Home | History | Annotate | Download | only in enc
      1 // Copyright 2011 Google Inc.
      2 //
      3 // This code is licensed under the same terms as WebM:
      4 //  Software License Agreement:  http://www.webmproject.org/license/software/
      5 //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
      6 // -----------------------------------------------------------------------------
      7 //
      8 // SSE2 version of speed-critical functions.
      9 //
     10 // Author: Christian Duvivier (cduvivier (at) google.com)
     11 
     12 #if defined(__SSE2__) || defined(_MSC_VER)
     13 #include <emmintrin.h>
     14 
     15 #include "vp8enci.h"
     16 
     17 #if defined(__cplusplus) || defined(c_plusplus)
     18 extern "C" {
     19 #endif
     20 
     21 //-----------------------------------------------------------------------------
     22 // Compute susceptibility based on DCT-coeff histograms:
     23 // the higher, the "easier" the macroblock is to compress.
     24 
     25 static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
     26                                 int start_block, int end_block) {
     27   int histo[MAX_COEFF_THRESH + 1] = { 0 };
     28   int16_t out[16];
     29   int j, k;
     30   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
     31   for (j = start_block; j < end_block; ++j) {
     32     VP8FTransform(ref + VP8Scan[j], pred + VP8Scan[j], out);
     33 
     34     // Convert coefficients to bin (within out[]).
     35     {
     36       // Load.
     37       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
     38       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
     39       // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
     40       const __m128i sign0 = _mm_srai_epi16(out0, 15);
     41       const __m128i sign1 = _mm_srai_epi16(out1, 15);
     42       // abs(out) = (out ^ sign) - sign
     43       const __m128i xor0 = _mm_xor_si128(out0, sign0);
     44       const __m128i xor1 = _mm_xor_si128(out1, sign1);
     45       const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
     46       const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
     47       // v = abs(out) >> 2
     48       const __m128i v0 = _mm_srai_epi16(abs0, 2);
     49       const __m128i v1 = _mm_srai_epi16(abs1, 2);
     50       // bin = min(v, MAX_COEFF_THRESH)
     51       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
     52       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
     53       // Store.
     54       _mm_storeu_si128((__m128i*)&out[0], bin0);
     55       _mm_storeu_si128((__m128i*)&out[8], bin1);
     56     }
     57 
     58     // Use bin to update histogram.
     59     for (k = 0; k < 16; ++k) {
     60       histo[out[k]]++;
     61     }
     62   }
     63 
     64   return VP8GetAlpha(histo);
     65 }
     66 
     67 //-----------------------------------------------------------------------------
     68 // Transforms (Paragraph 14.4)
     69 
     70 // Does one or two inverse transforms.
     71 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
     72                            int do_two) {
     73   // This implementation makes use of 16-bit fixed point versions of two
     74   // multiply constants:
     75   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
     76   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
     77   //
     78   // To be able to use signed 16-bit integers, we use the following trick to
     79   // have constants within range:
     80   // - Associated constants are obtained by subtracting the 16-bit fixed point
     81   //   version of one:
     82   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
     83   //      K1 = 85267  =>  k1 =  20091
     84   //      K2 = 35468  =>  k2 = -30068
     85   // - The multiplication of a variable by a constant become the sum of the
     86   //   variable and the multiplication of that variable by the associated
     87   //   constant:
     88   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
     89   const __m128i k1 = _mm_set1_epi16(20091);
     90   const __m128i k2 = _mm_set1_epi16(-30068);
     91   __m128i T0, T1, T2, T3;
     92 
     93   // Load and concatenate the transform coefficients (we'll do two inverse
     94   // transforms in parallel). In the case of only one inverse transform, the
     95   // second half of the vectors will just contain random value we'll never
     96   // use nor store.
