       }
    516       // 'msg: for simulator break instructions
    517       ASSERT(STRING_STARTS_WITH(format, "msg"));
    518       byte* str =
    519           reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
    520       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    521                                       "%s", converter_.NameInCode(str));
    522       return 3;
    523     }
    524     case 'o': {
    525       if ((format[3] == '1') && (format[4] == '2')) {
    526         // 'off12: 12-bit offset for load and store instructions
    527         ASSERT(STRING_STARTS_WITH(format, "off12"));
    528         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    529                                         "%d", instr->Offset12Value());
    530         return 5;
    531       } else if (format[3] == '0') {
    532         // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0.
    533         ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19"));
    534         out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    535                                         "%d",
    536                                         (instr->Bits(19, 8) << 4) +
    537                                         instr->Bits(3, 0));
    538         return 15;
    539       }
    540       // 'off8: 8-bit offset for extra load and store instructions
    541       ASSERT(STRING_STARTS_WITH(format, "off8"));
    542       int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
    543       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    544                                       "%d", offs8);
    545       return 4;
    546     }
    547     case 'p': {  // 'pu: P and U bits for load and store instructions
    548       ASSERT(STRING_STARTS_WITH(format, "pu"));
    549       PrintPU(instr);
    550       return 2;
    551     }
    552     case 'r': {
    553       return FormatRegister(instr, format);
    554     }
    555     case 's': {
    556       if (format[1] == 'h') {  // 'shift_op or 'shift_rm or 'shift_sat.
    557         if (format[6] == 'o') {  // 'shift_op
    558           ASSERT(STRING_STARTS_WITH(format, "shift_op"));
    559           if (instr->TypeValue() == 0) {
    560             PrintShiftRm(instr);
    561           } else {
    562             ASSERT(instr->TypeValue() == 1);
    563             PrintShiftImm(instr);
    564           }
    565           return 8;
    566         } else if (format[6] == 's') {  // 'shift_sat.
    567           ASSERT(STRING_STARTS_WITH(format, "shift_sat"));
    568           PrintShiftSat(instr);
    569           return 9;
    570         } else {  // 'shift_rm
    571           ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
    572           PrintShiftRm(instr);
    573           return 8;
    574         }
    575       } else if (format[1] == 'v') {  // 'svc
    576         ASSERT(STRING_STARTS_WITH(format, "svc"));
    577         PrintSoftwareInterrupt(instr->SvcValue());
    578         return 3;
    579       } else if (format[1] == 'i') {  // 'sign: signed extra loads and stores
    580         ASSERT(STRING_STARTS_WITH(format, "sign"));
    581         if (instr->HasSign()) {
    582           Print("s");
    583         }
    584         return 4;
    585       }
    586       // 's: S field of data processing instructions
    587       if (instr->HasS()) {
    588         Print("s");
    589       }
    590       return 1;
    591     }
    592     case 't': {  // 'target: target of branch instructions
    593       ASSERT(STRING_STARTS_WITH(format, "target"));
    594       int off = (instr->SImmed24Value() << 2) + 8;
    595       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
    596                                       "%+d -> %s",
    597                                       off,
    598                                       converter_.NameOfAddress(
    599                                         reinterpret_cast<byte*>(instr) + off));
    600       return 6;
    601     }
    602     case 'u': {  // 'u: signed or unsigned multiplies
    603       // The manual gets the meaning of bit 22 backwards in the multiply
    604       // instruction overview on page A3.16.2.  The instructions that
    605       // exist in u and s variants are the following:
    606       // smull A4.1.87
    607       // umull A4.1.129
    608       // umlal A4.1.128
    609       // smlal A4.1.76
    610       // For these 0 means u and 1 means s.  As can be seen on their individual
    611       // pages.  The other 18 mul instructions have the bit set or unset in
    612       // arbitrary ways that are unrelated to the signedness of the instruction.
    613       // None of these 18 instructions exist in both a 'u' and an 's' variant.
