Home | History | Annotate | Download | only in html
      1 <html>
      2 <head>
      3 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      4 <title>5.Cachegrind: a cache and branch-prediction profiler</title>
      5 <link rel="stylesheet" href="vg_basic.css" type="text/css">
      6 <meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
      7 <link rel="home" href="index.html" title="Valgrind Documentation">
      8 <link rel="up" href="manual.html" title="Valgrind User Manual">
      9 <link rel="prev" href="mc-manual.html" title="4.Memcheck: a memory error detector">
     10 <link rel="next" href="cl-manual.html" title="6.Callgrind: a call-graph generating cache and branch prediction profiler">
     11 </head>
     12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
     13 <div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
     14 <td width="22px" align="center" valign="middle"><a accesskey="p" href="mc-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
     15 <td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
     16 <td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
     17 <th align="center" valign="middle">Valgrind User Manual</th>
     18 <td width="22px" align="center" valign="middle"><a accesskey="n" href="cl-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
     19 </tr></table></div>
     20 <div class="chapter" title="5.Cachegrind: a cache and branch-prediction profiler">
     21 <div class="titlepage"><div><div><h2 class="title">
     22 <a name="cg-manual"></a>5.Cachegrind: a cache and branch-prediction profiler</h2></div></div></div>
     23 <div class="toc">
     24 <p><b>Table of Contents</b></p>
     25 <dl>
     26 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.overview">5.1. Overview</a></span></dt>
     27 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.profile">5.2. Using Cachegrind, cg_annotate and cg_merge</a></span></dt>
     28 <dd><dl>
     29 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.running-cachegrind">5.2.1. Running Cachegrind</a></span></dt>
     30 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.outputfile">5.2.2. Output File</a></span></dt>
     31 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.running-cg_annotate">5.2.3. Running cg_annotate</a></span></dt>
     32 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.the-output-preamble">5.2.4. The Output Preamble</a></span></dt>
     33 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.the-global">5.2.5. The Global and Function-level Counts</a></span></dt>
     34 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.line-by-line">5.2.6. Line-by-line Counts</a></span></dt>
     35 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.assembler">5.2.7. Annotating Assembly Code Programs</a></span></dt>
     36 <dt><span class="sect2"><a href="cg-manual.html#ms-manual.forkingprograms">5.2.8. Forking Programs</a></span></dt>
     37 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.annopts.warnings">5.2.9. cg_annotate Warnings</a></span></dt>
     38 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.annopts.things-to-watch-out-for">5.2.10. Unusual Annotation Cases</a></span></dt>
     39 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.cg_merge">5.2.11. Merging Profiles with cg_merge</a></span></dt>
     40 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.cg_diff">5.2.12. Differencing Profiles with cg_diff</a></span></dt>
     41 </dl></dd>
     42 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.cgopts">5.3. Cachegrind Command-line Options</a></span></dt>
     43 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.annopts">5.4. cg_annotate Command-line Options</a></span></dt>
     44 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.diffopts">5.5. cg_diff Command-line Options</a></span></dt>
     45 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.acting-on">5.6. Acting on Cachegrind's Information</a></span></dt>
     46 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.sim-details">5.7. Simulation Details</a></span></dt>
     47 <dd><dl>
     48 <dt><span class="sect2"><a href="cg-manual.html#cache-sim">5.7.1. Cache Simulation Specifics</a></span></dt>
     49 <dt><span class="sect2"><a href="cg-manual.html#branch-sim">5.7.2. Branch Simulation Specifics</a></span></dt>
     50 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.annopts.accuracy">5.7.3. Accuracy</a></span></dt>
     51 </dl></dd>
     52 <dt><span class="sect1"><a href="cg-manual.html#cg-manual.impl-details">5.8. Implementation Details</a></span></dt>
     53 <dd><dl>
     54 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.impl-details.how-cg-works">5.8.1. How Cachegrind Works</a></span></dt>
     55 <dt><span class="sect2"><a href="cg-manual.html#cg-manual.impl-details.file-format">5.8.2. Cachegrind Output File Format</a></span></dt>
     56 </dl></dd>
     57 </dl>
     58 </div>
     59 <p>To use this tool, you must specify
     60 <code class="option">--tool=cachegrind</code> on the
     61 Valgrind command line.</p>
     62 <div class="sect1" title="5.1.Overview">
     63 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
     64 <a name="cg-manual.overview"></a>5.1.Overview</h2></div></div></div>
     65 <p>Cachegrind simulates how your program interacts with a machine's cache
     66 hierarchy and (optionally) branch predictor.  It simulates a machine with
     67 independent first-level instruction and data caches (I1 and D1), backed by a
     68 unified second-level cache (L2).  This exactly matches the configuration of
     69 many modern machines.</p>
     70 <p>However, some modern machines have three levels of cache.  For these
     71 machines (in the cases where Cachegrind can auto-detect the cache
     72 configuration) Cachegrind simulates the first-level and third-level caches.
     73 The reason for this choice is that the L3 cache has the most influence on
     74 runtime, as it masks accesses to main memory.  Furthermore, the L1 caches
     75 often have low associativity, so simulating them can detect cases where the
     76 code interacts badly with this cache (eg. traversing a matrix column-wise
     77 with the row length being a power of 2).</p>
     78 <p>Therefore, Cachegrind always refers to the I1, D1 and LL (last-level)
     79 caches.</p>
     80 <p>
     81 Cachegrind gathers the following statistics (abbreviations used for each statistic
     82 is given in parentheses):</p>
     83 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
     84 <li class="listitem"><p>I cache reads (<code class="computeroutput">Ir</code>,
     85     which equals the number of instructions executed),
     86     I1 cache read misses (<code class="computeroutput">I1mr</code>) and
     87     LL cache instruction read misses (<code class="computeroutput">ILmr</code>).
     88     </p></li>
     89 <li class="listitem"><p>D cache reads (<code class="computeroutput">Dr</code>, which
     90     equals the number of memory reads),
     91     D1 cache read misses (<code class="computeroutput">D1mr</code>), and
     92     LL cache data read misses (<code class="computeroutput">DLmr</code>).
     93     </p></li>
     94 <li class="listitem"><p>D cache writes (<code class="computeroutput">Dw</code>, which equals
     95     the number of memory writes),
     96     D1 cache write misses (<code class="computeroutput">D1mw</code>), and
     97     LL cache data write misses (<code class="computeroutput">DLmw</code>).
     98     </p></li>
     99 <li class="listitem"><p>Conditional branches executed (<code class="computeroutput">Bc</code>) and
    100     conditional branches mispredicted (<code class="computeroutput">Bcm</code>).
    101     </p></li>
    102 <li class="listitem"><p>Indirect branches executed (<code class="computeroutput">Bi</code>) and
    103     indirect branches mispredicted (<code class="computeroutput">Bim</code>).
    104     </p></li>
    105 </ul></div>
    106 <p>Note that D1 total accesses is given by
    107 <code class="computeroutput">D1mr</code> +
    108 <code class="computeroutput">D1mw</code>, and that LL total
    109 accesses is given by <code class="computeroutput">ILmr</code> +
    110 <code class="computeroutput">DLmr</code> +
    111 <code class="computeroutput">DLmw</code>.