     97   __m128i in0, in1, in2, in3;
     98   {
     99     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
    100     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
    101     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
    102     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
    103     // a00 a10 a20 a30   x x x x
    104     // a01 a11 a21 a31   x x x x
    105     // a02 a12 a22 a32   x x x x
    106     // a03 a13 a23 a33   x x x x
    107     if (do_two) {
    108       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
    109       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
    110       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
    111       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
    112       in0 = _mm_unpacklo_epi64(in0, inB0);
    113       in1 = _mm_unpacklo_epi64(in1, inB1);
    114       in2 = _mm_unpacklo_epi64(in2, inB2);
    115       in3 = _mm_unpacklo_epi64(in3, inB3);
    116       // a00 a10 a20 a30   b00 b10 b20 b30
    117       // a01 a11 a21 a31   b01 b11 b21 b31
    118       // a02 a12 a22 a32   b02 b12 b22 b32
    119       // a03 a13 a23 a33   b03 b13 b23 b33
    120     }
    121   }
    122 
    123   // Vertical pass and subsequent transpose.
    124   {
    125     // First pass, c and d calculations are longer because of the "trick"
    126     // multiplications.
    127     const __m128i a = _mm_add_epi16(in0, in2);
    128     const __m128i b = _mm_sub_epi16(in0, in2);
    129     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    130     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    131     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    132     const __m128i c3 = _mm_sub_epi16(in1, in3);
    133     const __m128i c4 = _mm_sub_epi16(c1, c2);
    134     const __m128i c = _mm_add_epi16(c3, c4);
    135     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    136     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    137     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    138     const __m128i d3 = _mm_add_epi16(in1, in3);
    139     const __m128i d4 = _mm_add_epi16(d1, d2);
    140     const __m128i d = _mm_add_epi16(d3, d4);
    141 
    142     // Second pass.
    143     const __m128i tmp0 = _mm_add_epi16(a, d);
    144     const __m128i tmp1 = _mm_add_epi16(b, c);
    145     const __m128i tmp2 = _mm_sub_epi16(b, c);
    146     const __m128i tmp3 = _mm_sub_epi16(a, d);
    147 
    148     // Transpose the two 4x4.
    149     // a00 a01 a02 a03   b00 b01 b02 b03
    150     // a10 a11 a12 a13   b10 b11 b12 b13
    151     // a20 a21 a22 a23   b20 b21 b22 b23
    152     // a30 a31 a32 a33   b30 b31 b32 b33
    153     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    154     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    155     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    156     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    157     // a00 a10 a01 a11   a02 a12 a03 a13
    158     // a20 a30 a21 a31   a22 a32 a23 a33
    159     // b00 b10 b01 b11   b02 b12 b03 b13
    160     // b20 b30 b21 b31   b22 b32 b23 b33
    161     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    162     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    163     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    164     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    165     // a00 a10 a20 a30 a01 a11 a21 a31
    166     // b00 b10 b20 b30 b01 b11 b21 b31
    167     // a02 a12 a22 a32 a03 a13 a23 a33
    168     // b02 b12 a22 b32 b03 b13 b23 b33
    169     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    170     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    171     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    172     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    173     // a00 a10 a20 a30   b00 b10 b20 b30
    174     // a01 a11 a21 a31   b01 b11 b21 b31
    175     // a02 a12 a22 a32   b02 b12 b22 b32
    176     // a03 a13 a23 a33   b03 b13 b23 b33
    177   }
    178 
    179   // Horizontal pass and subsequent transpose.
    180   {
    181     // First pass, c and d calculations are longer because of the "trick"
    182     // multiplications.
    183     const __m128i four = _mm_set1_epi16(4);
    184     const __m128i dc = _mm_add_epi16(T0, four);
    185     const __m128i a =  _mm_add_epi16(dc, T2);
    186     const __m128i b =  _mm_sub_epi16(dc, T2);
    187     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    188     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    189     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    190     const __m128i c3 = _mm_sub_epi16(T1, T3);
    191     const __m128i c4 = _mm_sub_epi16(c1, c2);
    192     const __m128i c = _mm_add_epi16(c3, c4);
    193     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    194     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    195     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    196     const __m128i d3 = _mm_add_epi16(T1, T3);
    197     const __m128i d4 = _mm_add_epi16(d1, d2);
    198     const __m128i d = _mm_add_epi16(d3, d4);
    199 
    200     // Second pass.