    614 
    615       if (instr->Bit(22) == 0) {
    616         Print("u");
    617       } else {
    618         Print("s");
    619       }
    620       return 1;
    621     }
    622     case 'v': {
    623       return FormatVFPinstruction(instr, format);
    624     }
    625     case 'S':
    626     case 'D': {
    627       return FormatVFPRegister(instr, format);
    628     }
    629     case 'w': {  // 'w: W field of load and store instructions
    630       if (instr->HasW()) {
    631         Print("!");
    632       }
    633       return 1;
    634     }
    635     default: {
    636       UNREACHABLE();
    637       break;
    638     }
    639   }
    640   UNREACHABLE();
    641   return -1;
    642 }
    643 
    644 
    645 // Format takes a formatting string for a whole instruction and prints it into
    646 // the output buffer. All escaped options are handed to FormatOption to be
    647 // parsed further.
    648 void Decoder::Format(Instruction* instr, const char* format) {
    649   char cur = *format++;
    650   while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
    651     if (cur == '\'') {  // Single quote is used as the formatting escape.
    652       format += FormatOption(instr, format);
    653     } else {
    654       out_buffer_[out_buffer_pos_++] = cur;
    655     }
    656     cur = *format++;
    657   }
    658   out_buffer_[out_buffer_pos_]  = '\0';
    659 }
    660 
    661 
    662 // For currently unimplemented decodings the disassembler calls Unknown(instr)
    663 // which will just print "unknown" of the instruction bits.
    664 void Decoder::Unknown(Instruction* instr) {
    665   Format(instr, "unknown");
    666 }
    667 
    668 
    669 void Decoder::DecodeType01(Instruction* instr) {
    670   int type = instr->TypeValue();
    671   if ((type == 0) && instr->IsSpecialType0()) {
    672     // multiply instruction or extra loads and stores
    673     if (instr->Bits(7, 4) == 9) {
    674       if (instr->Bit(24) == 0) {
    675         // multiply instructions
    676         if (instr->Bit(23) == 0) {
    677           if (instr->Bit(21) == 0) {
    678             // The MUL instruction description (A 4.1.33) refers to Rd as being
    679             // the destination for the operation, but it confusingly uses the
    680             // Rn field to encode it.
    681             Format(instr, "mul'cond's 'rn, 'rm, 'rs");
    682           } else {
    683             // The MLA instruction description (A 4.1.28) refers to the order
    684             // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
    685             // Rn field to encode the Rd register and the Rd field to encode
    686             // the Rn register.
    687             Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
    688           }
    689         } else {
    690           // The signed/long multiply instructions use the terms RdHi and RdLo
    691           // when referring to the target registers. They are mapped to the Rn
    692           // and Rd fields as follows:
    693           // RdLo == Rd field
    694           // RdHi == Rn field
    695           // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
    696           Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
    697         }
    698       } else {
    699         Unknown(instr);  // not used by V8
    700       }
    701     } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) {
    702       // ldrd, strd
    703       switch (instr->PUField()) {
    704         case da_x: {
    705           if (instr->Bit(22) == 0) {
    706             Format(instr, "'memop'cond's 'rd, ['rn], -'rm");
    707           } else {
    708             Format(instr, "'memop'cond's 'rd, ['rn], #-'off8");
    709           }
    710           break;
    711         }
    712         case ia_x: {
    713           if (instr->Bit(22) == 0) {
    714             Format(instr, "'memop'cond's 'rd, ['rn], +'rm");
    715           } else {
    716             Format(instr, "'memop'cond's 'rd, ['rn], #+'off8");
    717           }
    718           break;
    719         }
    720         case db_x: {
    721           if (instr->Bit(22) == 0) {
    722             Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w");
    723           } else {
    724             Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w");
    725           }
    726           break;
    727         }
    728         case ib_x: {
    729           if (instr->Bit(22) == 0) {
    730             Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w");
    731           } else {
    732             Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w");
    733           }
    734           break;
    735         }
    736         default: {
    737           // The PU field is a 2-bit field.