    112 </p>
    113 <p>These statistics are presented for the entire program and for each
    114 function in the program.  You can also annotate each line of source code in
    115 the program with the counts that were caused directly by it.</p>
    116 <p>On a modern machine, an L1 miss will typically cost
    117 around 10 cycles, an LL miss can cost as much as 200
    118 cycles, and a mispredicted branch costs in the region of 10
    119 to 30 cycles.  Detailed cache and branch profiling can be very useful
    120 for understanding how your program interacts with the machine and thus how
    121 to make it faster.</p>
    122 <p>Also, since one instruction cache read is performed per
    123 instruction executed, you can find out how many instructions are
    124 executed per line, which can be useful for traditional profiling.</p>
    125 </div>
    126 <div class="sect1" title="5.2.Using Cachegrind, cg_annotate and cg_merge">
    127 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    128 <a name="cg-manual.profile"></a>5.2.Using Cachegrind, cg_annotate and cg_merge</h2></div></div></div>
    129 <p>First off, as for normal Valgrind use, you probably want to
    130 compile with debugging info (the
    131 <code class="option">-g</code> option).  But by contrast with
    132 normal Valgrind use, you probably do want to turn
    133 optimisation on, since you should profile your program as it will
    134 be normally run.</p>
    135 <p>Then, you need to run Cachegrind itself to gather the profiling
    136 information, and then run cg_annotate to get a detailed presentation of that
    137 information.  As an optional intermediate step, you can use cg_merge to sum
    138 together the outputs of multiple Cachegrind runs into a single file which
    139 you then use as the input for cg_annotate.  Alternatively, you can use
    140 cg_diff to difference the outputs of two Cachegrind runs into a signel file
    141 which you then use as the input for cg_annotate.</p>
    142 <div class="sect2" title="5.2.1.Running Cachegrind">
    143 <div class="titlepage"><div><div><h3 class="title">
    144 <a name="cg-manual.running-cachegrind"></a>5.2.1.Running Cachegrind</h3></div></div></div>
    145 <p>To run Cachegrind on a program <code class="filename">prog</code>, run:</p>
    146 <pre class="screen">
    147 valgrind --tool=cachegrind prog
    148 </pre>
    149 <p>The program will execute (slowly).  Upon completion,
    150 summary statistics that look like this will be printed:</p>
    151 <pre class="programlisting">
    152 ==31751== I   refs:      27,742,716
    153 ==31751== I1  misses:           276
    154 ==31751== LLi misses:           275
    155 ==31751== I1  miss rate:        0.0%
    156 ==31751== LLi miss rate:        0.0%
    157 ==31751== 
    158 ==31751== D   refs:      15,430,290  (10,955,517 rd + 4,474,773 wr)
    159 ==31751== D1  misses:        41,185  (    21,905 rd +    19,280 wr)
    160 ==31751== LLd misses:        23,085  (     3,987 rd +    19,098 wr)
    161 ==31751== D1  miss rate:        0.2% (       0.1%   +       0.4%)
    162 ==31751== LLd miss rate:        0.1% (       0.0%   +       0.4%)
    163 ==31751== 
    164 ==31751== LL misses:         23,360  (     4,262 rd +    19,098 wr)
    165 ==31751== LL miss rate:         0.0% (       0.0%   +       0.4%)</pre>
    166 <p>Cache accesses for instruction fetches are summarised
    167 first, giving the number of fetches made (this is the number of
    168 instructions executed, which can be useful to know in its own
    169 right), the number of I1 misses, and the number of LL instruction
    170 (<code class="computeroutput">LLi</code>) misses.</p>
    171 <p>Cache accesses for data follow. The information is similar
    172 to that of the instruction fetches, except that the values are
    173 also shown split between reads and writes (note each row's
    174 <code class="computeroutput">rd</code> and
    175 <code class="computeroutput">wr</code> values add up to the row's
    176 total).</p>
    177 <p>Combined instruction and data figures for the LL cache
    178 follow that.  Note that the LL miss rate is computed relative to the total
    179 number of memory accesses, not the number of L1 misses.  I.e.  it is
    180 <code class="computeroutput">(ILmr + DLmr + DLmw) / (Ir + Dr + Dw)</code>
    181 not
    182 <code class="computeroutput">(ILmr + DLmr + DLmw) / (I1mr + D1mr + D1mw)</code>
    183 </p>
    184 <p>Branch prediction statistics are not collected by default.
    185 To do so, add the option <code class="option">--branch-sim=yes</code>.</p>
    186 </div>
    187 <div class="sect2" title="5.2.2.Output File">
    188 <div class="titlepage"><div><div><h3 class="title">
    189 <a name="cg-manual.outputfile"></a>5.2.2.Output File</h3></div></div></div>
    190 <p>As well as printing summary information, Cachegrind also writes
    191 more detailed profiling information to a file.  By default this file is named
    192 <code class="filename">cachegrind.out.&lt;pid&gt;</code> (where
    193 <code class="filename">&lt;pid&gt;</code> is the program's process ID), but its name
    194 can be changed with the <code class="option">--cachegrind-out-file</code> option.  This
    195 file is human-readable, but is intended to be interpreted by the
    196 accompanying program cg_annotate, described in the next section.</p>
    197 <p>The default <code class="computeroutput">.&lt;pid&gt;</code> suffix
    198 on the output file name serves two purposes.  Firstly, it means you 
    199 don't have to rename old log files that you don't want to overwrite.  
    200 Secondly, and more importantly, it allows correct profiling with the
    201 <code class="option">--trace-children=yes</code> option of
    202 programs that spawn child processes.</p>
    203 <p>The output file can be big, many megabytes for large applications
    204 built with full debugging information.</p>
    205 </div>
    206 <div class="sect2" title="5.2.3.Running cg_annotate">
    207 <div class="titlepage"><div><div><h3 class="title">
    208 <a name="cg-manual.running-cg_annotate"></a>5.2.3.Running cg_annotate</h3></div></div></div>
    209 <p>Before using cg_annotate,
    210 it is worth widening your window to be at least 120-characters
    211 wide if possible, as the output lines can be quite long.</p>
    212 <p>To get a function-by-function summary, run:</p>
    213 <pre class="screen">cg_annotate &lt;filename&gt;</pre>
    214 <p>on a Cachegrind output file.</p>
    215 </div>
    216 <div class="sect2" title="5.2.4.The Output Preamble">
    217 <div class="titlepage"><div><div><h3 class="title">
    218 <a name="cg-manual.the-output-preamble"></a>5.2.4.The Output Preamble</h3></div></div></div>
    219 <p>The first part of the output looks like this:</p>
    220 <pre class="programlisting">
    221 --------------------------------------------------------------------------------
    222 I1 cache:              65536 B, 64 B, 2-way associative
    223 D1 cache:              65536 B, 64 B, 2-way associative
    224 LL cache:              262144 B, 64 B, 8-way associative
    225 Command:               concord vg_to_ucode.c
    226 Events recorded:       Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
    227 Events shown:          Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
    228 Event sort order:      Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
    229 Threshold:             99%
    230 Chosen for annotation:
    231 Auto-annotation:       off
    232 </pre>
    233 <p>This is a summary of the annotation options:</p>
    234 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    235 <li class="listitem"><p>I1 cache, D1 cache, LL cache: cache configuration.  So
    236     you know the configuration with which these results were
    237     obtained.</p></li>
    238 <li class="listitem"><p>Command: the command line invocation of the program
    239       under examination.</p></li>
    240 <li class="listitem"><p>Events recorded: which events were recorded.</p></li>
    241 <li class="listitem"><p>Events shown: the events shown, which is a subset of the events
    242    gathered.  This can be adjusted with the
    243    <code class="option">--show</code> option.</p></li>
    244 <li class="listitem">
    245 <p>Event sort order: the sort order in which functions are
    246     shown.  For example, in this case the functions are sorted
    247     from highest <code class="computeroutput">Ir</code> counts to
    248     lowest.  If two functions have identical
    249     <code class="computeroutput">Ir</code> counts, they will then be
    250     sorted by <code class="computeroutput">I1mr</code> counts, and
    251     so on.  This order can be adjusted with the
    252     <code class="option">--sort</code> option.</p>
    253 <p>Note that this dictates the order the functions appear.