    201     const __m128i tmp0 = _mm_add_epi16(a, d);
    202     const __m128i tmp1 = _mm_add_epi16(b, c);
    203     const __m128i tmp2 = _mm_sub_epi16(b, c);
    204     const __m128i tmp3 = _mm_sub_epi16(a, d);
    205     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    206     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    207     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    208     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    209 
    210     // Transpose the two 4x4.
    211     // a00 a01 a02 a03   b00 b01 b02 b03
    212     // a10 a11 a12 a13   b10 b11 b12 b13
    213     // a20 a21 a22 a23   b20 b21 b22 b23
    214     // a30 a31 a32 a33   b30 b31 b32 b33
    215     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    216     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    217     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    218     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    219     // a00 a10 a01 a11   a02 a12 a03 a13
    220     // a20 a30 a21 a31   a22 a32 a23 a33
    221     // b00 b10 b01 b11   b02 b12 b03 b13
    222     // b20 b30 b21 b31   b22 b32 b23 b33
    223     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    224     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    225     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    226     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    227     // a00 a10 a20 a30 a01 a11 a21 a31
    228     // b00 b10 b20 b30 b01 b11 b21 b31
    229     // a02 a12 a22 a32 a03 a13 a23 a33
    230     // b02 b12 a22 b32 b03 b13 b23 b33
    231     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    232     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    233     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    234     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    235     // a00 a10 a20 a30   b00 b10 b20 b30
    236     // a01 a11 a21 a31   b01 b11 b21 b31
    237     // a02 a12 a22 a32   b02 b12 b22 b32
    238     // a03 a13 a23 a33   b03 b13 b23 b33
    239   }
    240 
    241   // Add inverse transform to 'ref' and store.
    242   {
    243     const __m128i zero = _mm_set1_epi16(0);
    244     // Load the reference(s).
    245     __m128i ref0, ref1, ref2, ref3;
    246     if (do_two) {
    247       // Load eight bytes/pixels per line.
    248       ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    249       ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    250       ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    251       ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    252     } else {
    253       // Load four bytes/pixels per line.
    254       ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
    255       ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
    256       ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
    257       ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
    258     }
    259     // Convert to 16b.
    260     ref0 = _mm_unpacklo_epi8(ref0, zero);
    261     ref1 = _mm_unpacklo_epi8(ref1, zero);
    262     ref2 = _mm_unpacklo_epi8(ref2, zero);
    263     ref3 = _mm_unpacklo_epi8(ref3, zero);
    264     // Add the inverse transform(s).
    265     ref0 = _mm_add_epi16(ref0, T0);
    266     ref1 = _mm_add_epi16(ref1, T1);
    267     ref2 = _mm_add_epi16(ref2, T2);
    268     ref3 = _mm_add_epi16(ref3, T3);
    269     // Unsigned saturate to 8b.
    270     ref0 = _mm_packus_epi16(ref0, ref0);
    271     ref1 = _mm_packus_epi16(ref1, ref1);
    272     ref2 = _mm_packus_epi16(ref2, ref2);
    273     ref3 = _mm_packus_epi16(ref3, ref3);
    274     // Store the results.
    275     if (do_two) {
    276       // Store eight bytes/pixels per line.
    277       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
    278       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
    279       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
    280       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    281     } else {
    282       // Store four bytes/pixels per line.