    738           UNREACHABLE();
    739           break;
    740         }
    741       }
    742     } else {
    743       // extra load/store instructions
    744       switch (instr->PUField()) {
    745         case da_x: {
    746           if (instr->Bit(22) == 0) {
    747             Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
    748           } else {
    749             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
    750           }
    751           break;
    752         }
    753         case ia_x: {
    754           if (instr->Bit(22) == 0) {
    755             Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
    756           } else {
    757             Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
    758           }
    759           break;
    760         }
    761         case db_x: {
    762           if (instr->Bit(22) == 0) {
    763             Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
    764           } else {
    765             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
    766           }
    767           break;
    768         }
    769         case ib_x: {
    770           if (instr->Bit(22) == 0) {
    771             Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
    772           } else {
    773             Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
    774           }
    775           break;
    776         }
    777         default: {
    778           // The PU field is a 2-bit field.
    779           UNREACHABLE();
    780           break;
    781         }
    782       }
    783       return;
    784     }
    785   } else if ((type == 0) && instr->IsMiscType0()) {
    786     if (instr->Bits(22, 21) == 1) {
    787       switch (instr->BitField(7, 4)) {
    788         case BX:
    789           Format(instr, "bx'cond 'rm");
    790           break;
    791         case BLX:
    792           Format(instr, "blx'cond 'rm");
    793           break;
    794         case BKPT:
    795           Format(instr, "bkpt 'off0to3and8to19");
    796           break;
    797         default:
    798           Unknown(instr);  // not used by V8
    799           break;
    800       }
    801     } else if (instr->Bits(22, 21) == 3) {
    802       switch (instr->BitField(7, 4)) {
    803         case CLZ:
    804           Format(instr, "clz'cond 'rd, 'rm");
    805           break;
    806         default:
    807           Unknown(instr);  // not used by V8
    808           break;
    809       }
    810     } else {
    811       Unknown(instr);  // not used by V8
    812     }
    813   } else {
    814     switch (instr->OpcodeField()) {
    815       case AND: {
    816         Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
    817         break;
    818       }
    819       case EOR: {
    820         Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
    821         break;
    822       }
    823       case SUB: {
    824         Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
    825         break;
    826       }
    827       case RSB: {
    828         Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
    829         break;
    830       }
    831       case ADD: {
    832         Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
    833         break;
    834       }
    835       case ADC: {
    836         Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
    837         break;
    838       }
    839       case SBC: {
    840         Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
    841         break;
    842       }
    843       case RSC: {
    844         Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
    845         break;
    846       }
    847       case TST: {
    848         if (instr->HasS()) {
    849           Format(instr, "tst'cond 'rn, 'shift_op");
    850         } else {
    851           Format(instr, "movw'cond 'mw");
    852         }
    853         break;
    854       }
    855       case TEQ: {
    856         if (instr->HasS()) {
    857           Format(instr, "teq'cond 'rn, 'shift_op");
    858         } else {
    859           // Other instructions matching this pattern are handled in the
    860           // miscellaneous instructions part above.
    861           UNREACHABLE();
    862         }
    863         break;
    864       }
    865       case CMP: {
    866         if (instr->HasS()) {
    867           Format(instr, "cmp'cond 'rn, 'shift_op");
    868         } else {
    869           Format(instr, "movt'cond 'mw");
    870         }
    871         break;
    872       }
    873       case CMN: {
    874         if (instr->HasS()) {
    875           Format(instr, "cmn'cond 'rn, 'shift_op");
    876         } else {
    877           // Other instructions matching this pattern are handled in the
    878           // miscellaneous instructions part above.
    879           UNREACHABLE();
    880         }
    881         break;
    882       }
    883       case ORR: {
    884         Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
    885         break;
    886       }
    887       case MOV: {
    888         Format(instr, "mov'cond's 'rd, 'shift_op");
    889         break;
    890       }
    891       case BIC: {
    892         Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
    893         break;
    894       }
    895       case MVN: {
    896         Format(instr, "mvn'cond's 'rd, 'shift_op");
    897         break;
    898       }
    899       default: {
    900         // The Opcode field is a 4-bit field.