    254     It is <span class="emphasis"><em>not</em></span> the order in which the columns
    255     appear; that is dictated by the "events shown" line (and can
    256     be changed with the <code class="option">--show</code>
    257     option).</p>
    258 </li>
    259 <li class="listitem"><p>Threshold: cg_annotate
    260     by default omits functions that cause very low counts
    261     to avoid drowning you in information.  In this case,
    262     cg_annotate shows summaries the functions that account for
    263     99% of the <code class="computeroutput">Ir</code> counts;
    264     <code class="computeroutput">Ir</code> is chosen as the
    265     threshold event since it is the primary sort event.  The
    266     threshold can be adjusted with the
    267     <code class="option">--threshold</code>
    268     option.</p></li>
    269 <li class="listitem"><p>Chosen for annotation: names of files specified
    270     manually for annotation; in this case none.</p></li>
    271 <li class="listitem"><p>Auto-annotation: whether auto-annotation was requested
    272     via the <code class="option">--auto=yes</code>
    273     option. In this case no.</p></li>
    274 </ul></div>
    275 </div>
    276 <div class="sect2" title="5.2.5.The Global and Function-level Counts">
    277 <div class="titlepage"><div><div><h3 class="title">
    278 <a name="cg-manual.the-global"></a>5.2.5.The Global and Function-level Counts</h3></div></div></div>
    279 <p>Then follows summary statistics for the whole
    280 program:</p>
    281 <pre class="programlisting">
    282 --------------------------------------------------------------------------------
    283 Ir         I1mr ILmr Dr         D1mr   DLmr  Dw        D1mw   DLmw
    284 --------------------------------------------------------------------------------
    285 27,742,716  276  275 10,955,517 21,905 3,987 4,474,773 19,280 19,098  PROGRAM TOTALS</pre>
    286 <p>
    287 These are similar to the summary provided when Cachegrind finishes running.
    288 </p>
    289 <p>Then comes function-by-function statistics:</p>
    290 <pre class="programlisting">
    291 --------------------------------------------------------------------------------
    292 Ir        I1mr ILmr Dr        D1mr  DLmr  Dw        D1mw   DLmw    file:function
    293 --------------------------------------------------------------------------------
    294 8,821,482    5    5 2,242,702 1,621    73 1,794,230      0      0  getc.c:_IO_getc
    295 5,222,023    4    4 2,276,334    16    12   875,959      1      1  concord.c:get_word
    296 2,649,248    2    2 1,344,810 7,326 1,385         .      .      .  vg_main.c:strcmp
    297 2,521,927    2    2   591,215     0     0   179,398      0      0  concord.c:hash
    298 2,242,740    2    2 1,046,612   568    22   448,548      0      0  ctype.c:tolower
    299 1,496,937    4    4   630,874 9,000 1,400   279,388      0      0  concord.c:insert
    300   897,991   51   51   897,831    95    30        62      1      1  ???:???
    301   598,068    1    1   299,034     0     0   149,517      0      0  ../sysdeps/generic/lockfile.c:__flockfile
    302   598,068    0    0   299,034     0     0   149,517      0      0  ../sysdeps/generic/lockfile.c:__funlockfile
    303   598,024    4    4   213,580    35    16   149,506      0      0  vg_clientmalloc.c:malloc
    304   446,587    1    1   215,973 2,167   430   129,948 14,057 13,957  concord.c:add_existing
    305   341,760    2    2   128,160     0     0   128,160      0      0  vg_clientmalloc.c:vg_trap_here_WRAPPER
    306   320,782    4    4   150,711   276     0    56,027     53     53  concord.c:init_hash_table
    307   298,998    1    1   106,785     0     0    64,071      1      1  concord.c:create
    308   149,518    0    0   149,516     0     0         1      0      0  ???:tolower@@GLIBC_2.0
    309   149,518    0    0   149,516     0     0         1      0      0  ???:fgetc@@GLIBC_2.0
    310    95,983    4    4    38,031     0     0    34,409  3,152  3,150  concord.c:new_word_node
    311    85,440    0    0    42,720     0     0    21,360      0      0  vg_clientmalloc.c:vg_bogus_epilogue</pre>
    312 <p>Each function
    313 is identified by a
    314 <code class="computeroutput">file_name:function_name</code> pair. If
    315 a column contains only a dot it means the function never performs
    316 that event (e.g. the third row shows that
    317 <code class="computeroutput">strcmp()</code> contains no
    318 instructions that write to memory). The name
    319 <code class="computeroutput">???</code> is used if the the file name
    320 and/or function name could not be determined from debugging
    321 information. If most of the entries have the form
    322 <code class="computeroutput">???:???</code> the program probably
    323 wasn't compiled with <code class="option">-g</code>.</p>
    324 <p>It is worth noting that functions will come both from
    325 the profiled program (e.g. <code class="filename">concord.c</code>)
    326 and from libraries (e.g. <code class="filename">getc.c</code>)</p>
    327 </div>
    328 <div class="sect2" title="5.2.6.Line-by-line Counts">
    329 <div class="titlepage"><div><div><h3 class="title">
    330 <a name="cg-manual.line-by-line"></a>5.2.6.Line-by-line Counts</h3></div></div></div>
    331 <p>There are two ways to annotate source files -- by specifying them
    332 manually as arguments to cg_annotate, or with the
    333 <code class="option">--auto=yes</code> option.  For example, the output from running
    334 <code class="filename">cg_annotate &lt;filename&gt; concord.c</code> for our example
    335 produces the same output as above followed by an annotated version of
    336 <code class="filename">concord.c</code>, a section of which looks like:</p>
    337 <pre class="programlisting">
    338 --------------------------------------------------------------------------------
    339 -- User-annotated source: concord.c
    340 --------------------------------------------------------------------------------
    341 Ir        I1mr ILmr Dr      D1mr  DLmr  Dw      D1mw   DLmw
    342 
    343         .    .    .       .     .     .       .      .      .  void init_hash_table(char *file_name, Word_Node *table[])
    344         3    1    1       .     .     .       1      0      0  {
    345         .    .    .       .     .     .       .      .      .      FILE *file_ptr;
    346         .    .    .       .     .     .       .      .      .      Word_Info *data;
    347         1    0    0       .     .     .       1      1      1      int line = 1, i;
    348         .    .    .       .     .     .       .      .      .
    349         5    0    0       .     .     .       3      0      0      data = (Word_Info *) create(sizeof(Word_Info));
    350         .    .    .       .     .     .       .      .      .
    351     4,991    0    0   1,995     0     0     998      0      0      for (i = 0; i &lt; TABLE_SIZE; i++)
    352     3,988    1    1   1,994     0     0     997     53     52          table[i] = NULL;
    353         .    .    .       .     .     .       .      .      .
    354         .    .    .       .     .     .       .      .      .      /* Open file, check it. */
    355         6    0    0       1     0     0       4      0      0      file_ptr = fopen(file_name, "r");
    356         2    0    0       1     0     0       .      .      .      if (!(file_ptr)) {
    357         .    .    .       .     .     .       .      .      .          fprintf(stderr, "Couldn't open '%s'.\n", file_name);
    358         1    1    1       .     .     .       .      .      .          exit(EXIT_FAILURE);
    359         .    .    .       .     .     .       .      .      .      }
    360         .    .    .       .     .     .       .      .      .
    361   165,062    1    1  73,360     0     0  91,700      0      0      while ((line = get_word(data, line, file_ptr)) != EOF)
    362   146,712    0    0  73,356     0     0  73,356      0      0          insert(data-&gt;;word, data-&gt;line, table);
    363         .    .    .       .     .     .       .      .      .
    364         4    0    0       1     0     0       2      0      0      free(data);
    365         4    0    0       1     0     0       2      0      0      fclose(file_ptr);
    366         3    0    0       2     0     0       .      .      .  }</pre>
    367 <p>(Although column widths are automatically minimised, a wide
    368 terminal is clearly useful.)</p>
    369 <p>Each source file is clearly marked
    370 (<code class="computeroutput">User-annotated source</code>) as
    371 having been chosen manually for annotation.  If the file was
    372 found in one of the directories specified with the
    373 <code class="option">-I</code>/<code class="option">--include</code> option, the directory
    374 and file are both given.</p>
    375 <p>Each line is annotated with its event counts.  Events not
    376 applicable for a line are represented by a dot.  This is useful
    377 for distinguishing between an event which cannot happen, and one
    378 which can but did not.</p>
    379 <p>Sometimes only a small section of a source file is
    380 executed.  To minimise uninteresting output, Cachegrind only shows
    381 annotated lines and lines within a small distance of annotated
    382 lines.  Gaps are marked with the line numbers so you know which
    383 part of a file the shown code comes from, eg:</p>
    384 <pre class="programlisting">
    385 (figures and code for line 704)
    386 -- line 704 ----------------------------------------
    387 -- line 878 ----------------------------------------
    388 (figures and code for line 878)</pre>
    389 <p>The amount of context to show around annotated lines is
    390 controlled by the <code class="option">--context</code>
    391 option.</p>
    392 <p>To get automatic annotation, use the <code class="option">--auto=yes</code> option.
