Home | History | Annotate | Download | only in html
      1 <html>
      2 <head>
      3 <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      4 <title>8.DRD: a thread error detector</title>
      5 <link rel="stylesheet" href="vg_basic.css" type="text/css">
      6 <meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
      7 <link rel="home" href="index.html" title="Valgrind Documentation">
      8 <link rel="up" href="manual.html" title="Valgrind User Manual">
      9 <link rel="prev" href="hg-manual.html" title="7.Helgrind: a thread error detector">
     10 <link rel="next" href="ms-manual.html" title="9.Massif: a heap profiler">
     11 </head>
     12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
     13 <div><table class="nav" width="100%" cellspacing="3" cellpadding="3" border="0" summary="Navigation header"><tr>
     14 <td width="22px" align="center" valign="middle"><a accesskey="p" href="hg-manual.html"><img src="images/prev.png" width="18" height="21" border="0" alt="Prev"></a></td>
     15 <td width="25px" align="center" valign="middle"><a accesskey="u" href="manual.html"><img src="images/up.png" width="21" height="18" border="0" alt="Up"></a></td>
     16 <td width="31px" align="center" valign="middle"><a accesskey="h" href="index.html"><img src="images/home.png" width="27" height="20" border="0" alt="Up"></a></td>
     17 <th align="center" valign="middle">Valgrind User Manual</th>
     18 <td width="22px" align="center" valign="middle"><a accesskey="n" href="ms-manual.html"><img src="images/next.png" width="18" height="21" border="0" alt="Next"></a></td>
     19 </tr></table></div>
     20 <div class="chapter" title="8.DRD: a thread error detector">
     21 <div class="titlepage"><div><div><h2 class="title">
     22 <a name="drd-manual"></a>8.DRD: a thread error detector</h2></div></div></div>
     23 <div class="toc">
     24 <p><b>Table of Contents</b></p>
     25 <dl>
     26 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.overview">8.1. Overview</a></span></dt>
     27 <dd><dl>
     28 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-progr-models">8.1.1. Multithreaded Programming Paradigms</a></span></dt>
     29 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.pthreads-model">8.1.2. POSIX Threads Programming Model</a></span></dt>
     30 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.mt-problems">8.1.3. Multithreaded Programming Problems</a></span></dt>
     31 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-race-detection">8.1.4. Data Race Detection</a></span></dt>
     32 </dl></dd>
     33 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.using-drd">8.2. Using DRD</a></span></dt>
     34 <dd><dl>
     35 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.options">8.2.1. DRD Command-line Options</a></span></dt>
     36 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.data-races">8.2.2. Detected Errors: Data Races</a></span></dt>
     37 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.lock-contention">8.2.3. Detected Errors: Lock Contention</a></span></dt>
     38 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.api-checks">8.2.4. Detected Errors: Misuse of the POSIX threads API</a></span></dt>
     39 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.clientreqs">8.2.5. Client Requests</a></span></dt>
     40 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.gnome">8.2.6. Debugging GNOME Programs</a></span></dt>
     41 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.qt">8.2.7. Debugging Qt Programs</a></span></dt>
     42 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.boost.thread">8.2.8. Debugging Boost.Thread Programs</a></span></dt>
     43 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.openmp">8.2.9. Debugging OpenMP Programs</a></span></dt>
     44 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.cust-mem-alloc">8.2.10. DRD and Custom Memory Allocators</a></span></dt>
     45 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.drd-versus-memcheck">8.2.11. DRD Versus Memcheck</a></span></dt>
     46 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.resource-requirements">8.2.12. Resource Requirements</a></span></dt>
     47 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.effective-use">8.2.13. Hints and Tips for Effective Use of DRD</a></span></dt>
     48 </dl></dd>
     49 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.Pthreads">8.3. Using the POSIX Threads API Effectively</a></span></dt>
     50 <dd><dl>
     51 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.mutex-types">8.3.1. Mutex types</a></span></dt>
     52 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.condvar">8.3.2. Condition variables</a></span></dt>
     53 <dt><span class="sect2"><a href="drd-manual.html#drd-manual.pctw">8.3.3. pthread_cond_timedwait and timeouts</a></span></dt>
     54 </dl></dd>
     55 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.limitations">8.4. Limitations</a></span></dt>
     56 <dt><span class="sect1"><a href="drd-manual.html#drd-manual.feedback">8.5. Feedback</a></span></dt>
     57 </dl>
     58 </div>
     59 <p>To use this tool, you must specify
     60 <code class="option">--tool=drd</code>
     61 on the Valgrind command line.</p>
     62 <div class="sect1" title="8.1.Overview">
     63 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
     64 <a name="drd-manual.overview"></a>8.1.Overview</h2></div></div></div>
     65 <p>
     66 DRD is a Valgrind tool for detecting errors in multithreaded C and C++
     67 programs. The tool works for any program that uses the POSIX threading
     68 primitives or that uses threading concepts built on top of the POSIX threading
     69 primitives.
     70 </p>
     71 <div class="sect2" title="8.1.1.Multithreaded Programming Paradigms">
     72 <div class="titlepage"><div><div><h3 class="title">
     73 <a name="drd-manual.mt-progr-models"></a>8.1.1.Multithreaded Programming Paradigms</h3></div></div></div>
     74 <p>
     75 There are two possible reasons for using multithreading in a program:
     76 </p>
     77 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
     78 <li class="listitem"><p>
     79       To model concurrent activities. Assigning one thread to each activity
     80       can be a great simplification compared to multiplexing the states of
     81       multiple activities in a single thread. This is why most server software
     82       and embedded software is multithreaded.
     83     </p></li>
     84 <li class="listitem"><p>
     85       To use multiple CPU cores simultaneously for speeding up
     86       computations. This is why many High Performance Computing (HPC)
     87       applications are multithreaded.
     88     </p></li>
     89 </ul></div>
     90 <p>
     91 </p>
     92 <p>
     93 Multithreaded programs can use one or more of the following programming
     94 paradigms. Which paradigm is appropriate depends e.g. on the application type.
     95 Some examples of multithreaded programming paradigms are:
     96 </p>
     97 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
     98 <li class="listitem"><p>
     99       Locking. Data that is shared over threads is protected from concurrent
    100       accesses via locking. E.g. the POSIX threads library, the Qt library
    101       and the Boost.Thread library support this paradigm directly.
    102     </p></li>
    103 <li class="listitem"><p>
    104       Message passing. No data is shared between threads, but threads exchange
    105       data by passing messages to each other. Examples of implementations of
    106       the message passing paradigm are MPI and CORBA.
    107     </p></li>
    108 <li class="listitem"><p>
    109       Automatic parallelization. A compiler converts a sequential program into
    110       a multithreaded program. The original program may or may not contain
    111       parallelization hints. One example of such parallelization hints is the
    112       OpenMP standard. In this standard a set of directives are defined which
    113       tell a compiler how to parallelize a C, C++ or Fortran program. OpenMP
    114       is well suited for computational intensive applications. As an example,
    115       an open source image processing software package is using OpenMP to
    116       maximize performance on systems with multiple CPU
    117       cores. GCC supports the
    118       OpenMP standard from version 4.2.0 on.
    119     </p></li>
    120 <li class="listitem"><p>
    121       Software Transactional Memory (STM). Any data that is shared between
    122       threads is updated via transactions. After each transaction it is
    123       verified whether there were any conflicting transactions. If there were
    124       conflicts, the transaction is aborted, otherwise it is committed. This
    125       is a so-called optimistic approach. There is a prototype of the Intel C++
    126       Compiler available that supports STM. Research about the addition of
    127       STM support to GCC is ongoing.
    128     </p></li>
    129 </ul></div>
    130 <p>
    131 </p>
    132 <p>
    133 DRD supports any combination of multithreaded programming paradigms as
    134 long as the implementation of these paradigms is based on the POSIX
    135 threads primitives. DRD however does not support programs that use
    136 e.g. Linux' futexes directly. Attempts to analyze such programs with
    137 DRD will cause DRD to report many false positives.
    138 </p>
    139 </div>
    140 <div class="sect2" title="8.1.2.POSIX Threads Programming Model">
    141 <div class="titlepage"><div><div><h3 class="title">
    142 <a name="drd-manual.pthreads-model"></a>8.1.2.POSIX Threads Programming Model</h3></div></div></div>
    143 <p>
    144 POSIX threads, also known as Pthreads, is the most widely available
    145 threading library on Unix systems.
    146 </p>
    147 <p>
    148 The POSIX threads programming model is based on the following abstractions:
    149 </p>
    150 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    151 <li class="listitem"><p>
    152       A shared address space. All threads running within the same
    153       process share the same address space. All data, whether shared or
    154       not, is identified by its address.
    155     </p></li>
    156 <li class="listitem"><p>
    157       Regular load and store operations, which allow to read values
    158       from or to write values to the memory shared by all threads
    159       running in the same process.
    160     </p></li>
    161 <li class="listitem"><p>
    162       Atomic store and load-modify-store operations. While these are
    163       not mentioned in the POSIX threads standard, most
    164       microprocessors support atomic memory operations.