    901         UNREACHABLE();
    902         break;
    903       }
    904     }
    905   }
    906 }
    907 
    908 
    909 void Decoder::DecodeType2(Instruction* instr) {
    910   switch (instr->PUField()) {
    911     case da_x: {
    912       if (instr->HasW()) {
    913         Unknown(instr);  // not used in V8
    914         return;
    915       }
    916       Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
    917       break;
    918     }
    919     case ia_x: {
    920       if (instr->HasW()) {
    921         Unknown(instr);  // not used in V8
    922         return;
    923       }
    924       Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
    925       break;
    926     }
    927     case db_x: {
    928       Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
    929       break;
    930     }
    931     case ib_x: {
    932       Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
    933       break;
    934     }
    935     default: {
    936       // The PU field is a 2-bit field.
    937       UNREACHABLE();
    938       break;
    939     }
    940   }
    941 }
    942 
    943 
    944 void Decoder::DecodeType3(Instruction* instr) {
    945   switch (instr->PUField()) {
    946     case da_x: {
    947       ASSERT(!instr->HasW());
    948       Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
    949       break;
    950     }
    951     case ia_x: {
    952       if (instr->HasW()) {
    953         ASSERT(instr->Bits(5, 4) == 0x1);
    954         if (instr->Bit(22) == 0x1) {
    955           Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat");
    956         } else {
    957           UNREACHABLE();  // SSAT.
    958         }
    959       } else {
    960         Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
    961       }
    962       break;
    963     }
    964     case db_x: {
    965       Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
    966       break;
    967     }
    968     case ib_x: {
    969       if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
    970         uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
    971         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
    972         uint32_t msbit = widthminus1 + lsbit;
    973         if (msbit <= 31) {
    974           if (instr->Bit(22)) {
    975             Format(instr, "ubfx'cond 'rd, 'rm, 'f");
    976           } else {
    977             Format(instr, "sbfx'cond 'rd, 'rm, 'f");
    978           }
    979         } else {
    980           UNREACHABLE();
    981         }
    982       } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
    983         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
    984         uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
    985         if (msbit >= lsbit) {
    986           if (instr->RmValue() == 15) {
    987             Format(instr, "bfc'cond 'rd, 'f");
    988           } else {
    989             Format(instr, "bfi'cond 'rd, 'rm, 'f");
    990           }
    991         } else {
    992           UNREACHABLE();
    993         }
    994       } else {
    995         Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
    996       }
    997       break;
    998     }
    999     default: {
   1000       // The PU field is a 2-bit field.
   1001       UNREACHABLE();
   1002       break;
   1003     }
   1004   }
   1005 }
   1006 
   1007 
   1008 void Decoder::DecodeType4(Instruction* instr) {
   1009   if (instr->Bit(22) != 0) {
   1010     // Privileged mode currently not supported.
   1011     Unknown(instr);
   1012   } else {
   1013     if (instr->HasL()) {
   1014       Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
   1015     } else {
   1016       Format(instr, "stm'cond'pu 'rn'w, 'rlist");
   1017     }
   1018   }
   1019 }
   1020 
   1021 
   1022 void Decoder::DecodeType5(Instruction* instr) {
   1023   Format(instr, "b'l'cond 'target");
   1024 }
   1025 
   1026 
   1027 void Decoder::DecodeType6(Instruction* instr) {
   1028   DecodeType6CoprocessorIns(instr);
   1029 }
   1030 
   1031 
   1032 int Decoder::DecodeType7(Instruction* instr) {
   1033   if (instr->Bit(24) == 1) {
   1034     if (instr->SvcValue() >= kStopCode) {
   1035       Format(instr, "stop'cond 'svc");
   1036       // Also print the stop message. Its address is encoded
   1037       // in the following 4 bytes.
   1038       out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
   1039                                       "\n  %p  %08x       stop message: %s",
   1040                                       reinterpret_cast<int32_t*>(instr
   1041                                                      + Instruction::kInstrSize),
   1042                                       *reinterpret_cast<char**>(instr
   1043                                                     + Instruction::kInstrSize),
   1044                                       *reinterpret_cast<char**>(instr
   1045                                                     + Instruction::kInstrSize));
   1046       // We have decoded 2 * Instruction::kInstrSize bytes.