    283       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
    284       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
    285       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
    286       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
    287     }
    288   }
    289 }
    290 
    291 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
    292                            int16_t* out) {
    293   const __m128i zero = _mm_setzero_si128();
    294   const __m128i seven = _mm_set1_epi16(7);
    295   const __m128i k7500 = _mm_set1_epi32(7500);
    296   const __m128i k14500 = _mm_set1_epi32(14500);
    297   const __m128i k51000 = _mm_set1_epi32(51000);
    298   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
    299   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
    300                                            5352,  2217, 5352,  2217);
    301   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
    302                                            2217, -5352, 2217, -5352);
    303 
    304   __m128i v01, v32;
    305 
    306   // Difference between src and ref and initial transpose.
    307   {
    308     // Load src and convert to 16b.
    309     const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
    310     const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
    311     const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
    312     const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
    313     const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
    314     const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
    315     const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
    316     const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
    317     // Load ref and convert to 16b.
    318     const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    319     const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    320     const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    321     const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    322     const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
    323     const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
    324     const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
    325     const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
    326     // Compute difference.
    327     const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
    328     const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
    329     const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
    330     const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
    331 
    332     // Transpose.
    333     // 00 01 02 03   0 0 0 0
    334     // 10 11 12 13   0 0 0 0
    335     // 20 21 22 23   0 0 0 0
    336     // 30 31 32 33   0 0 0 0
    337     const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1);
    338     const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3);
    339     // 00 10 01 11   02 12 03 13
    340     // 20 30 21 31   22 32 23 33
    341     const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    342     v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    343     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
    344     // a02 a12 a22 a32   a03 a13 a23 a33
    345     // a00 a10 a20 a30   a01 a11 a21 a31
    346     // a03 a13 a23 a33   a02 a12 a22 a32
    347   }
    348 
    349   // First pass and subsequent transpose.
    350   {
    351     // Same operations are done on the (0,3) and (1,2) pairs.
    352     // b0 = (a0 + a3) << 3
    353     // b1 = (a1 + a2) << 3
    354     // b3 = (a0 - a3) << 3
    355     // b2 = (a1 - a2) << 3
    356     const __m128i a01 = _mm_add_epi16(v01, v32);
    357     const __m128i a32 = _mm_sub_epi16(v01, v32);
    358     const __m128i b01 = _mm_slli_epi16(a01, 3);
    359     const __m128i b32 = _mm_slli_epi16(a32, 3);
    360     const __m128i b11 = _mm_unpackhi_epi64(b01, b01);
    361     const __m128i b22 = _mm_unpackhi_epi64(b32, b32);
    362 
    363     // e0 = b0 + b1
    364     // e2 = b0 - b1
    365     const __m128i e0 = _mm_add_epi16(b01, b11);
    366     const __m128i e2 = _mm_sub_epi16(b01, b11);
    367     const __m128i e02 = _mm_unpacklo_epi64(e0, e2);
    368 
    369     // e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12
    370     // e3 = (b3 * 2217 - b2 * 5352 +  7500) >> 12
    371     const __m128i b23 = _mm_unpacklo_epi16(b22, b32);
    372     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    373     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    374     const __m128i d1 = _mm_add_epi32(c1, k14500);
    375     const __m128i d3 = _mm_add_epi32(c3, k7500);
    376     const __m128i e1 = _mm_srai_epi32(d1, 12);
    377     const __m128i e3 = _mm_srai_epi32(d3, 12);
    378     const __m128i e13 = _mm_packs_epi32(e1, e3);
    379 
    380     // Transpose.
    381     // 00 01 02 03  20 21 22 23
    382     // 10 11 12 13  30 31 32 33
    383     const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13);
    384     const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13);
    385     // 00 10 01 11   02 12 03 13
    386     // 20 30 21 31   22 32 23 33
    387     const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    388     v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    389     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
    390     // 02 12 22 32   03 13 23 33
    391     // 00 10 20 30   01 11 21 31
    392     // 03 13 23 33   02 12 22 32
    393   }
    394 
    395   // Second pass
    396   {
    397     // Same operations are done on the (0,3) and (1,2) pairs.