    393 cg_annotate will automatically annotate every source file it can
    394 find that is mentioned in the function-by-function summary.
    395 Therefore, the files chosen for auto-annotation are affected by
    396 the <code class="option">--sort</code> and
    397 <code class="option">--threshold</code> options.  Each
    398 source file is clearly marked (<code class="computeroutput">Auto-annotated
    399 source</code>) as being chosen automatically.  Any
    400 files that could not be found are mentioned at the end of the
    401 output, eg:</p>
    402 <pre class="programlisting">
    403 ------------------------------------------------------------------
    404 The following files chosen for auto-annotation could not be found:
    405 ------------------------------------------------------------------
    406   getc.c
    407   ctype.c
    408   ../sysdeps/generic/lockfile.c</pre>
    409 <p>This is quite common for library files, since libraries are
    410 usually compiled with debugging information, but the source files
    411 are often not present on a system.  If a file is chosen for
    412 annotation both manually and automatically, it
    413 is marked as <code class="computeroutput">User-annotated
    414 source</code>. Use the
    415 <code class="option">-I</code>/<code class="option">--include</code> option to tell Valgrind where
    416 to look for source files if the filenames found from the debugging
    417 information aren't specific enough.</p>
    418 <p>Beware that cg_annotate can take some time to digest large
    419 <code class="filename">cachegrind.out.&lt;pid&gt;</code> files,
    420 e.g. 30 seconds or more.  Also beware that auto-annotation can
    421 produce a lot of output if your program is large!</p>
    422 </div>
    423 <div class="sect2" title="5.2.7.Annotating Assembly Code Programs">
    424 <div class="titlepage"><div><div><h3 class="title">
    425 <a name="cg-manual.assembler"></a>5.2.7.Annotating Assembly Code Programs</h3></div></div></div>
    426 <p>Valgrind can annotate assembly code programs too, or annotate
    427 the assembly code generated for your C program.  Sometimes this is
    428 useful for understanding what is really happening when an
    429 interesting line of C code is translated into multiple
    430 instructions.</p>
    431 <p>To do this, you just need to assemble your
    432 <code class="computeroutput">.s</code> files with assembly-level debug
    433 information.  You can use compile with the <code class="option">-S</code> to compile C/C++
    434 programs to assembly code, and then assemble the assembly code files with
    435 <code class="option">-g</code> to achieve this.  You can then profile and annotate the
    436 assembly code source files in the same way as C/C++ source files.</p>
    437 </div>
    438 <div class="sect2" title="5.2.8.Forking Programs">
    439 <div class="titlepage"><div><div><h3 class="title">
    440 <a name="ms-manual.forkingprograms"></a>5.2.8.Forking Programs</h3></div></div></div>
    441 <p>If your program forks, the child will inherit all the profiling data that
    442 has been gathered for the parent.</p>
    443 <p>If the output file format string (controlled by
    444 <code class="option">--cachegrind-out-file</code>) does not contain <code class="option">%p</code>,
    445 then the outputs from the parent and child will be intermingled in a single
    446 output file, which will almost certainly make it unreadable by
    447 cg_annotate.</p>
    448 </div>
    449 <div class="sect2" title="5.2.9.cg_annotate Warnings">
    450 <div class="titlepage"><div><div><h3 class="title">
    451 <a name="cg-manual.annopts.warnings"></a>5.2.9.cg_annotate Warnings</h3></div></div></div>
    452 <p>There are a couple of situations in which
    453 cg_annotate issues warnings.</p>
    454 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    455 <li class="listitem"><p>If a source file is more recent than the
    456     <code class="filename">cachegrind.out.&lt;pid&gt;</code> file.
    457     This is because the information in
    458     <code class="filename">cachegrind.out.&lt;pid&gt;</code> is only
    459     recorded with line numbers, so if the line numbers change at
    460     all in the source (e.g.  lines added, deleted, swapped), any
    461     annotations will be incorrect.</p></li>
    462 <li class="listitem"><p>If information is recorded about line numbers past the
    463     end of a file.  This can be caused by the above problem,
    464     i.e. shortening the source file while using an old
    465     <code class="filename">cachegrind.out.&lt;pid&gt;</code> file.  If
    466     this happens, the figures for the bogus lines are printed
    467     anyway (clearly marked as bogus) in case they are
    468     important.</p></li>
    469 </ul></div>
    470 </div>
    471 <div class="sect2" title="5.2.10.Unusual Annotation Cases">
    472 <div class="titlepage"><div><div><h3 class="title">
    473 <a name="cg-manual.annopts.things-to-watch-out-for"></a>5.2.10.Unusual Annotation Cases</h3></div></div></div>
    474 <p>Some odd things that can occur during annotation:</p>
    475 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    476 <li class="listitem">
    477 <p>If annotating at the assembler level, you might see
    478     something like this:</p>
    479 <pre class="programlisting">
    480       1    0    0  .    .    .  .    .    .          leal -12(%ebp),%eax
    481       1    0    0  .    .    .  1    0    0          movl %eax,84(%ebx)
    482       2    0    0  0    0    0  1    0    0          movl $1,-20(%ebp)
    483       .    .    .  .    .    .  .    .    .          .align 4,0x90
    484       1    0    0  .    .    .  .    .    .          movl $.LnrB,%eax
    485       1    0    0  .    .    .  1    0    0          movl %eax,-16(%ebp)</pre>
    486 <p>How can the third instruction be executed twice when
    487     the others are executed only once?  As it turns out, it
    488     isn't.  Here's a dump of the executable, using
    489     <code class="computeroutput">objdump -d</code>:</p>
    490 <pre class="programlisting">
    491       8048f25:       8d 45 f4                lea    0xfffffff4(%ebp),%eax
    492       8048f28:       89 43 54                mov    %eax,0x54(%ebx)
    493       8048f2b:       c7 45 ec 01 00 00 00    movl   $0x1,0xffffffec(%ebp)
    494       8048f32:       89 f6                   mov    %esi,%esi
    495       8048f34:       b8 08 8b 07 08          mov    $0x8078b08,%eax
    496       8048f39:       89 45 f0                mov    %eax,0xfffffff0(%ebp)</pre>
    497 <p>Notice the extra <code class="computeroutput">mov
    498     %esi,%esi</code> instruction.  Where did this come
    499     from?  The GNU assembler inserted it to serve as the two
    500     bytes of padding needed to align the <code class="computeroutput">movl
    501     $.LnrB,%eax</code> instruction on a four-byte
    502     boundary, but pretended it didn't exist when adding debug
    503     information.  Thus when Valgrind reads the debug info it
    504     thinks that the <code class="computeroutput">movl
    505     $0x1,0xffffffec(%ebp)</code> instruction covers the
    506     address range 0x8048f2b--0x804833 by itself, and attributes
    507     the counts for the <code class="computeroutput">mov
    508     %esi,%esi</code> to it.</p>
    509 </li>
    510 <li class="listitem"><p>Sometimes, the same filename might be represented with
    511     a relative name and with an absolute name in different parts
    512     of the debug info, eg:
    513     <code class="filename">/home/user/proj/proj.h</code> and
    514     <code class="filename">../proj.h</code>.  In this case, if you use
    515     auto-annotation, the file will be annotated twice with the
    516     counts split between the two.</p></li>
    517 <li class="listitem">
    518 <p>Files with more than 65,535 lines cause difficulties
    519     for the Stabs-format debug info reader.  This is because the line
    520     number in the <code class="computeroutput">struct nlist</code>
    521     defined in <code class="filename">a.out.h</code> under Linux is only a
    522     16-bit value.  Valgrind can handle some files with more than
    523     65,535 lines correctly by making some guesses to identify
    524     line number overflows.  But some cases are beyond it, in
    525     which case you'll get a warning message explaining that
    526     annotations for the file might be incorrect.</p>
    527 <p>If you are using GCC 3.1 or later, this is most likely
    528     irrelevant, since GCC switched to using the more modern DWARF2 
    529     format by default at version 3.1.  DWARF2 does not have any such
    530     limitations on line numbers.</p>
    531 </li>
    532 <li class="listitem"><p>If you compile some files with
    533     <code class="option">-g</code> and some without, some
    534     events that take place in a file without debug info could be
    535     attributed to the last line of a file with debug info
    536     (whichever one gets placed before the non-debug-info file in
    537     the executable).</p></li>
    538 </ul></div>
    539 <p>This list looks long, but these cases should be fairly
    540 rare.</p>
    541 </div>
    542 <div class="sect2" title="5.2.11.Merging Profiles with cg_merge">
    543 <div class="titlepage"><div><div><h3 class="title">
    544 <a name="cg-manual.cg_merge"></a>5.2.11.Merging Profiles with cg_merge</h3></div></div></div>
    545 <p>
    546 cg_merge is a simple program which
    547 reads multiple profile files, as created by Cachegrind, merges them
    548 together, and writes the results into another file in the same format.