   1047       return 2 * Instruction::kInstrSize;
   1048     } else {
   1049       Format(instr, "svc'cond 'svc");
   1050     }
   1051   } else {
   1052     DecodeTypeVFP(instr);
   1053   }
   1054   return Instruction::kInstrSize;
   1055 }
   1056 
   1057 
   1058 // void Decoder::DecodeTypeVFP(Instruction* instr)
   1059 // vmov: Sn = Rt
   1060 // vmov: Rt = Sn
   1061 // vcvt: Dd = Sm
   1062 // vcvt: Sd = Dm
   1063 // Dd = vabs(Dm)
   1064 // Dd = vneg(Dm)
   1065 // Dd = vadd(Dn, Dm)
   1066 // Dd = vsub(Dn, Dm)
   1067 // Dd = vmul(Dn, Dm)
   1068 // Dd = vdiv(Dn, Dm)
   1069 // vcmp(Dd, Dm)
   1070 // vmrs
   1071 // vmsr
   1072 // Dd = vsqrt(Dm)
   1073 void Decoder::DecodeTypeVFP(Instruction* instr) {
   1074   ASSERT((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
   1075   ASSERT(instr->Bits(11, 9) == 0x5);
   1076 
   1077   if (instr->Bit(4) == 0) {
   1078     if (instr->Opc1Value() == 0x7) {
   1079       // Other data processing instructions
   1080       if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
   1081         // vmov register to register.