    165     </p></li>
    166 <li class="listitem"><p>
    167       Threads. Each thread represents a concurrent activity.
    168     </p></li>
    169 <li class="listitem"><p>
    170       Synchronization objects and operations on these synchronization
    171       objects. The following types of synchronization objects have been
    172       defined in the POSIX threads standard: mutexes, condition variables,
    173       semaphores, reader-writer synchronization objects, barriers and
    174       spinlocks.
    175     </p></li>
    176 </ul></div>
    177 <p>
    178 </p>
    179 <p>
    180 Which source code statements generate which memory accesses depends on
    181 the <span class="emphasis"><em>memory model</em></span> of the programming language being
    182 used. There is not yet a definitive memory model for the C and C++
    183 languages. For a draft memory model, see also the document
    184 <a class="ulink" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2338.html" target="_top">
    185 WG21/N2338: Concurrency memory model compiler consequences</a>.
    186 </p>
    187 <p>
    188 For more information about POSIX threads, see also the Single UNIX
    189 Specification version 3, also known as
    190 <a class="ulink" href="http://www.opengroup.org/onlinepubs/000095399/idx/threads.html" target="_top">
    191 IEEE Std 1003.1</a>.
    192 </p>
    193 </div>
    194 <div class="sect2" title="8.1.3.Multithreaded Programming Problems">
    195 <div class="titlepage"><div><div><h3 class="title">
    196 <a name="drd-manual.mt-problems"></a>8.1.3.Multithreaded Programming Problems</h3></div></div></div>
    197 <p>
    198 Depending on which multithreading paradigm is being used in a program,
    199 one or more of the following problems can occur:
    200 </p>
    201 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    202 <li class="listitem"><p>
    203       Data races. One or more threads access the same memory location without
    204       sufficient locking. Most but not all data races are programming errors
    205       and are the cause of subtle and hard-to-find bugs.
    206     </p></li>
    207 <li class="listitem"><p>
    208       Lock contention. One thread blocks the progress of one or more other
    209       threads by holding a lock too long.
    210     </p></li>
    211 <li class="listitem"><p>
    212       Improper use of the POSIX threads API. Most implementations of the POSIX
    213       threads API have been optimized for runtime speed. Such implementations
    214       will not complain on certain errors, e.g. when a mutex is being unlocked
    215       by another thread than the thread that obtained a lock on the mutex.
    216     </p></li>
    217 <li class="listitem"><p>
    218       Deadlock. A deadlock occurs when two or more threads wait for
    219       each other indefinitely.
    220     </p></li>
    221 <li class="listitem"><p>
    222       False sharing. If threads that run on different processor cores
    223       access different variables located in the same cache line
    224       frequently, this will slow down the involved threads a lot due
    225       to frequent exchange of cache lines.
    226     </p></li>
    227 </ul></div>
    228 <p>
    229 </p>
    230 <p>
    231 Although the likelihood of the occurrence of data races can be reduced
    232 through a disciplined programming style, a tool for automatic
    233 detection of data races is a necessity when developing multithreaded
    234 software. DRD can detect these, as well as lock contention and
    235 improper use of the POSIX threads API.
    236 </p>
    237 </div>
    238 <div class="sect2" title="8.1.4.Data Race Detection">
    239 <div class="titlepage"><div><div><h3 class="title">
    240 <a name="drd-manual.data-race-detection"></a>8.1.4.Data Race Detection</h3></div></div></div>
    241 <p>
    242 The result of load and store operations performed by a multithreaded program
    243 depends on the order in which memory operations are performed. This order is
    244 determined by:
    245 </p>
    246 <div class="orderedlist"><ol class="orderedlist" type="1">
    247 <li class="listitem"><p>
    248       All memory operations performed by the same thread are performed in
    249       <span class="emphasis"><em>program order</em></span>, that is, the order determined by the
    250       program source code and the results of previous load operations.
    251     </p></li>
    252 <li class="listitem"><p>
    253       Synchronization operations determine certain ordering constraints on
    254       memory operations performed by different threads. These ordering
    255       constraints are called the <span class="emphasis"><em>synchronization order</em></span>.
    256     </p></li>
    257 </ol></div>
    258 <p>
    259 The combination of program order and synchronization order is called the
    260 <span class="emphasis"><em>happens-before relationship</em></span>. This concept was first
    261 defined by S. Adve et al in the paper <span class="emphasis"><em>Detecting data races on weak
    262 memory systems</em></span>, ACM SIGARCH Computer Architecture News, v.19 n.3,
    263 p.234-243, May 1991.
    264 </p>
    265 <p>
    266 Two memory operations <span class="emphasis"><em>conflict</em></span> if both operations are
    267 performed by different threads, refer to the same memory location and at least
    268 one of them is a store operation.
    269 </p>
    270 <p>
    271 A multithreaded program is <span class="emphasis"><em>data-race free</em></span> if all
    272 conflicting memory accesses are ordered by synchronization
    273 operations.
    274 </p>
    275 <p>
    276 A well known way to ensure that a multithreaded program is data-race
    277 free is to ensure that a locking discipline is followed. It is e.g.
    278 possible to associate a mutex with each shared data item, and to hold
    279 a lock on the associated mutex while the shared data is accessed.
    280 </p>
    281 <p>
    282 All programs that follow a locking discipline are data-race free, but not all
    283 data-race free programs follow a locking discipline. There exist multithreaded
    284 programs where access to shared data is arbitrated via condition variables,
    285 semaphores or barriers. As an example, a certain class of HPC applications
    286 consists of a sequence of computation steps separated in time by barriers, and
    287 where these barriers are the only means of synchronization. Although there are
    288 many conflicting memory accesses in such applications and although such
    289 applications do not make use mutexes, most of these applications do not
    290 contain data races.
    291 </p>
    292 <p>
    293 There exist two different approaches for verifying the correctness of
    294 multithreaded programs at runtime. The approach of the so-called Eraser
    295 algorithm is to verify whether all shared memory accesses follow a consistent
    296 locking strategy. And the happens-before data race detectors verify directly
    297 whether all interthread memory accesses are ordered by synchronization
    298 operations. While the last approach is more complex to implement, and while it
    299 is more sensitive to OS scheduling, it is a general approach that works for
    300 all classes of multithreaded programs. An important advantage of
    301 happens-before data race detectors is that these do not report any false
    302 positives.
    303 </p>
    304 <p>
    305 DRD is based on the happens-before algorithm.
    306 </p>
    307 </div>
    308 </div>
    309 <div class="sect1" title="8.2.Using DRD">
    310 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
    311 <a name="drd-manual.using-drd"></a>8.2.Using DRD</h2></div></div></div>
    312 <div class="sect2" title="8.2.1.DRD Command-line Options">
    313 <div class="titlepage"><div><div><h3 class="title">
    314 <a name="drd-manual.options"></a>8.2.1.DRD Command-line Options</h3></div></div></div>
    315 <p>The following command-line options are available for controlling the
    316 behavior of the DRD tool itself:</p>
    317 <div class="variablelist">
    318 <a name="drd.opts.list"></a><dl>
    319 <dt><span class="term">
    320       <code class="option">--check-stack-var=&lt;yes|no&gt; [default: no]</code>
    321     </span></dt>
    322 <dd><p>
    323         Controls whether DRD detects data races on stack
    324         variables. Verifying stack variables is disabled by default because
    325         most programs do not share stack variables over threads.
    326       </p></dd>
    327 <dt><span class="term">
    328       <code class="option">--exclusive-threshold=&lt;n&gt; [default: off]</code>
    329     </span></dt>
    330 <dd><p>
    331         Print an error message if any mutex or writer lock has been
    332         held longer than the time specified in milliseconds. This
    333         option enables the detection of lock contention.
    334       </p></dd>
    335 <dt><span class="term">
    336       <code class="option">
    337         --first-race-only=&lt;yes|no&gt; [default: no]
    338       </code>
    339     </span></dt>
    340 <dd><p>
    341         Whether to report only the first data race that has been detected on a
    342         memory location or all data races that have been detected on a memory
    343         location.
    344       </p></dd>
    345 <dt><span class="term">
    346       <code class="option">
    347         --free-is-write=&lt;yes|no&gt; [default: no]
    348       </code>
    349     </span></dt>
    350 <dd><p>
    351         Whether to report accessing freed memory as a race. Helps to detect
    352         memory accesses that occur after memory has been freed but might cause
    353         DRD to run slightly slower.
    354       </p></dd>
    355 <dt><span class="term">
    356       <code class="option">
    357         --report-signal-unlocked=&lt;yes|no&gt; [default: yes]
    358       </code>
    359     </span></dt>
    360 <dd><p>
    361         Whether to report calls to
    362         <code class="function">pthread_cond_signal</code> and
    363         <code class="function">pthread_cond_broadcast</code> where the mutex
    364         associated with the signal through
    365         <code class="function">pthread_cond_wait</code> or
    366         <code class="function">pthread_cond_timed_wait</code>is not locked at
    367         the time the signal is sent.  Sending a signal without holding
    368         a lock on the associated mutex is a common programming error
    369         which can cause subtle race conditions and unpredictable
    370         behavior. There exist some uncommon synchronization patterns
    371         however where it is safe to send a signal without holding a
    372         lock on the associated mutex.