    549 You can then examine the merged results using
    550 <code class="computeroutput">cg_annotate &lt;filename&gt;</code>, as
    551 described above.  The merging functionality might be useful if you
    552 want to aggregate costs over multiple runs of the same program, or
    553 from a single parallel run with multiple instances of the same
    554 program.</p>
    555 <p>
    556 cg_merge is invoked as follows:
    557 </p>
    558 <pre class="programlisting">
    559 cg_merge -o outputfile file1 file2 file3 ...</pre>
    560 <p>
    561 It reads and checks <code class="computeroutput">file1</code>, then read
    562 and checks <code class="computeroutput">file2</code> and merges it into
    563 the running totals, then the same with
    564 <code class="computeroutput">file3</code>, etc.  The final results are
    565 written to <code class="computeroutput">outputfile</code>, or to standard
    566 out if no output file is specified.</p>
    567 <p>
    568 Costs are summed on a per-function, per-line and per-instruction
    569 basis.  Because of this, the order in which the input files does not
    570 matter, although you should take care to only mention each file once,
    571 since any file mentioned twice will be added in twice.</p>
    572 <p>
    573 cg_merge does not attempt to check
    574 that the input files come from runs of the same executable.  It will
    575 happily merge together profile files from completely unrelated
    576 programs.  It does however check that the
    577 <code class="computeroutput">Events:</code> lines of all the inputs are
    578 identical, so as to ensure that the addition of costs makes sense.
    579 For example, it would be nonsensical for it to add a number indicating
    580 D1 read references to a number from a different file indicating LL
    581 write misses.</p>
    582 <p>
    583 A number of other syntax and sanity checks are done whilst reading the
    584 inputs.  cg_merge will stop and
    585 attempt to print a helpful error message if any of the input files
    586 fail these checks.</p>
    587 </div>
    588 <div class="sect2" title="5.2.12.Differencing Profiles with cg_diff">
    589 <div class="titlepage"><div><div><h3 class="title">
    590 <a name="cg-manual.cg_diff"></a>5.2.12.Differencing Profiles with cg_diff</h3></div></div></div>
    591 <p>
    592 cg_diff is a simple program which
    593 reads two profile files, as created by Cachegrind, finds the difference
    594 between them, and writes the results into another file in the same format.
    595 You can then examine the merged results using
    596 <code class="computeroutput">cg_annotate &lt;filename&gt;</code>, as
    597 described above.  This is very useful if you want to measure how a change to
    598 a program affected its performance.
    599 </p>
    600 <p>
    601 cg_diff is invoked as follows:
    602 </p>
    603 <pre class="programlisting">
    604 cg_diff file1 file2</pre>
    605 <p>
    606 It reads and checks <code class="computeroutput">file1</code>, then read
    607 and checks <code class="computeroutput">file2</code>, then computes the
    608 difference (effectively <code class="computeroutput">file1</code> -
    609 <code class="computeroutput">file2</code>).  The final results are written to
    610 standard output.</p>
    611 <p>
    612 Costs are summed on a per-function basis.  Per-line costs are not summed,
    613 because doing so is too difficult.  For example, consider differencing two
    614 profiles, one from a single-file program A, and one from the same program A
    615 where a single blank line was inserted at the top of the file.  Every single
    616 per-line count has changed.  In comparison, the per-function counts have not
    617 changed.  The per-function count differences are still very useful for
    618 determining differences between programs.  Note that because the result is
    619 the difference of two profiles, many of the counts will be negative;  this
    620 indicates that the counts for the relevant function are fewer in the second
    621 version than those in the first version.</p>
    622 <p>
    623 cg_diff does not attempt to check
    624 that the input files come from runs of the same executable.  It will
    625 happily merge together profile files from completely unrelated
    626 programs.  It does however check that the
    627 <code class="computeroutput">Events:</code> lines of all the inputs are
    628 identical, so as to ensure that the addition of costs makes sense.
    629 For example, it would be nonsensical for it to add a number indicating
    630 D1 read references to a number from a different file indicating LL
    631 write misses.</p>
    632 <p>
    633 A number of other syntax and sanity checks are done whilst reading the
    634 inputs.  cg_diff will stop and
    635 attempt to print a helpful error message if any of the input files
    636 fail these checks.</p>
    637 <p>
    638 Sometimes you will want to compare Cachegrind profiles of two versions of a
    639 program that you have sitting side-by-side.  For example, you might have
    640 <code class="computeroutput">version1/prog.c</code> and
    641 <code class="computeroutput">version2/prog.c</code>, where the second is
    642 slightly different to the first.  A straight comparison of the two will not
    643 be useful -- because functions are qualified with filenames, a function
    644 <code class="function">f</code> will be listed as
    645 <code class="computeroutput">version1/prog.c:f</code> for the first version but
    646 <code class="computeroutput">version2/prog.c:f</code> for the second
    647 version.</p>
    648 <p>
    649 When this happens, you can use the <code class="option">--mod-filename</code> option.
    650 Its argument is a Perl search-and-replace expression that will be applied
    651 to all the filenames in both Cachegrind output files.  It can be used to
    652 remove minor differences in filenames.  For example, the option
    653 <code class="option">--mod-filename='s/version[0-9]/versionN/'</code> will suffice for
    654 this case.</p>
    655 </div>
    656 </div>
    657 <div class="sect1" title="5.3.Cachegrind Command-line Options">
    658 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    659 <a name="cg-manual.cgopts"></a>5.3.Cachegrind Command-line Options</h2></div></div></div>
    660 <p>Cachegrind-specific options are:</p>
    661 <div class="variablelist">
    662 <a name="cg.opts.list"></a><dl>
    663 <dt>
    664 <a name="opt.I1"></a><span class="term">
    665       <code class="option">--I1=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
    666     </span>
    667 </dt>
    668 <dd><p>Specify the size, associativity and line size of the level 1
    669       instruction cache.  </p></dd>
    670 <dt>
    671 <a name="opt.D1"></a><span class="term">
    672       <code class="option">--D1=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
    673     </span>
    674 </dt>
    675 <dd><p>Specify the size, associativity and line size of the level 1
    676       data cache.</p></dd>
    677 <dt>
    678 <a name="opt.LL"></a><span class="term">
    679       <code class="option">--LL=&lt;size&gt;,&lt;associativity&gt;,&lt;line size&gt; </code>
    680     </span>
    681 </dt>
    682 <dd><p>Specify the size, associativity and line size of the last-level
    683       cache.</p></dd>
    684 <dt>
    685 <a name="opt.cache-sim"></a><span class="term">
    686       <code class="option">--cache-sim=no|yes [yes] </code>
    687     </span>
    688 </dt>
    689 <dd><p>Enables or disables collection of cache access and miss
    690             counts.</p></dd>
    691 <dt>
    692 <a name="opt.branch-sim"></a><span class="term">
    693       <code class="option">--branch-sim=no|yes [no] </code>
    694     </span>
    695 </dt>
    696 <dd><p>Enables or disables collection of branch instruction and
    697             misprediction counts.  By default this is disabled as it
    698             slows Cachegrind down by approximately 25%.  Note that you
    699             cannot specify <code class="option">--cache-sim=no</code>
    700             and <code class="option">--branch-sim=no</code>
    701             together, as that would leave Cachegrind with no
    702             information to collect.</p></dd>
    703 <dt>
    704 <a name="opt.cachegrind-out-file"></a><span class="term">
    705       <code class="option">--cachegrind-out-file=&lt;file&gt; </code>
    706     </span>
    707 </dt>
    708 <dd><p>Write the profile data to 
    709             <code class="computeroutput">file</code> rather than to the default
    710             output file,
    711             <code class="filename">cachegrind.out.&lt;pid&gt;</code>.  The
    712             <code class="option">%p</code> and <code class="option">%q</code> format specifiers
    713             can be used to embed the process ID and/or the contents of an
    714             environment variable in the name, as is the case for the core
    715             option <code class="option"><a class="xref" href="manual-core.html#opt.log-file">--log-file</a></code>.