    398     // a0 = v0 + v3
    399     // a1 = v1 + v2
    400     // a3 = v0 - v3
    401     // a2 = v1 - v2
    402     const __m128i a01 = _mm_add_epi16(v01, v32);
    403     const __m128i a32 = _mm_sub_epi16(v01, v32);
    404     const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
    405     const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
    406 
    407     // d0 = (a0 + a1 + 7) >> 4;
    408     // d2 = (a0 - a1 + 7) >> 4;
    409     const __m128i b0 = _mm_add_epi16(a01, a11);
    410     const __m128i b2 = _mm_sub_epi16(a01, a11);
    411     const __m128i c0 = _mm_add_epi16(b0, seven);
    412     const __m128i c2 = _mm_add_epi16(b2, seven);
    413     const __m128i d0 = _mm_srai_epi16(c0, 4);
    414     const __m128i d2 = _mm_srai_epi16(c2, 4);
    415 
    416     // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
    417     // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
    418     const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
    419     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    420     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    421     const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
    422     const __m128i d3 = _mm_add_epi32(c3, k51000);
    423     const __m128i e1 = _mm_srai_epi32(d1, 16);
    424     const __m128i e3 = _mm_srai_epi32(d3, 16);
    425     const __m128i f1 = _mm_packs_epi32(e1, e1);
    426     const __m128i f3 = _mm_packs_epi32(e3, e3);
    427     // f1 = f1 + (a3 != 0);
    428     // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
    429     // desired (0, 1), we add one earlier through k12000_plus_one.
    430     const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
    431 
    432     _mm_storel_epi64((__m128i*)&out[ 0], d0);
    433     _mm_storel_epi64((__m128i*)&out[ 4], g1);
    434     _mm_storel_epi64((__m128i*)&out[ 8], d2);
    435     _mm_storel_epi64((__m128i*)&out[12], f3);
    436   }
    437 }
    438 
    439 //-----------------------------------------------------------------------------
    440 // Metric
    441 
    442 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
    443   const __m128i zero = _mm_set1_epi16(0);
    444 
    445   // Load values.
    446   const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
    447   const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
    448   const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
    449   const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
    450   const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
    451   const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
    452   const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
    453   const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
    454 
    455   // Combine pair of lines and convert to 16b.
    456   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
    457   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
    458   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
    459   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
    460   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
    461   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
    462   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
    463   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
    464 
    465   // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
    466   // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
    467   //                  need absolute values, there is no need to do calculation
    468   //                  in 8bit as we are already in 16bit, ... Yet this is what
    469   //                  benchmarks the fastest!
    470   const __m128i d0 = _mm_subs_epu8(a01s, b01s);
    471   const __m128i d1 = _mm_subs_epu8(b01s, a01s);
    472   const __m128i d2 = _mm_subs_epu8(a23s, b23s);
    473   const __m128i d3 = _mm_subs_epu8(b23s, a23s);
    474 
    475   // Square and add them all together.
    476   const __m128i madd0 = _mm_madd_epi16(d0, d0);
    477   const __m128i madd1 = _mm_madd_epi16(d1, d1);
    478   const __m128i madd2 = _mm_madd_epi16(d2, d2);
    479   const __m128i madd3 = _mm_madd_epi16(d3, d3);
    480   const __m128i sum0 = _mm_add_epi32(madd0, madd1);
    481   const __m128i sum1 = _mm_add_epi32(madd2, madd3);
    482   const __m128i sum2 = _mm_add_epi32(sum0, sum1);
    483   int32_t tmp[4];
    484   _mm_storeu_si128((__m128i*)tmp, sum2);
    485   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    486 }
    487 
    488 //-----------------------------------------------------------------------------
    489 // Texture distortion
    490 //
    491 // We try to match the spectral content (weighted) between source and
    492 // reconstructed samples.
    493 
    494 // Hadamard transform
    495 // Returns the difference between the weighted sum of the absolute value of
    496 // transformed coefficients.