    373       </p></dd>
    374 <dt><span class="term">
    375       <code class="option">--segment-merging=&lt;yes|no&gt; [default: yes]</code>
    376     </span></dt>
    377 <dd><p>
    378         Controls segment merging. Segment merging is an algorithm to
    379         limit memory usage of the data race detection
    380         algorithm. Disabling segment merging may improve the accuracy
    381         of the so-called 'other segments' displayed in race reports
    382         but can also trigger an out of memory error.
    383       </p></dd>
    384 <dt><span class="term">
    385       <code class="option">--segment-merging-interval=&lt;n&gt; [default: 10]</code>
    386     </span></dt>
    387 <dd><p>
    388         Perform segment merging only after the specified number of new
    389         segments have been created. This is an advanced configuration option
    390         that allows to choose whether to minimize DRD's memory usage by
    391         choosing a low value or to let DRD run faster by choosing a slightly
    392         higher value. The optimal value for this parameter depends on the
    393         program being analyzed. The default value works well for most programs.
    394       </p></dd>
    395 <dt><span class="term">
    396       <code class="option">--shared-threshold=&lt;n&gt; [default: off]</code>
    397     </span></dt>
    398 <dd><p>
    399         Print an error message if a reader lock has been held longer
    400         than the specified time (in milliseconds). This option enables
    401         the detection of lock contention.
    402       </p></dd>
    403 <dt><span class="term">
    404       <code class="option">--show-confl-seg=&lt;yes|no&gt; [default: yes]</code>
    405     </span></dt>
    406 <dd><p>
    407          Show conflicting segments in race reports. Since this
    408          information can help to find the cause of a data race, this
    409          option is enabled by default. Disabling this option makes the
    410          output of DRD more compact.
    411       </p></dd>
    412 <dt><span class="term">
    413       <code class="option">--show-stack-usage=&lt;yes|no&gt; [default: no]</code>
    414     </span></dt>
    415 <dd><p>
    416         Print stack usage at thread exit time. When a program creates a large
    417         number of threads it becomes important to limit the amount of virtual
    418         memory allocated for thread stacks. This option makes it possible to
    419         observe how much stack memory has been used by each thread of the the
    420         client program. Note: the DRD tool itself allocates some temporary
    421         data on the client thread stack. The space necessary for this
    422         temporary data must be allocated by the client program when it
    423         allocates stack memory, but is not included in stack usage reported by
    424         DRD.
    425       </p></dd>
    426 </dl>
    427 </div>
    428 <p>
    429 The following options are available for monitoring the behavior of the
    430 client program:
    431 </p>
    432 <div class="variablelist">
    433 <a name="drd.debugopts.list"></a><dl>
    434 <dt><span class="term">
    435       <code class="option">--trace-addr=&lt;address&gt; [default: none]</code>
    436     </span></dt>
    437 <dd><p>
    438         Trace all load and store activity for the specified
    439         address. This option may be specified more than once.
    440       </p></dd>
    441 <dt><span class="term">
    442       <code class="option">--trace-alloc=&lt;yes|no&gt; [default: no]</code>
    443     </span></dt>
    444 <dd><p>
    445         Trace all memory allocations and deallocations. May produce a huge
    446         amount of output.
    447       </p></dd>
    448 <dt><span class="term">
    449       <code class="option">--trace-barrier=&lt;yes|no&gt; [default: no]</code>
    450     </span></dt>
    451 <dd><p>
    452         Trace all barrier activity.
    453       </p></dd>
    454 <dt><span class="term">
    455       <code class="option">--trace-cond=&lt;yes|no&gt; [default: no]</code>
    456     </span></dt>
    457 <dd><p>
    458         Trace all condition variable activity.
    459       </p></dd>
    460 <dt><span class="term">
    461       <code class="option">--trace-fork-join=&lt;yes|no&gt; [default: no]</code>
    462     </span></dt>
    463 <dd><p>
    464         Trace all thread creation and all thread termination events.
    465       </p></dd>
    466 <dt><span class="term">
    467       <code class="option">--trace-mutex=&lt;yes|no&gt; [default: no]</code>
    468     </span></dt>
    469 <dd><p>
    470         Trace all mutex activity.
    471       </p></dd>
    472 <dt><span class="term">
    473       <code class="option">--trace-rwlock=&lt;yes|no&gt; [default: no]</code>
    474     </span></dt>
    475 <dd><p>
    476          Trace all reader-writer lock activity.
    477       </p></dd>
    478 <dt><span class="term">
    479       <code class="option">--trace-semaphore=&lt;yes|no&gt; [default: no]</code>
    480     </span></dt>
    481 <dd><p>
    482         Trace all semaphore activity.
    483       </p></dd>
    484 </dl>
    485 </div>
    486 </div>
    487 <div class="sect2" title="8.2.2.Detected Errors: Data Races">
    488 <div class="titlepage"><div><div><h3 class="title">
    489 <a name="drd-manual.data-races"></a>8.2.2.Detected Errors: Data Races</h3></div></div></div>
    490 <p>
    491 DRD prints a message every time it detects a data race. Please keep
    492 the following in mind when interpreting DRD's output:
    493 </p>
    494 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    495 <li class="listitem"><p>
    496       Every thread is assigned a <span class="emphasis"><em>thread ID</em></span> by the DRD
    497       tool. A thread ID is a number. Thread ID's start at one and are never
    498       recycled.
    499     </p></li>
    500 <li class="listitem"><p>
    501       The term <span class="emphasis"><em>segment</em></span> refers to a consecutive
    502       sequence of load, store and synchronization operations, all
    503       issued by the same thread. A segment always starts and ends at a
    504       synchronization operation. Data race analysis is performed
    505       between segments instead of between individual load and store
    506       operations because of performance reasons.
    507     </p></li>
    508 <li class="listitem"><p>
    509       There are always at least two memory accesses involved in a data
    510       race. Memory accesses involved in a data race are called
    511       <span class="emphasis"><em>conflicting memory accesses</em></span>. DRD prints a
    512       report for each memory access that conflicts with a past memory
    513       access.
    514     </p></li>
    515 </ul></div>
    516 <p>
    517 </p>
    518 <p>
    519 Below you can find an example of a message printed by DRD when it
    520 detects a data race:
    521 </p>
    522 <pre class="programlisting">
    523 $ valgrind --tool=drd --read-var-info=yes drd/tests/rwlock_race
    524 ...
    525 ==9466== Thread 3:
    526 ==9466== Conflicting load by thread 3 at 0x006020b8 size 4
    527 ==9466==    at 0x400B6C: thread_func (rwlock_race.c:29)
    528 ==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
    529 ==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
    530 ==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
    531 ==9466== Location 0x6020b8 is 0 bytes inside local var "s_racy"
    532 ==9466== declared at rwlock_race.c:18, in frame #0 of thread 3
    533 ==9466== Other segment start (thread 2)
    534 ==9466==    at 0x4C2847D: pthread_rwlock_rdlock* (drd_pthread_intercepts.c:813)
    535 ==9466==    by 0x400B6B: thread_func (rwlock_race.c:28)
    536 ==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
    537 ==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
    538 ==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
    539 ==9466== Other segment end (thread 2)
    540 ==9466==    at 0x4C28B54: pthread_rwlock_unlock* (drd_pthread_intercepts.c:912)
    541 ==9466==    by 0x400B84: thread_func (rwlock_race.c:30)
    542 ==9466==    by 0x4C291DF: vg_thread_wrapper (drd_pthread_intercepts.c:186)
    543 ==9466==    by 0x4E3403F: start_thread (in /lib64/libpthread-2.8.so)
    544 ==9466==    by 0x53250CC: clone (in /lib64/libc-2.8.so)
    545 ...
    546 </pre>
    547 <p>
    548 The above report has the following meaning:
    549 </p>
    550 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    551 <li class="listitem"><p>
    552       The number in the column on the left is the process ID of the
    553       process being analyzed by DRD.
    554     </p></li>
    555 <li class="listitem"><p>
    556       The first line ("Thread 3") tells you the thread ID for
    557       the thread in which context the data race has been detected.
    558     </p></li>
    559 <li class="listitem"><p>
    560       The next line tells which kind of operation was performed (load or
    561       store) and by which thread. On the same line the start address and the
    562       number of bytes involved in the conflicting access are also displayed.