   1082         if (instr->SzValue() == 0x1) {
   1083           Format(instr, "vmov.f64'cond 'Dd, 'Dm");
   1084         } else {
   1085           Format(instr, "vmov.f32'cond 'Sd, 'Sm");
   1086         }
   1087       } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
   1088         // vabs
   1089         Format(instr, "vabs'cond 'Dd, 'Dm");
   1090       } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
   1091         // vneg
   1092         Format(instr, "vneg'cond 'Dd, 'Dm");
   1093       } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
   1094         DecodeVCVTBetweenDoubleAndSingle(instr);
   1095       } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
   1096         DecodeVCVTBetweenFloatingPointAndInteger(instr);
   1097       } else if (((instr->Opc2Value() >> 1) == 0x6) &&
   1098                  (instr->Opc3Value() & 0x1)) {
   1099         DecodeVCVTBetweenFloatingPointAndInteger(instr);
   1100       } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
   1101                  (instr->Opc3Value() & 0x1)) {
   1102         DecodeVCMP(instr);
   1103       } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
   1104         Format(instr, "vsqrt.f64'cond 'Dd, 'Dm");
   1105       } else if (instr->Opc3Value() == 0x0) {
   1106         if (instr->SzValue() == 0x1) {
   1107           Format(instr, "vmov.f64'cond 'Dd, 'd");
   1108         } else {
   1109           Unknown(instr);  // Not used by V8.
   1110         }
   1111       } else {
   1112         Unknown(instr);  // Not used by V8.
   1113       }
   1114     } else if (instr->Opc1Value() == 0x3) {
   1115       if (instr->SzValue() == 0x1) {
   1116         if (instr->Opc3Value() & 0x1) {
   1117           Format(instr, "vsub.f64'cond 'Dd, 'Dn, 'Dm");
   1118         } else {
   1119           Format(instr, "vadd.f64'cond 'Dd, 'Dn, 'Dm");
   1120         }
   1121       } else {
   1122         Unknown(instr);  // Not used by V8.
   1123       }
   1124     } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
   1125       if (instr->SzValue() == 0x1) {
   1126         Format(instr, "vmul.f64'cond 'Dd, 'Dn, 'Dm");
   1127       } else {
   1128         Unknown(instr);  // Not used by V8.
   1129       }
   1130     } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
   1131       if (instr->SzValue() == 0x1) {
   1132         Format(instr, "vdiv.f64'cond 'Dd, 'Dn, 'Dm");
   1133       } else {
   1134         Unknown(instr);  // Not used by V8.
   1135       }
   1136     } else {
   1137       Unknown(instr);  // Not used by V8.
   1138     }
   1139   } else {
   1140     if ((instr->VCValue() == 0x0) &&
   1141         (instr->VAValue() == 0x0)) {
   1142       DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
   1143     } else if ((instr->VCValue() == 0x0) &&
   1144                (instr->VAValue() == 0x7) &&
   1145                (instr->Bits(19, 16) == 0x1)) {
   1146       if (instr->VLValue() == 0) {
   1147         if (instr->Bits(15, 12) == 0xF) {
   1148           Format(instr, "vmsr'cond FPSCR, APSR");
   1149         } else {
   1150           Format(instr, "vmsr'cond FPSCR, 'rt");
   1151         }
   1152       } else {
   1153         if (instr->Bits(15, 12) == 0xF) {
   1154           Format(instr, "vmrs'cond APSR, FPSCR");
   1155         } else {
   1156           Format(instr, "vmrs'cond 'rt, FPSCR");
   1157         }
   1158       }
   1159     }
   1160   }
   1161 }
   1162 
   1163 
   1164 void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
   1165     Instruction* instr) {
   1166   ASSERT((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
   1167          (instr->VAValue() == 0x0));
   1168 
   1169   bool to_arm_register = (instr->VLValue() == 0x1);
   1170 
   1171   if (to_arm_register) {
   1172     Format(instr, "vmov'cond 'rt, 'Sn");
   1173   } else {
   1174     Format(instr, "vmov'cond 'Sn, 'rt");
   1175   }
   1176 }
   1177 
   1178 
   1179 void Decoder::DecodeVCMP(Instruction* instr) {
   1180   ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
   1181   ASSERT(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
   1182          (instr->Opc3Value() & 0x1));
   1183 
   1184   // Comparison.
   1185   bool dp_operation = (instr->SzValue() == 1);
   1186   bool raise_exception_for_qnan = (instr->Bit(7) == 0x1);
   1187 
   1188   if (dp_operation && !raise_exception_for_qnan) {
   1189     if (instr->Opc2Value() == 0x4) {
   1190       Format(instr, "vcmp.f64'cond 'Dd, 'Dm");
   1191     } else if (instr->Opc2Value() == 0x5) {
   1192       Format(instr, "vcmp.f64'cond 'Dd, #0.0");
   1193     } else {
   1194       Unknown(instr);  // invalid
   1195     }
   1196   } else {
   1197     Unknown(instr);  // Not used by V8.
   1198   }
   1199 }
   1200 
   1201 
   1202 void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
   1203   ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
   1204   ASSERT((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
   1205 
   1206   bool double_to_single = (instr->SzValue() == 1);
   1207 
   1208   if (double_to_single) {
   1209     Format(instr, "vcvt.f32.f64'cond 'Sd, 'Dm");
   1210   } else {
   1211     Format(instr, "vcvt.f64.f32'cond 'Dd, 'Sm");
   1212   }
   1213 }
   1214 
   1215 
   1216 void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
   1217   ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
   1218   ASSERT(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
   1219          (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
   1220 
   1221   bool to_integer = (instr->Bit(18) == 1);
   1222   bool dp_operation = (instr->SzValue() == 1);
   1223   if (to_integer) {
   1224     bool unsigned_integer = (instr->Bit(16) == 0);
   1225 
   1226     if (dp_operation) {
   1227       if (unsigned_integer) {
   1228         Format(instr, "vcvt.u32.f64'cond 'Sd, 'Dm");
   1229       } else {
   1230         Format(instr, "vcvt.s32.f64'cond 'Sd, 'Dm");
   1231       }
   1232     } else {
   1233       if (unsigned_integer) {
   1234         Format(instr, "vcvt.u32.f32'cond 'Sd, 'Sm");
   1235       } else {
   1236         Format(instr, "vcvt.s32.f32'cond 'Sd, 'Sm");
   1237       }
   1238     }
   1239   } else {
   1240     bool unsigned_integer = (instr->Bit(7) == 0);
   1241 
   1242     if (dp_operation) {
   1243       if (unsigned_integer) {
   1244         Format(instr, "vcvt.f64.u32'cond 'Dd, 'Sm");
   1245       } else {
   1246         Format(instr, "vcvt.f64.s32'cond 'Dd, 'Sm");
   1247       }
   1248     } else {
   1249       if (unsigned_integer) {
   1250         Format(instr, "vcvt.f32.u32'cond 'Sd, 'Sm");
   1251       } else {
   1252         Format(instr, "vcvt.f32.s32'cond 'Sd, 'Sm");
   1253       }
   1254     }
   1255   }
   1256 }
   1257 
   1258 
   1259 // Decode Type 6 coprocessor instructions.