    497 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
    498                           const uint16_t* const w) {
    499   int32_t sum[4];
    500   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
    501   const __m128i zero = _mm_setzero_si128();
    502   const __m128i one = _mm_set1_epi16(1);
    503   const __m128i three = _mm_set1_epi16(3);
    504 
    505   // Load, combine and tranpose inputs.
    506   {
    507     const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
    508     const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
    509     const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
    510     const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
    511     const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
    512     const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
    513     const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
    514     const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
    515 
    516     // Combine inA and inB (we'll do two transforms in parallel).
    517     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
    518     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
    519     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
    520     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
    521     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
    522     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
    523     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
    524     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
    525 
    526     // Transpose the two 4x4, discarding the filling zeroes.
    527     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
    528     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
    529     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
    530     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
    531     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
    532     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
    533     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
    534     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
    535 
    536     // Convert to 16b.
    537     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
    538     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
    539     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
    540     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
    541     // a00 a10 a20 a30   b00 b10 b20 b30
    542     // a01 a11 a21 a31   b01 b11 b21 b31
    543     // a02 a12 a22 a32   b02 b12 b22 b32
    544     // a03 a13 a23 a33   b03 b13 b23 b33
    545   }
    546 
    547   // Horizontal pass and subsequent transpose.
    548   {
    549     // Calculate a and b (two 4x4 at once).
    550     const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2);
    551     const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2);
    552     const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2);
    553     const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2);
    554     // b0_extra = (a0 != 0);
    555     const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one);
    556     const __m128i b0_base = _mm_add_epi16(a0, a1);
    557     const __m128i b1 = _mm_add_epi16(a3, a2);
    558     const __m128i b2 = _mm_sub_epi16(a3, a2);
    559     const __m128i b3 = _mm_sub_epi16(a0, a1);
    560     const __m128i b0 = _mm_add_epi16(b0_base, b0_extra);
    561     // a00 a01 a02 a03   b00 b01 b02 b03
    562     // a10 a11 a12 a13   b10 b11 b12 b13
    563     // a20 a21 a22 a23   b20 b21 b22 b23
    564     // a30 a31 a32 a33   b30 b31 b32 b33
    565 
    566     // Transpose the two 4x4.
    567     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
    568     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
    569     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
    570     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
    571     // a00 a10 a01 a11   a02 a12 a03 a13
    572     // a20 a30 a21 a31   a22 a32 a23 a33
    573     // b00 b10 b01 b11   b02 b12 b03 b13
    574     // b20 b30 b21 b31   b22 b32 b23 b33
    575     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    576     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    577     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    578     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    579     // a00 a10 a20 a30 a01 a11 a21 a31
    580     // b00 b10 b20 b30 b01 b11 b21 b31
    581     // a02 a12 a22 a32 a03 a13 a23 a33
    582     // b02 b12 a22 b32 b03 b13 b23 b33
    583     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    584     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    585     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    586     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    587     // a00 a10 a20 a30   b00 b10 b20 b30
    588     // a01 a11 a21 a31   b01 b11 b21 b31
    589     // a02 a12 a22 a32   b02 b12 b22 b32
    590     // a03 a13 a23 a33   b03 b13 b23 b33
    591   }
    592 
    593   // Vertical pass and difference of weighted sums.
    594   {
    595     // Load all inputs.
    596     // TODO(cduvivier): Make variable declarations and allocations aligned so
    597     //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    598     const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
    599     const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
    600 
    601     // Calculate a and b (two 4x4 at once).
    602     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    603     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    604     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    605     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    606     const __m128i b0 = _mm_add_epi16(a0, a1);
    607     const __m128i b1 = _mm_add_epi16(a3, a2);
    608     const __m128i b2 = _mm_sub_epi16(a3, a2);
    609     const __m128i b3 = _mm_sub_epi16(a0, a1);
    610 
    611     // Separate the transforms of inA and inB.