    563     </p></li>
    564 <li class="listitem"><p>
    565       Next, the call stack of the conflicting access is displayed. If
    566       your program has been compiled with debug information
    567       (<code class="option">-g</code>), this call stack will include file names and
    568       line numbers. The two
    569       bottommost frames in this call stack (<code class="function">clone</code>
    570       and <code class="function">start_thread</code>) show how the NPTL starts
    571       a thread. The third frame
    572       (<code class="function">vg_thread_wrapper</code>) is added by DRD. The
    573       fourth frame (<code class="function">thread_func</code>) is the first
    574       interesting line because it shows the thread entry point, that
    575       is the function that has been passed as the third argument to
    576       <code class="function">pthread_create</code>.
    577     </p></li>
    578 <li class="listitem"><p>
    579       Next, the allocation context for the conflicting address is
    580       displayed. For dynamically allocated data the allocation call
    581       stack is shown. For static variables and stack variables the
    582       allocation context is only shown when the option
    583       <code class="option">--read-var-info=yes</code> has been
    584       specified. Otherwise DRD will print <code class="computeroutput">Allocation
    585       context: unknown</code>.
    586     </p></li>
    587 <li class="listitem">
    588 <p>
    589       A conflicting access involves at least two memory accesses. For
    590       one of these accesses an exact call stack is displayed, and for
    591       the other accesses an approximate call stack is displayed,
    592       namely the start and the end of the segments of the other
    593       accesses. This information can be interpreted as follows:
    594       </p>
    595 <div class="orderedlist"><ol class="orderedlist" type="1">
    596 <li class="listitem"><p>
    597             Start at the bottom of both call stacks, and count the
    598             number stack frames with identical function name, file
    599             name and line number. In the above example the three
    600             bottommost frames are identical
    601             (<code class="function">clone</code>,
    602             <code class="function">start_thread</code> and
    603             <code class="function">vg_thread_wrapper</code>).
    604           </p></li>
    605 <li class="listitem"><p>
    606             The next higher stack frame in both call stacks now tells
    607             you between in which source code region the other memory
    608             access happened. The above output tells that the other
    609             memory access involved in the data race happened between
    610             source code lines 28 and 30 in file
    611             <code class="computeroutput">rwlock_race.c</code>.
    612           </p></li>
    613 </ol></div>
    614 <p>
    615     </p>
    616 </li>
    617 </ul></div>
    618 <p>
    619 </p>
    620 </div>
    621 <div class="sect2" title="8.2.3.Detected Errors: Lock Contention">
    622 <div class="titlepage"><div><div><h3 class="title">
    623 <a name="drd-manual.lock-contention"></a>8.2.3.Detected Errors: Lock Contention</h3></div></div></div>
    624 <p>
    625 Threads must be able to make progress without being blocked for too long by
    626 other threads. Sometimes a thread has to wait until a mutex or reader-writer
    627 synchronization object is unlocked by another thread. This is called
    628 <span class="emphasis"><em>lock contention</em></span>.
    629 </p>
    630 <p>
    631 Lock contention causes delays. Such delays should be as short as
    632 possible. The two command line options
    633 <code class="literal">--exclusive-threshold=&lt;n&gt;</code> and
    634 <code class="literal">--shared-threshold=&lt;n&gt;</code> make it possible to
    635 detect excessive lock contention by making DRD report any lock that
    636 has been held longer than the specified threshold. An example:
    637 </p>
    638 <pre class="programlisting">
    639 $ valgrind --tool=drd --exclusive-threshold=10 drd/tests/hold_lock -i 500
    640 ...
    641 ==10668== Acquired at:
    642 ==10668==    at 0x4C267C8: pthread_mutex_lock (drd_pthread_intercepts.c:395)
    643 ==10668==    by 0x400D92: main (hold_lock.c:51)
    644 ==10668== Lock on mutex 0x7fefffd50 was held during 503 ms (threshold: 10 ms).
    645 ==10668==    at 0x4C26ADA: pthread_mutex_unlock (drd_pthread_intercepts.c:441)
    646 ==10668==    by 0x400DB5: main (hold_lock.c:55)
    647 ...
    648 </pre>
    649 <p>
    650 The <code class="literal">hold_lock</code> test program holds a lock as long as
    651 specified by the <code class="literal">-i</code> (interval) argument. The DRD
    652 output reports that the lock acquired at line 51 in source file
    653 <code class="literal">hold_lock.c</code> and released at line 55 was held during
    654 503 ms, while a threshold of 10 ms was specified to DRD.
    655 </p>
    656 </div>
    657 <div class="sect2" title="8.2.4.Detected Errors: Misuse of the POSIX threads API">
    658 <div class="titlepage"><div><div><h3 class="title">
    659 <a name="drd-manual.api-checks"></a>8.2.4.Detected Errors: Misuse of the POSIX threads API</h3></div></div></div>
    660 <p>
    661   DRD is able to detect and report the following misuses of the POSIX
    662   threads API:
    663   </p>
    664 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    665 <li class="listitem"><p>
    666         Passing the address of one type of synchronization object
    667         (e.g. a mutex) to a POSIX API call that expects a pointer to
    668         another type of synchronization object (e.g. a condition
    669         variable).
    670       </p></li>
    671 <li class="listitem"><p>
    672         Attempts to unlock a mutex that has not been locked.
    673       </p></li>
    674 <li class="listitem"><p>
    675         Attempts to unlock a mutex that was locked by another thread.
    676       </p></li>
    677 <li class="listitem"><p>
    678         Attempts to lock a mutex of type
    679         <code class="literal">PTHREAD_MUTEX_NORMAL</code> or a spinlock
    680         recursively.
    681       </p></li>
    682 <li class="listitem"><p>
    683         Destruction or deallocation of a locked mutex.
    684       </p></li>
    685 <li class="listitem"><p>
    686         Sending a signal to a condition variable while no lock is held
    687         on the mutex associated with the condition variable.
    688       </p></li>
    689 <li class="listitem"><p>
    690         Calling <code class="function">pthread_cond_wait</code> on a mutex
    691         that is not locked, that is locked by another thread or that
    692         has been locked recursively.
    693       </p></li>
    694 <li class="listitem"><p>
    695         Associating two different mutexes with a condition variable
    696         through <code class="function">pthread_cond_wait</code>.
    697       </p></li>
    698 <li class="listitem"><p>
    699         Destruction or deallocation of a condition variable that is
    700         being waited upon.
    701       </p></li>
    702 <li class="listitem"><p>
    703         Destruction or deallocation of a locked reader-writer synchronization
    704         object.
    705       </p></li>
    706 <li class="listitem"><p>
    707         Attempts to unlock a reader-writer synchronization object that was not
    708         locked by the calling thread.
    709       </p></li>
    710 <li class="listitem"><p>
    711         Attempts to recursively lock a reader-writer synchronization object
    712         exclusively.
    713       </p></li>
    714 <li class="listitem"><p>
    715         Attempts to pass the address of a user-defined reader-writer
    716         synchronization object to a POSIX threads function.
    717       </p></li>
    718 <li class="listitem"><p>
    719         Attempts to pass the address of a POSIX reader-writer synchronization
    720         object to one of the annotations for user-defined reader-writer
    721         synchronization objects.
    722       </p></li>
    723 <li class="listitem"><p>
    724         Reinitialization of a mutex, condition variable, reader-writer
    725         lock, semaphore or barrier.
    726       </p></li>
    727 <li class="listitem"><p>
    728         Destruction or deallocation of a semaphore or barrier that is
    729         being waited upon.
    730       </p></li>
    731 <li class="listitem"><p>
    732         Missing synchronization between barrier wait and barrier destruction.
    733       </p></li>
    734 <li class="listitem"><p>
    735         Exiting a thread without first unlocking the spinlocks, mutexes or
    736         reader-writer synchronization objects that were locked by that thread.
    737       </p></li>
    738 <li class="listitem"><p>
    739         Passing an invalid thread ID to <code class="function">pthread_join</code>
    740         or <code class="function">pthread_cancel</code>.
    741       </p></li>
    742 </ul></div>
    743 <p>
    744 </p>
    745 </div>
    746 <div class="sect2" title="8.2.5.Client Requests">
    747 <div class="titlepage"><div><div><h3 class="title">
    748 <a name="drd-manual.clientreqs"></a>8.2.5.Client Requests</h3></div></div></div>
    749 <p>
    750 Just as for other Valgrind tools it is possible to let a client program
    751 interact with the DRD tool through client requests. In addition to the
    752 client requests several macros have been defined that allow to use the
    753 client requests in a convenient way.
    754 </p>
    755 <p>
    756 The interface between client programs and the DRD tool is defined in
    757 the header file <code class="literal">&lt;valgrind/drd.h&gt;</code>. The
    758 available macros and client requests are:
    759 </p>
    760 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
    761 <li class="listitem"><p>
    762       The macro <code class="literal">DRD_GET_VALGRIND_THREADID</code> and the
    763       corresponding client
    764       request <code class="varname">VG_USERREQ__DRD_GET_VALGRIND_THREAD_ID</code>.
    765       Query the thread ID that has been assigned by the Valgrind core to the
    766       thread executing this client request. Valgrind's thread ID's start at
    767       one and are recycled in case a thread stops.