    716       </p></dd>
    717 </dl>
    718 </div>
    719 </div>
    720 <div class="sect1" title="5.4.cg_annotate Command-line Options">
    721 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    722 <a name="cg-manual.annopts"></a>5.4.cg_annotate Command-line Options</h2></div></div></div>
    723 <div class="variablelist">
    724 <a name="cg_annotate.opts.list"></a><dl>
    725 <dt><span class="term">
    726       <code class="option">-h --help </code>
    727     </span></dt>
    728 <dd><p>Show the help message.</p></dd>
    729 <dt><span class="term">
    730       <code class="option">--version </code>
    731     </span></dt>
    732 <dd><p>Show the version number.</p></dd>
    733 <dt><span class="term">
    734       <code class="option">--show=A,B,C [default: all, using order in
    735       cachegrind.out.&lt;pid&gt;] </code>
    736     </span></dt>
    737 <dd><p>Specifies which events to show (and the column
    738       order). Default is to use all present in the
    739       <code class="filename">cachegrind.out.&lt;pid&gt;</code> file (and
    740       use the order in the file).  Useful if you want to concentrate on, for
    741       example, I cache misses (<code class="option">--show=I1mr,ILmr</code>), or data
    742       read misses (<code class="option">--show=D1mr,DLmr</code>), or LL data misses
    743       (<code class="option">--show=DLmr,DLmw</code>).  Best used in conjunction with
    744       <code class="option">--sort</code>.</p></dd>
    745 <dt><span class="term">
    746       <code class="option">--sort=A,B,C [default: order in
    747       cachegrind.out.&lt;pid&gt;] </code>
    748     </span></dt>
    749 <dd><p>Specifies the events upon which the sorting of the
    750       function-by-function entries will be based.</p></dd>
    751 <dt><span class="term">
    752       <code class="option">--threshold=X [default: 0.1%] </code>
    753     </span></dt>
    754 <dd>
    755 <p>Sets the threshold for the function-by-function
    756       summary.  A function is shown if it accounts for more than X%
    757       of the counts for the primary sort event.  If auto-annotating, also
    758       affects which files are annotated.</p>
    759 <p>Note: thresholds can be set for more than one of the
    760       events by appending any events for the
    761       <code class="option">--sort</code> option with a colon
    762       and a number (no spaces, though).  E.g. if you want to see
    763       each function that covers more than 1% of LL read misses or 1% of LL
    764       write misses, use this option:</p>
    765 <p><code class="option">--sort=DLmr:1,DLmw:1</code></p>
    766 </dd>
    767 <dt><span class="term">
    768       <code class="option">--auto=&lt;no|yes&gt; [default: no] </code>
    769     </span></dt>
    770 <dd><p>When enabled, automatically annotates every file that
    771       is mentioned in the function-by-function summary that can be
    772       found.  Also gives a list of those that couldn't be found.</p></dd>
    773 <dt><span class="term">
    774       <code class="option">--context=N [default: 8] </code>
    775     </span></dt>
    776 <dd><p>Print N lines of context before and after each
    777       annotated line.  Avoids printing large sections of source
    778       files that were not executed.  Use a large number
    779       (e.g. 100000) to show all source lines.</p></dd>
    780 <dt><span class="term">
    781       <code class="option">-I&lt;dir&gt; --include=&lt;dir&gt; [default: none] </code>
    782     </span></dt>
    783 <dd><p>Adds a directory to the list in which to search for
    784       files.  Multiple <code class="option">-I</code>/<code class="option">--include</code>
    785       options can be given to add multiple directories.</p></dd>
    786 </dl>
    787 </div>
    788 </div>
    789 <div class="sect1" title="5.5.cg_diff Command-line Options">
    790 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    791 <a name="cg-manual.diffopts"></a>5.5.cg_diff Command-line Options</h2></div></div></div>
    792 <div class="variablelist">
    793 <a name="cg_diff.opts.list"></a><dl>
    794 <dt><span class="term">
    795       <code class="option">-h --help </code>
    796     </span></dt>
    797 <dd><p>Show the help message.</p></dd>
    798 <dt><span class="term">
    799       <code class="option">--version </code>
    800     </span></dt>
    801 <dd><p>Show the version number.</p></dd>
    802 <dt><span class="term">
    803       <code class="option">--mod-filename=&lt;expr&gt; [default: none]</code>
    804     </span></dt>
    805 <dd><p>Specifies a Perl search-and-replace expression that is applied
    806       to all filenames.  Useful for removing minor differences in paths
    807       between two different versions of a program that are sitting in
    808       different directories.</p></dd>
    809 </dl>
    810 </div>
    811 </div>
    812 <div class="sect1" title="5.6.Acting on Cachegrind's Information">
    813 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    814 <a name="cg-manual.acting-on"></a>5.6.Acting on Cachegrind's Information</h2></div></div></div>
    815 <p>
    816 Cachegrind gives you lots of information, but acting on that information
    817 isn't always easy.  Here are some rules of thumb that we have found to be
    818 useful.</p>
    819 <p>
    820 First of all, the global hit/miss counts and miss rates are not that useful.
    821 If you have multiple programs or multiple runs of a program, comparing the
    822 numbers might identify if any are outliers and worthy of closer
    823 investigation.  Otherwise, they're not enough to act on.</p>
    824 <p>
    825 The function-by-function counts are more useful to look at, as they pinpoint
    826 which functions are causing large numbers of counts.  However, beware that
    827 inlining can make these counts misleading.  If a function
    828 <code class="function">f</code> is always inlined, counts will be attributed to the
    829 functions it is inlined into, rather than itself.  However, if you look at
    830 the line-by-line annotations for <code class="function">f</code> you'll see the
    831 counts that belong to <code class="function">f</code>.  (This is hard to avoid, it's
    832 how the debug info is structured.)  So it's worth looking for large numbers
    833 in the line-by-line annotations.</p>
    834 <p>
    835 The line-by-line source code annotations are much more useful.  In our
    836 experience, the best place to start is by looking at the
    837 <code class="computeroutput">Ir</code> numbers.  They simply measure how many
    838 instructions were executed for each line, and don't include any cache
    839 information, but they can still be very useful for identifying
    840 bottlenecks.</p>
    841 <p>
    842 After that, we have found that LL misses are typically a much bigger source
    843 of slow-downs than L1 misses.  So it's worth looking for any snippets of
    844 code with high <code class="computeroutput">DLmr</code> or
    845 <code class="computeroutput">DLmw</code> counts.  (You can use
    846 <code class="option">--show=DLmr
    847 --sort=DLmr</code> with cg_annotate to focus just on
    848 <code class="literal">DLmr</code> counts, for example.) If you find any, it's still
    849 not always easy to work out how to improve things.  You need to have a
    850 reasonable understanding of how caches work, the principles of locality, and
    851 your program's data access patterns.  Improving things may require
    852 redesigning a data structure, for example.</p>
    853 <p>
    854 Looking at the <code class="computeroutput">Bcm</code> and
    855 <code class="computeroutput">Bim</code> misses can also be helpful.
    856 In particular, <code class="computeroutput">Bim</code> misses are often caused
    857 by <code class="literal">switch</code> statements, and in some cases these
    858 <code class="literal">switch</code> statements can be replaced with table-driven code.