   1260 // Dm = vmov(Rt, Rt2)
   1261 // <Rt, Rt2> = vmov(Dm)
   1262 // Ddst = MEM(Rbase + 4*offset).
   1263 // MEM(Rbase + 4*offset) = Dsrc.
   1264 void Decoder::DecodeType6CoprocessorIns(Instruction* instr) {
   1265   ASSERT(instr->TypeValue() == 6);
   1266 
   1267   if (instr->CoprocessorValue() == 0xA) {
   1268     switch (instr->OpcodeValue()) {
   1269       case 0x8:
   1270       case 0xA:
   1271         if (instr->HasL()) {
   1272           Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]");
   1273         } else {
   1274           Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]");
   1275         }
   1276         break;
   1277       case 0xC:
   1278       case 0xE:
   1279         if (instr->HasL()) {
   1280           Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]");
   1281         } else {
   1282           Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]");
   1283         }
   1284         break;
   1285       case 0x4:
   1286       case 0x5:
   1287       case 0x6:
   1288       case 0x7:
   1289       case 0x9:
   1290       case 0xB: {
   1291         bool to_vfp_register = (instr->VLValue() == 0x1);
   1292         if (to_vfp_register) {
   1293           Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}");
   1294         } else {
   1295           Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}");
   1296         }
   1297         break;
   1298       }
   1299       default:
   1300         Unknown(instr);  // Not used by V8.
   1301     }
   1302   } else if (instr->CoprocessorValue() == 0xB) {
   1303     switch (instr->OpcodeValue()) {
   1304       case 0x2:
   1305         // Load and store double to two GP registers
   1306         if (instr->Bits(7, 4) != 0x1) {
   1307           Unknown(instr);  // Not used by V8.
   1308         } else if (instr->HasL()) {
   1309           Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
   1310         } else {
   1311           Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
   1312         }
   1313         break;
   1314       case 0x8:
   1315         if (instr->HasL()) {
   1316           Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]");
   1317         } else {
   1318           Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]");
   1319         }
   1320         break;
   1321       case 0xC:
   1322         if (instr->HasL()) {
   1323           Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]");
   1324         } else {
   1325           Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]");
   1326         }
   1327         break;
   1328       case 0x4:
   1329       case 0x5:
   1330       case 0x9: {
   1331         bool to_vfp_register = (instr->VLValue() == 0x1);
   1332         if (to_vfp_register) {
   1333           Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}");
   1334         } else {
   1335           Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}");
   1336         }
   1337         break;
   1338       }
   1339       default:
   1340         Unknown(instr);  // Not used by V8.
   1341     }
   1342   } else {
   1343     Unknown(instr);  // Not used by V8.
   1344   }
   1345 }
   1346 
   1347 
   1348 bool Decoder::IsConstantPoolAt(byte* instr_ptr) {
   1349   int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
   1350   return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker;
   1351 }
   1352 
   1353 
   1354 int Decoder::ConstantPoolSizeAt(byte* instr_ptr) {
   1355   if (IsConstantPoolAt(instr_ptr)) {
   1356     int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
   1357     return instruction_bits & kConstantPoolLengthMask;
   1358   } else {
   1359     return -1;
   1360   }
   1361 }
   1362 
   1363 
   1364 // Disassemble the instruction at *instr_ptr into the output buffer.
   1365 int Decoder::InstructionDecode(byte* instr_ptr) {
   1366   Instruction* instr = Instruction::At(instr_ptr);
   1367   // Print raw instruction bytes.