    768     </p></li>
    769 <li class="listitem"><p>
    770       The macro <code class="literal">DRD_GET_DRD_THREADID</code> and the corresponding
    771       client request <code class="varname">VG_USERREQ__DRD_GET_DRD_THREAD_ID</code>.
    772       Query the thread ID that has been assigned by DRD to the thread
    773       executing this client request. These are the thread ID's reported by DRD
    774       in data race reports and in trace messages. DRD's thread ID's start at
    775       one and are never recycled.
    776     </p></li>
    777 <li class="listitem"><p>
    778       The macros <code class="literal">DRD_IGNORE_VAR(x)</code>,
    779       <code class="literal">ANNOTATE_TRACE_MEMORY(&amp;x)</code> and the corresponding
    780       client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>. Some
    781       applications contain intentional races. There exist e.g. applications
    782       where the same value is assigned to a shared variable from two different
    783       threads. It may be more convenient to suppress such races than to solve
    784       these. This client request allows to suppress such races.
    785     </p></li>
    786 <li class="listitem"><p>
    787       The macro <code class="literal">DRD_STOP_IGNORING_VAR(x)</code> and the
    788       corresponding client request
    789       <code class="varname">VG_USERREQ__DRD_FINISH_SUPPRESSION</code>. Tell DRD
    790       to no longer ignore data races for the address range that was suppressed
    791       either via the macro <code class="literal">DRD_IGNORE_VAR(x)</code> or via the
    792       client request <code class="varname">VG_USERREQ__DRD_START_SUPPRESSION</code>.
    793     </p></li>
    794 <li class="listitem"><p>
    795       The macro <code class="literal">DRD_TRACE_VAR(x)</code>. Trace all load and store
    796       activity for the address range starting at <code class="literal">&amp;x</code> and
    797       occupying <code class="literal">sizeof(x)</code> bytes. When DRD reports a data
    798       race on a specified variable, and it's not immediately clear which
    799       source code statements triggered the conflicting accesses, it can be
    800       very helpful to trace all activity on the offending memory location.
    801     </p></li>
    802 <li class="listitem"><p>
    803       The macro <code class="literal">ANNOTATE_TRACE_MEMORY(&amp;x)</code>. Trace all
    804       load and store activity that touches at least the single byte at the
    805       address <code class="literal">&amp;x</code>.
    806     </p></li>
    807 <li class="listitem"><p>
    808       The client request <code class="varname">VG_USERREQ__DRD_START_TRACE_ADDR</code>,
    809       which allows to trace all load and store activity for the specified
    810       address range.
    811     </p></li>
    812 <li class="listitem"><p>
    813       The client
    814       request <code class="varname">VG_USERREQ__DRD_STOP_TRACE_ADDR</code>. Do no longer
    815       trace load and store activity for the specified address range.
    816     </p></li>
    817 <li class="listitem"><p>
    818       The macro <code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> tells DRD to
    819       insert a mark. Insert this macro just after an access to the variable at
    820       the specified address has been performed.
    821     </p></li>
    822 <li class="listitem"><p>
    823       The macro <code class="literal">ANNOTATE_HAPPENS_AFTER(addr)</code> tells DRD that
    824       the next access to the variable at the specified address should be
    825       considered to have happened after the access just before the latest
    826       <code class="literal">ANNOTATE_HAPPENS_BEFORE(addr)</code> annotation that
    827       references the same variable. The purpose of these two macros is to tell
    828       DRD about the order of inter-thread memory accesses implemented via
    829       atomic memory operations. See
    830       also <code class="literal">drd/tests/annotate_smart_pointer.cpp</code> for an
    831       example.
    832     </p></li>
    833 <li class="listitem"><p>
    834       The macro <code class="literal">ANNOTATE_RWLOCK_CREATE(rwlock)</code> tells DRD
    835       that the object at address <code class="literal">rwlock</code> is a
    836       reader-writer synchronization object that is not a
    837       <code class="literal">pthread_rwlock_t</code> synchronization object.  See
    838       also <code class="literal">drd/tests/annotate_rwlock.c</code> for an example.
    839     </p></li>
    840 <li class="listitem"><p>
    841       The macro <code class="literal">ANNOTATE_RWLOCK_DESTROY(rwlock)</code> tells DRD
    842       that the reader-writer synchronization object at
    843       address <code class="literal">rwlock</code> has been destroyed.
    844     </p></li>
    845 <li class="listitem"><p>
    846       The macro <code class="literal">ANNOTATE_WRITERLOCK_ACQUIRED(rwlock)</code> tells
    847       DRD that a writer lock has been acquired on the reader-writer
    848       synchronization object at address <code class="literal">rwlock</code>.
    849     </p></li>
    850 <li class="listitem"><p>
    851       The macro <code class="literal">ANNOTATE_READERLOCK_ACQUIRED(rwlock)</code> tells
    852       DRD that a reader lock has been acquired on the reader-writer
    853       synchronization object at address <code class="literal">rwlock</code>.
    854     </p></li>
    855 <li class="listitem"><p>
    856       The macro <code class="literal">ANNOTATE_RWLOCK_ACQUIRED(rwlock, is_w)</code>
    857       tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
    858       a reader lock (when <code class="literal">is_w == 0</code>) has been acquired on
    859       the reader-writer synchronization object at
    860       address <code class="literal">rwlock</code>.
    861     </p></li>
    862 <li class="listitem"><p>
    863       The macro <code class="literal">ANNOTATE_WRITERLOCK_RELEASED(rwlock)</code> tells
    864       DRD that a writer lock has been released on the reader-writer
    865       synchronization object at address <code class="literal">rwlock</code>.
    866     </p></li>
    867 <li class="listitem"><p>
    868       The macro <code class="literal">ANNOTATE_READERLOCK_RELEASED(rwlock)</code> tells
    869       DRD that a reader lock has been released on the reader-writer
    870       synchronization object at address <code class="literal">rwlock</code>.
    871     </p></li>
    872 <li class="listitem"><p>
    873       The macro <code class="literal">ANNOTATE_RWLOCK_RELEASED(rwlock, is_w)</code>
    874       tells DRD that a writer lock (when <code class="literal">is_w != 0</code>) or that
    875       a reader lock (when <code class="literal">is_w == 0</code>) has been released on
    876       the reader-writer synchronization object at
    877       address <code class="literal">rwlock</code>.
    878     </p></li>
    879 <li class="listitem"><p>
    880       The macro <code class="literal">ANNOTATE_BARRIER_INIT(barrier, count,
    881       reinitialization_allowed)</code> tells DRD that a new barrier object
    882       at the address <code class="literal">barrier</code> has been initialized,
    883       that <code class="literal">count</code> threads participate in each barrier and
    884       also whether or not barrier reinitialization without intervening
    885       destruction should be reported as an error. See
    886       also <code class="literal">drd/tests/annotate_barrier.c</code> for an example.
    887     </p></li>
    888 <li class="listitem"><p>
    889       The macro <code class="literal">ANNOTATE_BARRIER_DESTROY(barrier)</code>
    890       tells DRD that a barrier object is about to be destroyed.
    891     </p></li>
    892 <li class="listitem"><p>
    893       The macro <code class="literal">ANNOTATE_BARRIER_WAIT_BEFORE(barrier)</code>
    894       tells DRD that waiting for a barrier will start.
    895     </p></li>
    896 <li class="listitem"><p>
    897       The macro <code class="literal">ANNOTATE_BARRIER_WAIT_AFTER(barrier)</code>
    898       tells DRD that waiting for a barrier has finished.
    899     </p></li>
    900 <li class="listitem"><p>
    901       The macro <code class="literal">ANNOTATE_BENIGN_RACE_SIZED(addr, size,
    902       descr)</code> tells DRD that any races detected on the specified
    903       address are benign and hence should not be
    904       reported. The <code class="literal">descr</code> argument is ignored but can be
    905       used to document why data races on <code class="literal">addr</code> are benign.
    906     </p></li>
    907 <li class="listitem"><p>
    908       The macro <code class="literal">ANNOTATE_BENIGN_RACE_STATIC(var, descr)</code>
    909       tells DRD that any races detected on the specified static variable are
    910       benign and hence should not be reported. The <code class="literal">descr</code>
    911       argument is ignored but can be used to document why data races
    912       on <code class="literal">var</code> are benign. Note: this macro can only be
    913       used in C++ programs and not in C programs.