    859 For example, you might replace code like this:</p>
    860 <pre class="programlisting">
    861 enum E { A, B, C };
    862 enum E e;
    863 int i;
    864 ...
    865 switch (e)
    866 {
    867     case A: i += 1;
    868     case B: i += 2;
    869     case C: i += 3;
    870 }
    871 </pre>
    872 <p>with code like this:</p>
    873 <pre class="programlisting">
    874 enum E { A, B, C };
    875 enum E e;
    876 enum E table[] = { 1, 2, 3 };
    877 int i;
    878 ...
    879 i += table[e];
    880 </pre>
    881 <p>
    882 This is obviously a contrived example, but the basic principle applies in a
    883 wide variety of situations.</p>
    884 <p>
    885 In short, Cachegrind can tell you where some of the bottlenecks in your code
    886 are, but it can't tell you how to fix them.  You have to work that out for
    887 yourself.  But at least you have the information!
    888 </p>
    889 </div>
    890 <div class="sect1" title="5.7.Simulation Details">
    891 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    892 <a name="cg-manual.sim-details"></a>5.7.Simulation Details</h2></div></div></div>
    893 <p>
    894 This section talks about details you don't need to know about in order to
    895 use Cachegrind, but may be of interest to some people.
    896 </p>
    897 <div class="sect2" title="5.7.1.Cache Simulation Specifics">
    898 <div class="titlepage"><div><div><h3 class="title">
    899 <a name="cache-sim"></a>5.7.1.Cache Simulation Specifics</h3></div></div></div>
    900 <p>Specific characteristics of the cache simulation are as
    901 follows:</p>
    902 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    903 <li class="listitem"><p>Write-allocate: when a write miss occurs, the block
    904     written to is brought into the D1 cache.  Most modern caches
    905     have this property.</p></li>
    906 <li class="listitem">
    907 <p>Bit-selection hash function: the set of line(s) in the cache
    908     to which a memory block maps is chosen by the middle bits
    909     M--(M+N-1) of the byte address, where:</p>
    910 <div class="itemizedlist"><ul class="itemizedlist" type="circle">
    911 <li class="listitem"><p>line size = 2^M bytes</p></li>
    912 <li class="listitem"><p>(cache size / line size / associativity) = 2^N bytes</p></li>
    913 </ul></div>
    914 </li>
    915 <li class="listitem"><p>Inclusive LL cache: the LL cache typically replicates all
    916     the entries of the L1 caches, because fetching into L1 involves
    917     fetching into LL first (this does not guarantee strict inclusiveness,
    918     as lines evicted from LL still could reside in L1).  This is
    919     standard on Pentium chips, but AMD Opterons, Athlons and Durons
    920     use an exclusive LL cache that only holds
    921     blocks evicted from L1.  Ditto most modern VIA CPUs.</p></li>
    922 </ul></div>
    923 <p>The cache configuration simulated (cache size,
    924 associativity and line size) is determined automatically using
    925 the x86 CPUID instruction.  If you have a machine that (a)
    926 doesn't support the CPUID instruction, or (b) supports it in an
    927 early incarnation that doesn't give any cache information, then
    928 Cachegrind will fall back to using a default configuration (that
    929 of a model 3/4 Athlon).  Cachegrind will tell you if this
    930 happens.  You can manually specify one, two or all three levels
    931 (I1/D1/LL) of the cache from the command line using the
    932 <code class="option">--I1</code>,
    933 <code class="option">--D1</code> and
    934 <code class="option">--LL</code> options.
    935 For cache parameters to be valid for simulation, the number
    936 of sets (with associativity being the number of cache lines in
    937 each set) has to be a power of two.</p>
    938 <p>On PowerPC platforms
    939 Cachegrind cannot automatically 
    940 determine the cache configuration, so you will 
    941 need to specify it with the
    942 <code class="option">--I1</code>,
    943 <code class="option">--D1</code> and
    944 <code class="option">--LL</code> options.</p>
    945 <p>Other noteworthy behaviour:</p>
    946 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    947 <li class="listitem">
    948 <p>References that straddle two cache lines are treated as
    949     follows:</p>
    950 <div class="itemizedlist"><ul class="itemizedlist" type="circle">
    951 <li class="listitem"><p>If both blocks hit --&gt; counted as one hit</p></li>
    952 <li class="listitem"><p>If one block hits, the other misses --&gt; counted
    953         as one miss.</p></li>
    954 <li class="listitem"><p>If both blocks miss --&gt; counted as one miss (not
    955         two)</p></li>
    956 </ul></div>
    957 </li>
    958 <li class="listitem">
    959 <p>Instructions that modify a memory location
    960     (e.g. <code class="computeroutput">inc</code> and
    961     <code class="computeroutput">dec</code>) are counted as doing
    962     just a read, i.e. a single data reference.  This may seem
    963     strange, but since the write can never cause a miss (the read
    964     guarantees the block is in the cache) it's not very
    965     interesting.</p>
    966 <p>Thus it measures not the number of times the data cache
    967     is accessed, but the number of times a data cache miss could
    968     occur.</p>
    969 </li>
    970 </ul></div>
    971 <p>If you are interested in simulating a cache with different
    972 properties, it is not particularly hard to write your own cache
    973 simulator, or to modify the existing ones in
    974 <code class="computeroutput">cg_sim.c</code>. We'd be
    975 interested to hear from anyone who does.</p>
    976 </div>
    977 <div class="sect2" title="5.7.2.Branch Simulation Specifics">
    978 <div class="titlepage"><div><div><h3 class="title">
    979 <a name="branch-sim"></a>5.7.2.Branch Simulation Specifics</h3></div></div></div>
    980 <p>Cachegrind simulates branch predictors intended to be
    981 typical of mainstream desktop/server processors of around 2004.</p>
    982 <p>Conditional branches are predicted using an array of 16384 2-bit
    983 saturating counters.  The array index used for a branch instruction is
    984 computed partly from the low-order bits of the branch instruction's
    985 address and partly using the taken/not-taken behaviour of the last few
    986 conditional branches.  As a result the predictions for any specific
    987 branch depend both on its own history and the behaviour of previous
    988 branches.  This is a standard technique for improving prediction
    989 accuracy.</p>
    990 <p>For indirect branches (that is, jumps to unknown destinations)
    991 Cachegrind uses a simple branch target address predictor.  Targets are
    992 predicted using an array of 512 entries indexed by the low order 9
    993 bits of the branch instruction's address.  Each branch is predicted to
    994 jump to the same address it did last time.  Any other behaviour causes
    995 a mispredict.</p>
    996 <p>More recent processors have better branch predictors, in
    997 particular better indirect branch predictors.  Cachegrind's predictor
    998 design is deliberately conservative so as to be representative of the
    999 large installed base of processors which pre-date widespread
   1000 deployment of more sophisticated indirect branch predictors.  In
   1001 particular, late model Pentium 4s (Prescott), Pentium M, Core and Core
   1002 2 have more sophisticated indirect branch predictors than modelled by
   1003 Cachegrind.  </p>
   1004 <p>Cachegrind does not simulate a return stack predictor.  It
   1005 assumes that processors perfectly predict function return addresses,
   1006 an assumption which is probably close to being true.</p>
   1007 <p>See Hennessy and Patterson's classic text "Computer
   1008 Architecture: A Quantitative Approach", 4th edition (2007), Section
   1009 2.3 (pages 80-89) for background on modern branch predictors.</p>
   1010 </div>
   1011 <div class="sect2" title="5.7.3.Accuracy">
   1012 <div class="titlepage"><div><div><h3 class="title">
   1013 <a name="cg-manual.annopts.accuracy"></a>5.7.3.Accuracy</h3></div></div></div>
   1014 <p>Valgrind's cache profiling has a number of
   1015 shortcomings:</p>
   1016 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1017 <li class="listitem"><p>It doesn't account for kernel activity -- the effect of system
   1018     calls on the cache and branch predictor contents is ignored.</p></li>
   1019 <li class="listitem"><p>It doesn't account for other process activity.