   1368   out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
   1369                                   "%08x       ",
   1370                                   instr->InstructionBits());
   1371   if (instr->ConditionField() == kSpecialCondition) {
   1372     Unknown(instr);
   1373     return Instruction::kInstrSize;
   1374   }
   1375   int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
   1376   if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) {
   1377     out_buffer_pos_ += OS::SNPrintF(out_buffer_ + out_buffer_pos_,
   1378                                     "constant pool begin (length %d)",
   1379                                     instruction_bits &
   1380                                     kConstantPoolLengthMask);
   1381     return Instruction::kInstrSize;
   1382   }
   1383   switch (instr->TypeValue()) {
   1384     case 0:
   1385     case 1: {
   1386       DecodeType01(instr);
   1387       break;
   1388     }
   1389     case 2: {
   1390       DecodeType2(instr);
   1391       break;
   1392     }
   1393     case 3: {
   1394       DecodeType3(instr);
   1395       break;
   1396     }
   1397     case 4: {
   1398       DecodeType4(instr);
   1399       break;
   1400     }
   1401     case 5: {
   1402       DecodeType5(instr);
   1403       break;
   1404     }
   1405     case 6: {
   1406       DecodeType6(instr);
   1407       break;
   1408     }
   1409     case 7: {
   1410       return DecodeType7(instr);
   1411     }
   1412     default: {
   1413       // The type field is 3-bits in the ARM encoding.
   1414       UNREACHABLE();
   1415       break;
   1416     }
   1417   }
   1418   return Instruction::kInstrSize;
   1419 }
   1420 
   1421 
   1422 } }  // namespace v8::internal
   1423 
   1424 
   1425 
   1426 //------------------------------------------------------------------------------
   1427 
   1428 namespace disasm {
   1429 
   1430 
   1431 const char* NameConverter::NameOfAddress(byte* addr) const {
   1432   v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
   1433   return tmp_buffer_.start();
   1434 }
   1435 
   1436 
   1437 const char* NameConverter::NameOfConstant(byte* addr) const {
   1438   return NameOfAddress(addr);
   1439 }
   1440 
   1441 
   1442 const char* NameConverter::NameOfCPURegister(int reg) const {
   1443   return v8::internal::Registers::Name(reg);
   1444 }
   1445 
   1446 
   1447 const char* NameConverter::NameOfByteCPURegister(int reg) const {
   1448   UNREACHABLE();  // ARM does not have the concept of a byte register
   1449   return "nobytereg";
   1450 }
   1451 
   1452 
   1453 const char* NameConverter::NameOfXMMRegister(int reg) const {
   1454   UNREACHABLE();  // ARM does not have any XMM registers
   1455   return "noxmmreg";
   1456 }
   1457 
   1458 
   1459 const char* NameConverter::NameInCode(byte* addr) const {
   1460   // The default name converter is called for unknown code. So we will not try
   1461   // to access any memory.
   1462   return "";
   1463 }
   1464 
   1465 
   1466 //------------------------------------------------------------------------------
   1467 
   1468 Disassembler::Disassembler(const NameConverter& converter)
   1469     : converter_(converter) {}
   1470 
   1471 
   1472 Disassembler::~Disassembler() {}
   1473 
   1474 
   1475 int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
   1476                                     byte* instruction) {
   1477   v8::internal::Decoder d(converter_, buffer);
   1478   return d.InstructionDecode(instruction);
   1479 }
   1480 
   1481 
   1482 int Disassembler::ConstantPoolSizeAt(byte* instruction) {
   1483   return v8::internal::Decoder::ConstantPoolSizeAt(instruction);
   1484 }
   1485 
   1486 
   1487 void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
   1488   NameConverter converter;
   1489   Disassembler d(converter);
   1490   for (byte* pc = begin; pc < end;) {
   1491     v8::internal::EmbeddedVector<char, 128> buffer;
   1492     buffer[0] = '\0';
   1493     byte* prev_pc = pc;
   1494     pc += d.InstructionDecode(buffer, pc);
   1495     fprintf(f, "%p    %08x      %s\n",
   1496             prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
   1497   }
   1498 }
   1499 
   1500 
   1501 }  // namespace disasm
   1502 
   1503 #endif  // V8_TARGET_ARCH_ARM
   1504