    914     </p></li>
    915 <li class="listitem"><p>
    916       The macro <code class="literal">ANNOTATE_IGNORE_READS_BEGIN</code> tells
    917       DRD to ignore all memory loads performed by the current thread.
    918     </p></li>
    919 <li class="listitem"><p>
    920       The macro <code class="literal">ANNOTATE_IGNORE_READS_END</code> tells
    921       DRD to stop ignoring the memory loads performed by the current thread.
    922     </p></li>
    923 <li class="listitem"><p>
    924       The macro <code class="literal">ANNOTATE_IGNORE_WRITES_BEGIN</code> tells
    925       DRD to ignore all memory stores performed by the current thread.
    926     </p></li>
    927 <li class="listitem"><p>
    928       The macro <code class="literal">ANNOTATE_IGNORE_WRITES_END</code> tells
    929       DRD to stop ignoring the memory stores performed by the current thread.
    930     </p></li>
    931 <li class="listitem"><p>
    932       The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN</code> tells
    933       DRD to ignore all memory accesses performed by the current thread.
    934     </p></li>
    935 <li class="listitem"><p>
    936       The macro <code class="literal">ANNOTATE_IGNORE_READS_AND_WRITES_END</code> tells
    937       DRD to stop ignoring the memory accesses performed by the current thread.
    938     </p></li>
    939 <li class="listitem"><p>
    940       The macro <code class="literal">ANNOTATE_NEW_MEMORY(addr, size)</code> tells
    941       DRD that the specified memory range has been allocated by a custom
    942       memory allocator in the client program and that the client program
    943       will start using this memory range.
    944     </p></li>
    945 <li class="listitem"><p>
    946       The macro <code class="literal">ANNOTATE_THREAD_NAME(name)</code> tells DRD to
    947       associate the specified name with the current thread and to include this
    948       name in the error messages printed by DRD.
    949     </p></li>
    950 <li class="listitem"><p>
    951       The macros <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code> and
    952       <code class="literal">VALGRIND_FREELIKE_BLOCK</code> from the Valgrind core are
    953       implemented;  they are described in 
    954       <a class="xref" href="manual-core-adv.html#manual-core-adv.clientreq" title="3.1.The Client Request mechanism">The Client Request mechanism</a>.
    955     </p></li>
    956 </ul></div>
    957 <p>
    958 </p>
    959 <p>
    960 Note: if you compiled Valgrind yourself, the header file
    961 <code class="literal">&lt;valgrind/drd.h&gt;</code> will have been installed in
    962 the directory <code class="literal">/usr/include</code> by the command
    963 <code class="literal">make install</code>. If you obtained Valgrind by
    964 installing it as a package however, you will probably have to install
    965 another package with a name like <code class="literal">valgrind-devel</code>
    966 before Valgrind's header files are available.
    967 </p>
    968 </div>
    969 <div class="sect2" title="8.2.6.Debugging GNOME Programs">
    970 <div class="titlepage"><div><div><h3 class="title">
    971 <a name="drd-manual.gnome"></a>8.2.6.Debugging GNOME Programs</h3></div></div></div>
    972 <p>
    973 GNOME applications use the threading primitives provided by the
    974 <code class="computeroutput">glib</code> and
    975 <code class="computeroutput">gthread</code> libraries. These libraries
    976 are built on top of POSIX threads, and hence are directly supported by
    977 DRD. Please keep in mind that you have to call
    978 <code class="function">g_thread_init</code> before creating any threads, or
    979 DRD will report several data races on glib functions. See also the
    980 <a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Threads.html" target="_top">GLib
    981 Reference Manual</a> for more information about
    982 <code class="function">g_thread_init</code>.
    983 </p>
    984 <p>
    985 One of the many facilities provided by the <code class="literal">glib</code>
    986 library is a block allocator, called <code class="literal">g_slice</code>. You
    987 have to disable this block allocator when using DRD by adding the
    988 following to the shell environment variables:
    989 <code class="literal">G_SLICE=always-malloc</code>. See also the <a class="ulink" href="http://library.gnome.org/devel/glib/stable/glib-Memory-Slices.html" target="_top">GLib
    990 Reference Manual</a> for more information.
    991 </p>
    992 </div>
    993 <div class="sect2" title="8.2.7.Debugging Qt Programs">
    994 <div class="titlepage"><div><div><h3 class="title">
    995 <a name="drd-manual.qt"></a>8.2.7.Debugging Qt Programs</h3></div></div></div>
    996 <p>
    997 The Qt library is the GUI library used by the KDE project.  Currently
    998 there are two versions of the Qt library in use: Qt3 by KDE 3 and Qt4
    999 by KDE 4. If possible, use Qt4 instead of Qt3. Qt3 is no longer
   1000 supported, and there are known problems with multithreading support in
   1001 Qt3. As an example, using QString objects in more than one thread will
   1002 trigger race reports (this has been confirmed by Trolltech -- see also
   1003 Trolltech task <a class="ulink" href="http://trolltech.com/developer/task-tracker/index_html" target="_top">#206152</a>).
   1004 </p>
   1005 <p>
   1006 Qt4 applications are supported by DRD, but only if the
   1007 <code class="literal">libqt4-debuginfo</code> package has been installed. Some
   1008 of the synchronization and threading primitives in Qt4 bypass the
   1009 POSIX threads library, and DRD can only intercept these if symbol
   1010 information for the Qt4 library is available. DRD won't tell you if it
   1011 has not been able to load the Qt4 debug information, but a huge number
   1012 of data races will be reported on data protected via
   1013 <code class="literal">QMutex</code> objects.
   1014 </p>
   1015 </div>
   1016 <div class="sect2" title="8.2.8.Debugging Boost.Thread Programs">
   1017 <div class="titlepage"><div><div><h3 class="title">
   1018 <a name="drd-manual.boost.thread"></a>8.2.8.Debugging Boost.Thread Programs</h3></div></div></div>
   1019 <p>
   1020 The Boost.Thread library is the threading library included with the
   1021 cross-platform Boost Libraries. This threading library is an early
   1022 implementation of the upcoming C++0x threading library.
   1023 </p>
   1024 <p>
   1025 Applications that use the Boost.Thread library should run fine under DRD.
   1026 </p>
   1027 <p>
   1028 More information about Boost.Thread can be found here:
   1029 </p>
   1030 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1031 <li class="listitem"><p>
   1032       Anthony Williams, <a class="ulink" href="http://www.boost.org/doc/libs/1_37_0/doc/html/thread.html" target="_top">Boost.Thread</a>
   1033       Library Documentation, Boost website, 2007.
   1034     </p></li>
   1035 <li class="listitem"><p>
   1036       Anthony Williams, <a class="ulink" href="http://www.ddj.com/cpp/211600441" target="_top">What's New in Boost
   1037       Threads?</a>, Recent changes to the Boost Thread library,
   1038       Dr. Dobbs Magazine, October 2008.
   1039     </p></li>
   1040 </ul></div>
   1041 <p>
   1042 </p>
   1043 </div>
   1044 <div class="sect2" title="8.2.9.Debugging OpenMP Programs">
   1045 <div class="titlepage"><div><div><h3 class="title">
   1046 <a name="drd-manual.openmp"></a>8.2.9.Debugging OpenMP Programs</h3></div></div></div>
   1047 <p>
   1048 OpenMP stands for <span class="emphasis"><em>Open Multi-Processing</em></span>. The OpenMP
   1049 standard consists of a set of compiler directives for C, C++ and Fortran
   1050 programs that allows a compiler to transform a sequential program into a
   1051 parallel program. OpenMP is well suited for HPC applications and allows to
   1052 work at a higher level compared to direct use of the POSIX threads API. While
   1053 OpenMP ensures that the POSIX API is used correctly, OpenMP programs can still
   1054 contain data races. So it definitely makes sense to verify OpenMP programs
   1055 with a thread checking tool.
   1056 </p>
   1057 <p>
   1058 DRD supports OpenMP shared-memory programs generated by GCC. GCC
   1059 supports OpenMP since version 4.2.0.  GCC's runtime support
   1060 for OpenMP programs is provided by a library called
   1061 <code class="literal">libgomp</code>. The synchronization primitives implemented
   1062 in this library use Linux' futex system call directly, unless the
   1063 library has been configured with the
   1064 <code class="literal">--disable-linux-futex</code> option. DRD only supports
   1065 libgomp libraries that have been configured with this option and in
   1066 which symbol information is present. For most Linux distributions this
   1067 means that you will have to recompile GCC. See also the script
   1068 <code class="literal">drd/scripts/download-and-build-gcc</code> in the
   1069 Valgrind source tree for an example of how to compile GCC. You will
   1070 also have to make sure that the newly compiled
   1071 <code class="literal">libgomp.so</code> library is loaded when OpenMP programs
   1072 are started. This is possible by adding a line similar to the
   1073 following to your shell startup script:
   1074 </p>
   1075 <pre class="programlisting">
   1076 export LD_LIBRARY_PATH=~/gcc-4.4.0/lib64:~/gcc-4.4.0/lib:
   1077 </pre>
   1078 <p>
   1079 As an example, the test OpenMP test program
   1080 <code class="literal">drd/tests/omp_matinv</code> triggers a data race
   1081 when the option -r has been specified on the command line. The data
   1082 race is triggered by the following code:
   1083 </p>
   1084 <pre class="programlisting">
   1085 #pragma omp parallel for private(j)
   1086 for (j = 0; j &lt; rows; j++)
   1087 {
   1088   if (i != j)
   1089   {
   1090     const elem_t factor = a[j * cols + i];
   1091     for (k = 0; k &lt; cols; k++)
   1092     {
   1093       a[j * cols + k] -= a[i * cols + k] * factor;
   1094     }
   1095   }
   1096 }
   1097 </pre>
   1098 <p>
   1099 The above code is racy because the variable <code class="literal">k</code> has
   1100 not been declared private. DRD will print the following error message
   1101 for the above code:
   1102 </p>
   1103 <pre class="programlisting">
   1104 $ valgrind --tool=drd --check-stack-var=yes --read-var-info=yes drd/tests/omp_matinv 3 -t 2 -r
   1105 ...