   1020     This is probably desirable when considering a single
   1021     program.</p></li>
   1022 <li class="listitem"><p>It doesn't account for virtual-to-physical address
   1023     mappings.  Hence the simulation is not a true
   1024     representation of what's happening in the
   1025     cache.  Most caches and branch predictors are physically indexed, but
   1026     Cachegrind simulates caches using virtual addresses.</p></li>
   1027 <li class="listitem"><p>It doesn't account for cache misses not visible at the
   1028     instruction level, e.g. those arising from TLB misses, or
   1029     speculative execution.</p></li>
   1030 <li class="listitem"><p>Valgrind will schedule
   1031     threads differently from how they would be when running natively.
   1032     This could warp the results for threaded programs.</p></li>
   1033 <li class="listitem">
   1034 <p>The x86/amd64 instructions <code class="computeroutput">bts</code>,
   1035     <code class="computeroutput">btr</code> and
   1036     <code class="computeroutput">btc</code> will incorrectly be
   1037     counted as doing a data read if both the arguments are
   1038     registers, eg:</p>
   1039 <pre class="programlisting">
   1040     btsl %eax, %edx</pre>
   1041 <p>This should only happen rarely.</p>
   1042 </li>
   1043 <li class="listitem"><p>x86/amd64 FPU instructions with data sizes of 28 and 108 bytes
   1044     (e.g.  <code class="computeroutput">fsave</code>) are treated as
   1045     though they only access 16 bytes.  These instructions seem to
   1046     be rare so hopefully this won't affect accuracy much.</p></li>
   1047 </ul></div>
   1048 <p>Another thing worth noting is that results are very sensitive.
   1049 Changing the size of the the executable being profiled, or the sizes
   1050 of any of the shared libraries it uses, or even the length of their
   1051 file names, can perturb the results.  Variations will be small, but
   1052 don't expect perfectly repeatable results if your program changes at
   1053 all.</p>
   1054 <p>More recent GNU/Linux distributions do address space
   1055 randomisation, in which identical runs of the same program have their
   1056 shared libraries loaded at different locations, as a security measure.
   1057 This also perturbs the results.</p>
   1058 <p>While these factors mean you shouldn't trust the results to
   1059 be super-accurate, they should be close enough to be useful.</p>
   1060 </div>
   1061 </div>
   1062 <div class="sect1" title="5.8.Implementation Details">
   1063 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1064 <a name="cg-manual.impl-details"></a>5.8.Implementation Details</h2></div></div></div>
   1065 <p>
   1066 This section talks about details you don't need to know about in order to
   1067 use Cachegrind, but may be of interest to some people.
   1068 </p>
   1069 <div class="sect2" title="5.8.1.How Cachegrind Works">
   1070 <div class="titlepage"><div><div><h3 class="title">
   1071 <a name="cg-manual.impl-details.how-cg-works"></a>5.8.1.How Cachegrind Works</h3></div></div></div>
   1072 <p>The best reference for understanding how Cachegrind works is chapter 3 of
   1073 "Dynamic Binary Analysis and Instrumentation", by Nicholas Nethercote.  It
   1074 is available on the <a class="ulink" href="http://www.valgrind.org/docs/pubs.html" target="_top">Valgrind publications
   1075 page</a>.</p>
   1076 </div>
   1077 <div class="sect2" title="5.8.2.Cachegrind Output File Format">
   1078 <div class="titlepage"><div><div><h3 class="title">
   1079 <a name="cg-manual.impl-details.file-format"></a>5.8.2.Cachegrind Output File Format</h3></div></div></div>
   1080 <p>The file format is fairly straightforward, basically giving the
   1081 cost centre for every line, grouped by files and
   1082 functions.  It's also totally generic and self-describing, in the sense that
   1083 it can be used for any events that can be counted on a line-by-line basis,
   1084 not just cache and branch predictor events.  For example, earlier versions
   1085 of Cachegrind didn't have a branch predictor simulation.  When this was
   1086 added, the file format didn't need to change at all.  So the format (and
   1087 consequently, cg_annotate) could be used by other tools.</p>
   1088 <p>The file format:</p>
   1089 <pre class="programlisting">
   1090 file         ::= desc_line* cmd_line events_line data_line+ summary_line
   1091 desc_line    ::= "desc:" ws? non_nl_string
   1092 cmd_line     ::= "cmd:" ws? cmd
   1093 events_line  ::= "events:" ws? (event ws)+
   1094 data_line    ::= file_line | fn_line | count_line
   1095 file_line    ::= "fl=" filename
   1096 fn_line      ::= "fn=" fn_name
   1097 count_line   ::= line_num ws? (count ws)+
   1098 summary_line ::= "summary:" ws? (count ws)+
   1099 count        ::= num | "."</pre>
   1100 <p>Where:</p>
   1101 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1102 <li class="listitem"><p><code class="computeroutput">non_nl_string</code> is any
   1103     string not containing a newline.</p></li>
   1104 <li class="listitem"><p><code class="computeroutput">cmd</code> is a string holding the
   1105     command line of the profiled program.</p></li>
   1106 <li class="listitem"><p><code class="computeroutput">event</code> is a string containing
   1107     no whitespace.</p></li>
   1108 <li class="listitem"><p><code class="computeroutput">filename</code> and
   1109     <code class="computeroutput">fn_name</code> are strings.</p></li>
   1110 <li class="listitem"><p><code class="computeroutput">num</code> and
   1111     <code class="computeroutput">line_num</code> are decimal
   1112     numbers.</p></li>
   1113 <li class="listitem"><p><code class="computeroutput">ws</code> is whitespace.</p></li>
   1114 </ul></div>
   1115 <p>The contents of the "desc:" lines are printed out at the top
   1116 of the summary.  This is a generic way of providing simulation
   1117 specific information, e.g. for giving the cache configuration for
   1118 cache simulation.</p>
   1119 <p>More than one line of info can be presented for each file/fn/line number.
   1120 In such cases, the counts for the named events will be accumulated.</p>
   1121 <p>Counts can be "." to represent zero.  This makes the files easier for
   1122 humans to read.</p>
   1123 <p>The number of counts in each
   1124 <code class="computeroutput">line</code> and the
   1125 <code class="computeroutput">summary_line</code> should not exceed
   1126 the number of events in the
   1127 <code class="computeroutput">event_line</code>.  If the number in
   1128 each <code class="computeroutput">line</code> is less, cg_annotate
   1129 treats those missing as though they were a "." entry.  This saves space.
   1130 </p>
   1131 <p>A <code class="computeroutput">file_line</code> changes the
   1132 current file name.  A <code class="computeroutput">fn_line</code>
   1133 changes the current function name.  A
   1134 <code class="computeroutput">count_line</code> contains counts that
   1135 pertain to the current filename/fn_name.  A "fn="
   1136 <code class="computeroutput">file_line</code> and a
   1137 <code class="computeroutput">fn_line</code> must appear before any
   1138 <code class="computeroutput">count_line</code>s to give the context
   1139 of the first <code class="computeroutput">count_line</code>s.</p>
   1140 <p>Each <code class="computeroutput">file_line</code> will normally be
   1141 immediately followed by a <code class="computeroutput">fn_line</code>.  But it
   1142 doesn't have to be.</p>
   1143 <p>The summary line is redundant, because it just holds the total counts
   1144 for each event.  But this serves as a useful sanity check of the data;  if
   1145 the totals for each event don't match the summary line, something has gone
   1146 wrong.</p>
   1147 </div>
   1148 </div>
   1149 </div>
   1150 <div>
   1151 <br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
   1152 <tr>
   1153 <td rowspan="2" width="40%" align="left">
   1154 <a accesskey="p" href="mc-manual.html">&lt;&lt;4.Memcheck: a memory error detector</a></td>
   1155 <td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
   1156 <td rowspan="2" width="40%" align="right"><a accesskey="n" href="cl-manual.html">6.Callgrind: a call-graph generating cache and branch prediction profiler&gt;&gt;</a>
   1157 </td>
   1158 </tr>
   1159 <tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
   1160 </table>
   1161 </div>
   1162 </body>
   1163 </html>
   1164