    612     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    613     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    614     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    615     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
    616 
    617     {
    618       // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
    619       const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
    620       const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
    621       const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
    622       const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
    623 
    624       // b = abs(b) = (b ^ sign) - sign
    625       A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
    626       A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
    627       B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
    628       B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
    629       A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
    630       A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
    631       B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
    632       B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
    633     }
    634 
    635     // b = abs(b) + 3
    636     A_b0 = _mm_add_epi16(A_b0, three);
    637     A_b2 = _mm_add_epi16(A_b2, three);
    638     B_b0 = _mm_add_epi16(B_b0, three);
    639     B_b2 = _mm_add_epi16(B_b2, three);
    640 
    641     // abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
    642     // b = (abs(b) + 3) >> 3
    643     A_b0 = _mm_srai_epi16(A_b0, 3);
    644     A_b2 = _mm_srai_epi16(A_b2, 3);
    645     B_b0 = _mm_srai_epi16(B_b0, 3);
    646     B_b2 = _mm_srai_epi16(B_b2, 3);
    647 
    648     // weighted sums
    649     A_b0 = _mm_madd_epi16(A_b0, w_0);
    650     A_b2 = _mm_madd_epi16(A_b2, w_8);
    651     B_b0 = _mm_madd_epi16(B_b0, w_0);
    652     B_b2 = _mm_madd_epi16(B_b2, w_8);
    653     A_b0 = _mm_add_epi32(A_b0, A_b2);
    654     B_b0 = _mm_add_epi32(B_b0, B_b2);
    655 
    656     // difference of weighted sums
    657     A_b0 = _mm_sub_epi32(A_b0, B_b0);
    658     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
    659   }
    660   return sum[0] + sum[1] + sum[2] + sum[3];
    661 }
    662 
    663 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
    664                         const uint16_t* const w) {
    665   const int diff_sum = TTransformSSE2(a, b, w);
    666   return (abs(diff_sum) + 8) >> 4;
    667 }
    668 
    669 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
    670                           const uint16_t* const w) {
    671   int D = 0;
    672   int x, y;
    673   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    674     for (x = 0; x < 16; x += 4) {
    675       D += Disto4x4SSE2(a + x + y, b + x + y, w);
    676     }
    677   }
    678   return D;
    679 }
    680 
    681 
    682 //-----------------------------------------------------------------------------
    683 // Quantization
    684 //
    685 
    686 // Simple quantization
    687 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
    688                              int n, const VP8Matrix* const mtx) {
    689   const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
    690   const __m128i zero = _mm_set1_epi16(0);
    691   __m128i sign0, sign8;
    692   __m128i coeff0, coeff8;
    693   __m128i out0, out8;
    694   __m128i packed_out;
    695 
    696   // Load all inputs.
    697   // TODO(cduvivier): Make variable declarations and allocations aligned so that
    698   //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    699   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
    700   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
    701   const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
    702   const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
    703   const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
    704   const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
    705   const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
    706   const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
    707   const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
    708   const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
    709   const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
    710   const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
    711 
    712   // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
    713   sign0 = _mm_srai_epi16(in0, 15);
    714   sign8 = _mm_srai_epi16(in8, 15);
    715 
    716   // coeff = abs(in) = (in ^ sign) - sign
    717   coeff0 = _mm_xor_si128(in0, sign0);
    718   coeff8 = _mm_xor_si128(in8, sign8);
    719   coeff0 = _mm_sub_epi16(coeff0, sign0);