   1106 Conflicting store by thread 1/1 at 0x7fefffbc4 size 4
   1107    at 0x4014A0: gj.omp_fn.0 (omp_matinv.c:203)
   1108    by 0x401211: gj (omp_matinv.c:159)
   1109    by 0x40166A: invert_matrix (omp_matinv.c:238)
   1110    by 0x4019B4: main (omp_matinv.c:316)
   1111 Location 0x7fefffbc4 is 0 bytes inside local var "k"
   1112 declared at omp_matinv.c:160, in frame #0 of thread 1
   1113 ...
   1114 </pre>
   1115 <p>
   1116 In the above output the function name <code class="function">gj.omp_fn.0</code>
   1117 has been generated by GCC from the function name
   1118 <code class="function">gj</code>. The allocation context information shows that the
   1119 data race has been caused by modifying the variable <code class="literal">k</code>.
   1120 </p>
   1121 <p>
   1122 Note: for GCC versions before 4.4.0, no allocation context information is
   1123 shown. With these GCC versions the most usable information in the above output
   1124 is the source file name and the line number where the data race has been
   1125 detected (<code class="literal">omp_matinv.c:203</code>).
   1126 </p>
   1127 <p>
   1128 For more information about OpenMP, see also 
   1129 <a class="ulink" href="http://openmp.org/" target="_top">openmp.org</a>.
   1130 </p>
   1131 </div>
   1132 <div class="sect2" title="8.2.10.DRD and Custom Memory Allocators">
   1133 <div class="titlepage"><div><div><h3 class="title">
   1134 <a name="drd-manual.cust-mem-alloc"></a>8.2.10.DRD and Custom Memory Allocators</h3></div></div></div>
   1135 <p>
   1136 DRD tracks all memory allocation events that happen via the
   1137 standard memory allocation and deallocation functions
   1138 (<code class="function">malloc</code>, <code class="function">free</code>,
   1139 <code class="function">new</code> and <code class="function">delete</code>), via entry
   1140 and exit of stack frames or that have been annotated with Valgrind's
   1141 memory pool client requests. DRD uses memory allocation and deallocation
   1142 information for two purposes:
   1143 </p>
   1144 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1145 <li class="listitem"><p>
   1146       To know where the scope ends of POSIX objects that have not been
   1147       destroyed explicitly. It is e.g. not required by the POSIX
   1148       threads standard to call
   1149       <code class="function">pthread_mutex_destroy</code> before freeing the
   1150       memory in which a mutex object resides.
   1151     </p></li>
   1152 <li class="listitem"><p>
   1153       To know where the scope of variables ends. If e.g. heap memory
   1154       has been used by one thread, that thread frees that memory, and
   1155       another thread allocates and starts using that memory, no data
   1156       races must be reported for that memory.
   1157     </p></li>
   1158 </ul></div>
   1159 <p>
   1160 </p>
   1161 <p>
   1162 It is essential for correct operation of DRD that the tool knows about
   1163 memory allocation and deallocation events. When analyzing a client program
   1164 with DRD that uses a custom memory allocator, either instrument the custom
   1165 memory allocator with the <code class="literal">VALGRIND_MALLOCLIKE_BLOCK</code>
   1166 and <code class="literal">VALGRIND_FREELIKE_BLOCK</code> macros or disable the
   1167 custom memory allocator.
   1168 </p>
   1169 <p>
   1170 As an example, the GNU libstdc++ library can be configured
   1171 to use standard memory allocation functions instead of memory pools by
   1172 setting the environment variable
   1173 <code class="literal">GLIBCXX_FORCE_NEW</code>. For more information, see also
   1174 the <a class="ulink" href="http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt04ch11.html" target="_top">libstdc++
   1175 manual</a>.
   1176 </p>
   1177 </div>
   1178 <div class="sect2" title="8.2.11.DRD Versus Memcheck">
   1179 <div class="titlepage"><div><div><h3 class="title">
   1180 <a name="drd-manual.drd-versus-memcheck"></a>8.2.11.DRD Versus Memcheck</h3></div></div></div>
   1181 <p>
   1182 It is essential for correct operation of DRD that there are no memory
   1183 errors such as dangling pointers in the client program. Which means that
   1184 it is a good idea to make sure that your program is Memcheck-clean
   1185 before you analyze it with DRD. It is possible however that some of
   1186 the Memcheck reports are caused by data races. In this case it makes
   1187 sense to run DRD before Memcheck.
   1188 </p>
   1189 <p>
   1190 So which tool should be run first? In case both DRD and Memcheck
   1191 complain about a program, a possible approach is to run both tools
   1192 alternatingly and to fix as many errors as possible after each run of
   1193 each tool until none of the two tools prints any more error messages.
   1194 </p>
   1195 </div>
   1196 <div class="sect2" title="8.2.12.Resource Requirements">
   1197 <div class="titlepage"><div><div><h3 class="title">
   1198 <a name="drd-manual.resource-requirements"></a>8.2.12.Resource Requirements</h3></div></div></div>
   1199 <p>
   1200 The requirements of DRD with regard to heap and stack memory and the
   1201 effect on the execution time of client programs are as follows:
   1202 </p>
   1203 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1204 <li class="listitem"><p>
   1205       When running a program under DRD with default DRD options,
   1206       between 1.1 and 3.6 times more memory will be needed compared to
   1207       a native run of the client program. More memory will be needed
   1208       if loading debug information has been enabled
   1209       (<code class="literal">--read-var-info=yes</code>).
   1210     </p></li>
   1211 <li class="listitem"><p>
   1212       DRD allocates some of its temporary data structures on the stack
   1213       of the client program threads. This amount of data is limited to
   1214       1 - 2 KB. Make sure that thread stacks are sufficiently large.
   1215     </p></li>
   1216 <li class="listitem"><p>
   1217       Most applications will run between 20 and 50 times slower under
   1218       DRD than a native single-threaded run. The slowdown will be most
   1219       noticeable for applications which perform frequent mutex lock /
   1220       unlock operations.
   1221     </p></li>
   1222 </ul></div>
   1223 <p>
   1224 </p>
   1225 </div>
   1226 <div class="sect2" title="8.2.13.Hints and Tips for Effective Use of DRD">
   1227 <div class="titlepage"><div><div><h3 class="title">
   1228 <a name="drd-manual.effective-use"></a>8.2.13.Hints and Tips for Effective Use of DRD</h3></div></div></div>
   1229 <p>
   1230 The following information may be helpful when using DRD:
   1231 </p>
   1232 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1233 <li class="listitem"><p>
   1234       Make sure that debug information is present in the executable
   1235       being analyzed, such that DRD can print function name and line
   1236       number information in stack traces. Most compilers can be told
   1237       to include debug information via compiler option
   1238       <code class="option">-g</code>.
   1239     </p></li>
   1240 <li class="listitem"><p>
   1241       Compile with option <code class="option">-O1</code> instead of
   1242       <code class="option">-O0</code>. This will reduce the amount of generated
   1243       code, may reduce the amount of debug info and will speed up
   1244       DRD's processing of the client program. For more information,
   1245       see also <a class="xref" href="manual-core.html#manual-core.started" title="2.2.Getting started">Getting started</a>.
   1246     </p></li>
   1247 <li class="listitem"><p>
   1248       If DRD reports any errors on libraries that are part of your
   1249       Linux distribution like e.g. <code class="literal">libc.so</code> or
   1250       <code class="literal">libstdc++.so</code>, installing the debug packages
   1251       for these libraries will make the output of DRD a lot more
   1252       detailed.
   1253     </p></li>
   1254 <li class="listitem">
   1255 <p>
   1256       When using C++, do not send output from more than one thread to
   1257       <code class="literal">std::cout</code>. Doing so would not only
   1258       generate multiple data race reports, it could also result in
   1259       output from several threads getting mixed up.  Either use
   1260       <code class="function">printf</code> or do the following:
   1261       </p>
   1262 <div class="orderedlist"><ol class="orderedlist" type="1">
   1263 <li class="listitem"><p>Derive a class from <code class="literal">std::ostreambuf</code>
   1264           and let that class send output line by line to
   1265           <code class="literal">stdout</code>. This will avoid that individual
   1266           lines of text produced by different threads get mixed
   1267           up.</p></li>
   1268 <li class="listitem"><p>Create one instance of <code class="literal">std::ostream</code>
   1269           for each thread. This makes stream formatting settings
   1270           thread-local. Pass a per-thread instance of the class
   1271           derived from <code class="literal">std::ostreambuf</code> to the
   1272           constructor of each instance. </p></li>
   1273 <li class="listitem"><p>Let each thread send its output to its own instance of
   1274           <code class="literal">std::ostream</code> instead of
   1275           <code class="literal">std::cout</code>.</p></li>
   1276 </ol></div>
   1277 <p>
   1278     </p>
   1279 </li>
   1280 </ul></div>
   1281 <p>
   1282 </p>
   1283 </div>
   1284 </div>
   1285 <div class="sect1" title="8.3.Using the POSIX Threads API Effectively">
   1286 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1287 <a name="drd-manual.Pthreads"></a>8.3.Using the POSIX Threads API Effectively</h2></div></div></div>
   1288 <div class="sect2" title="8.3.1.Mutex types">
   1289 <div class="titlepage"><div><div><h3 class="title">
   1290 <a name="drd-manual.mutex-types"></a>8.3.1.Mutex types</h3></div></div></div>
   1291 <p>
   1292 The Single UNIX Specification version two defines the following four
   1293 mutex types (see also the documentation of <a class="ulink" href="http://www.opengroup.org/onlinepubs/007908799/xsh/pthread_mutexattr_settype.html" target="_top"><code class="function">pthread_mutexattr_settype</code></a>):
   1294 </p>
   1295 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1296 <li class="listitem"><p>
   1297       <span class="emphasis"><em>normal</em></span>, which means that no error checking
   1298       is performed, and that the mutex is non-recursive.
   1299     </p></li>
   1300 <li class="listitem"><p>
   1301       <span class="emphasis"><em>error checking</em></span>, which means that the mutex
   1302       is non-recursive and that error checking is performed.
   1303     </p></li>
   1304 <li class="listitem"><p>
   1305       <span class="emphasis"><em>recursive</em></span>, which means that a mutex may be
   1306       locked recursively.
   1307     </p></li>
   1308 <li class="listitem"><p>
   1309       <span class="emphasis"><em>default</em></span>, which means that error checking
   1310       behavior is undefined, and that the behavior for recursive
   1311       locking is also undefined. Or: portable code must neither
   1312       trigger error conditions through the Pthreads API nor attempt to
   1313       lock a mutex of default type recursively.
   1314     </p></li>
   1315 </ul></div>
   1316 <p>
   1317 </p>
   1318 <p>
   1319 In complex applications it is not always clear from beforehand which
   1320 mutex will be locked recursively and which mutex will not be locked
   1321 recursively. Attempts lock a non-recursive mutex recursively will
   1322 result in race conditions that are very hard to find without a thread
   1323 checking tool. So either use the error checking mutex type and
   1324 consistently check the return value of Pthread API mutex calls, or use
   1325 the recursive mutex type.
   1326 </p>
   1327 </div>
   1328 <div class="sect2" title="8.3.2.Condition variables">
   1329 <div class="titlepage"><div><div><h3 class="title">
   1330 <a name="drd-manual.condvar"></a>8.3.2.Condition variables</h3></div></div></div>
   1331 <p>
   1332 A condition variable allows one thread to wake up one or more other
   1333 threads. Condition variables are often used to notify one or more
   1334 threads about state changes of shared data. Unfortunately it is very
   1335 easy to introduce race conditions by using condition variables as the
   1336 only means of state information propagation. A better approach is to
   1337 let threads poll for changes of a state variable that is protected by
   1338 a mutex, and to use condition variables only as a thread wakeup
   1339 mechanism. See also the source file
   1340 <code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
   1341 example of how to implement this concept in C++. The monitor concept
   1342 used in this example is a well known and very useful concept -- see
   1343 also Wikipedia for more information about the <a class="ulink" href="http://en.wikipedia.org/wiki/Monitor_(synchronization)" target="_top">monitor</a>
   1344 concept.
   1345 </p>
   1346 </div>
   1347 <div class="sect2" title="8.3.3.pthread_cond_timedwait and timeouts">
   1348 <div class="titlepage"><div><div><h3 class="title">
   1349 <a name="drd-manual.pctw"></a>8.3.3.pthread_cond_timedwait and timeouts</h3></div></div></div>
   1350 <p>
   1351 Historically the function
   1352 <code class="function">pthread_cond_timedwait</code> only allowed the
   1353 specification of an absolute timeout, that is a timeout independent of
   1354 the time when this function was called. However, almost every call to
   1355 this function expresses a relative timeout. This typically happens by
   1356 passing the sum of
   1357 <code class="computeroutput">clock_gettime(CLOCK_REALTIME)</code> and a
   1358 relative timeout as the third argument. This approach is incorrect
   1359 since forward or backward clock adjustments by e.g. ntpd will affect
   1360 the timeout. A more reliable approach is as follows:
   1361 </p>
   1362 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1363 <li class="listitem"><p>
   1364       When initializing a condition variable through
   1365       <code class="function">pthread_cond_init</code>, specify that the timeout of
   1366       <code class="function">pthread_cond_timedwait</code> will use the clock
   1367       <code class="literal">CLOCK_MONOTONIC</code> instead of
   1368       <code class="literal">CLOCK_REALTIME</code>. You can do this via
   1369       <code class="computeroutput">pthread_condattr_setclock(...,
   1370       CLOCK_MONOTONIC)</code>.
   1371     </p></li>
   1372 <li class="listitem"><p>
   1373       When calling <code class="function">pthread_cond_timedwait</code>, pass
   1374       the sum of
   1375       <code class="computeroutput">clock_gettime(CLOCK_MONOTONIC)</code>
   1376       and a relative timeout as the third argument.
   1377     </p></li>
   1378 </ul></div>
   1379 <p>
   1380 See also
   1381 <code class="computeroutput">drd/tests/monitor_example.cpp</code> for an
   1382 example.
   1383 </p>
   1384 </div>
   1385 </div>
   1386 <div class="sect1" title="8.4.Limitations">
   1387 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1388 <a name="drd-manual.limitations"></a>8.4.Limitations</h2></div></div></div>
   1389 <p>DRD currently has the following limitations:</p>
   1390 <div class="itemizedlist"><ul class="itemizedlist" type="disc">
   1391 <li class="listitem"><p>
   1392       DRD, just like Memcheck, will refuse to start on Linux
   1393       distributions where all symbol information has been removed from
   1394       <code class="filename">ld.so</code>. This is e.g. the case for the PPC editions
   1395       of openSUSE and Gentoo. You will have to install the glibc debuginfo
   1396       package on these platforms before you can use DRD. See also openSUSE
   1397       bug <a class="ulink" href="http://bugzilla.novell.com/show_bug.cgi?id=396197" target="_top">
   1398       396197</a> and Gentoo bug <a class="ulink" href="http://bugs.gentoo.org/214065" target="_top">214065</a>.
   1399     </p></li>
   1400 <li class="listitem"><p>
   1401       With gcc 4.4.3 and before, DRD may report data races on the C++
   1402       class <code class="literal">std::string</code> in a multithreaded program. This is
   1403       a know <code class="literal">libstdc++</code> issue -- see also GCC bug
   1404       <a class="ulink" href="http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518" target="_top">40518</a>
   1405       for more information.
   1406     </p></li>
   1407 <li class="listitem"><p>
   1408       When address tracing is enabled, no information on atomic stores
   1409       will be displayed.
   1410     </p></li>
   1411 <li class="listitem"><p>
   1412       If you compile the DRD source code yourself, you need GCC 3.0 or
   1413       later. GCC 2.95 is not supported.
   1414     </p></li>
   1415 <li class="listitem"><p>
   1416       Of the two POSIX threads implementations for Linux, only the
   1417       NPTL (Native POSIX Thread Library) is supported. The older
   1418       LinuxThreads library is not supported.
   1419     </p></li>
   1420 </ul></div>
   1421 </div>
   1422 <div class="sect1" title="8.5.Feedback">
   1423 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
   1424 <a name="drd-manual.feedback"></a>8.5.Feedback</h2></div></div></div>
   1425 <p>
   1426 If you have any comments, suggestions, feedback or bug reports about
   1427 DRD, feel free to either post a message on the Valgrind users mailing
   1428 list or to file a bug report. See also <a class="ulink" href="http://www.valgrind.org/" target="_top">http://www.valgrind.org/</a> for more information.
   1429 </p>
   1430 </div>
   1431 </div>
   1432 <div>
   1433 <br><table class="nav" width="100%" cellspacing="3" cellpadding="2" border="0" summary="Navigation footer">
   1434 <tr>
   1435 <td rowspan="2" width="40%" align="left">
   1436 <a accesskey="p" href="hg-manual.html">&lt;&lt;7.Helgrind: a thread error detector</a></td>
   1437 <td width="20%" align="center"><a accesskey="u" href="manual.html">Up</a></td>
   1438 <td rowspan="2" width="40%" align="right"><a accesskey="n" href="ms-manual.html">9.Massif: a heap profiler&gt;&gt;</a>
   1439 </td>
   1440 </tr>
   1441 <tr><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td></tr>
   1442 </table>
   1443 </div>
   1444 </body>
   1445 </html>
   1446