    720   coeff8 = _mm_sub_epi16(coeff8, sign8);
    721 
    722   // coeff = abs(in) + sharpen
    723   coeff0 = _mm_add_epi16(coeff0, sharpen0);
    724   coeff8 = _mm_add_epi16(coeff8, sharpen8);
    725 
    726   // if (coeff > 2047) coeff = 2047
    727   coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
    728   coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
    729 
    730   // out = (coeff * iQ + B) >> QFIX;
    731   {
    732     // doing calculations with 32b precision (QFIX=17)
    733     // out = (coeff * iQ)
    734     __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    735     __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    736     __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    737     __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    738     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    739     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    740     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    741     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    742     // expand bias from 16b to 32b
    743     __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
    744     __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
    745     __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
    746     __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
    747     // out = (coeff * iQ + B)
    748     out_00 = _mm_add_epi32(out_00, bias_00);
    749     out_04 = _mm_add_epi32(out_04, bias_04);
    750     out_08 = _mm_add_epi32(out_08, bias_08);
    751     out_12 = _mm_add_epi32(out_12, bias_12);
    752     // out = (coeff * iQ + B) >> QFIX;
    753     out_00 = _mm_srai_epi32(out_00, QFIX);
    754     out_04 = _mm_srai_epi32(out_04, QFIX);
    755     out_08 = _mm_srai_epi32(out_08, QFIX);
    756     out_12 = _mm_srai_epi32(out_12, QFIX);
    757     // pack result as 16b
    758     out0 = _mm_packs_epi32(out_00, out_04);
    759     out8 = _mm_packs_epi32(out_08, out_12);
    760   }
    761 
    762   // get sign back (if (sign[j]) out_n = -out_n)
    763   out0 = _mm_xor_si128(out0, sign0);
    764   out8 = _mm_xor_si128(out8, sign8);
    765   out0 = _mm_sub_epi16(out0, sign0);
    766   out8 = _mm_sub_epi16(out8, sign8);
    767 
    768   // in = out * Q
    769   in0 = _mm_mullo_epi16(out0, q0);
    770   in8 = _mm_mullo_epi16(out8, q8);
    771 
    772   // if (coeff <= mtx->zthresh_) {in=0; out=0;}
    773   {
    774     __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
    775     __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
    776     in0 = _mm_and_si128(in0, cmp0);
    777     in8 = _mm_and_si128(in8, cmp8);
    778     _mm_storeu_si128((__m128i*)&in[0], in0);
    779     _mm_storeu_si128((__m128i*)&in[8], in8);
    780     out0 = _mm_and_si128(out0, cmp0);
    781     out8 = _mm_and_si128(out8, cmp8);
    782   }
    783 
    784   // zigzag the output before storing it.
    785   //
    786   // The zigzag pattern can almost be reproduced with a small sequence of
    787   // shuffles. After it, we only need to swap the 7th (ending up in third
    788   // position instead of twelfth) and 8th values.
    789   {
    790     __m128i outZ0, outZ8;
    791     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
    792     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
    793     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
    794     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
    795     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
    796     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
    797     _mm_storeu_si128((__m128i*)&out[0], outZ0);
    798     _mm_storeu_si128((__m128i*)&out[8], outZ8);
    799     packed_out = _mm_packs_epi16(outZ0, outZ8);
    800   }
    801   {
    802     const int16_t outZ_12 = out[12];
    803     const int16_t outZ_3 = out[3];
    804     out[3] = outZ_12;
    805     out[12] = outZ_3;
    806   }
    807 
    808   // detect if all 'out' values are zeroes or not
    809   {
    810     int32_t tmp[4];
    811     _mm_storeu_si128((__m128i*)tmp, packed_out);
    812     if (n) {
    813       tmp[0] &= ~0xff;
    814     }
    815     return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
    816   }
    817 }
    818 
    819 extern void VP8EncDspInitSSE2(void);
    820 void VP8EncDspInitSSE2(void) {
    821   VP8CollectHistogram = CollectHistogramSSE2;
    822   VP8EncQuantizeBlock = QuantizeBlockSSE2;
    823   VP8ITransform = ITransformSSE2;
    824   VP8FTransform = FTransformSSE2;
    825   VP8SSE4x4 = SSE4x4SSE2;
    826   VP8TDisto4x4 = Disto4x4SSE2;
    827   VP8TDisto16x16 = Disto16x16SSE2;
    828 }
    829 
    830 #if defined(__cplusplus) || defined(c_plusplus)
    831 }    // extern "C"
    832 #endif
    833 
    834 #endif   //__SSE2__
    835