Home | History | Annotate | Download | only in hardware
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package android.hardware;
     18 
     19 /**
     20  * <p>
     21  * This class represents a {@link android.hardware.Sensor Sensor} event and
     22  * holds informations such as the sensor's type, the time-stamp, accuracy and of
     23  * course the sensor's {@link SensorEvent#values data}.
     24  * </p>
     25  *
     26  * <p>
     27  * <u>Definition of the coordinate system used by the SensorEvent API.</u>
     28  * </p>
     29  *
     30  * <p>
     31  * The coordinate-system is defined relative to the screen of the phone in its
     32  * default orientation. The axes are not swapped when the device's screen
     33  * orientation changes.
     34  * </p>
     35  *
     36  * <p>
     37  * The X axis is horizontal and points to the right, the Y axis is vertical and
     38  * points up and the Z axis points towards the outside of the front face of the
     39  * screen. In this system, coordinates behind the screen have negative Z values.
     40  * </p>
     41  *
     42  * <p>
     43  * <center><img src="../../../images/axis_device.png"
     44  * alt="Sensors coordinate-system diagram." border="0" /></center>
     45  * </p>
     46  *
     47  * <p>
     48  * <b>Note:</b> This coordinate system is different from the one used in the
     49  * Android 2D APIs where the origin is in the top-left corner.
     50  * </p>
     51  *
     52  * @see SensorManager
     53  * @see SensorEvent
     54  * @see Sensor
     55  *
     56  */
     57 
     58 public class SensorEvent {
     59     /**
     60      * <p>
     61      * The length and contents of the {@link #values values} array depends on
     62      * which {@link android.hardware.Sensor sensor} type is being monitored (see
     63      * also {@link SensorEvent} for a definition of the coordinate system used).
     64      * </p>
     65      *
     66      * <h4>{@link android.hardware.Sensor#TYPE_ACCELEROMETER
     67      * Sensor.TYPE_ACCELEROMETER}:</h4> All values are in SI units (m/s^2)
     68      *
     69      * <ul>
     70      * <p>
     71      * values[0]: Acceleration minus Gx on the x-axis
     72      * </p>
     73      * <p>
     74      * values[1]: Acceleration minus Gy on the y-axis
     75      * </p>
     76      * <p>
     77      * values[2]: Acceleration minus Gz on the z-axis
     78      * </p>
     79      * </ul>
     80      *
     81      * <p>
     82      * A sensor of this type measures the acceleration applied to the device
     83      * (<b>Ad</b>). Conceptually, it does so by measuring forces applied to the
     84      * sensor itself (<b>Fs</b>) using the relation:
     85      * </p>
     86      *
     87      * <b><center>Ad = - &#8721;Fs / mass</center></b>
     88      *
     89      * <p>
     90      * In particular, the force of gravity is always influencing the measured
     91      * acceleration:
     92      * </p>
     93      *
     94      * <b><center>Ad = -g - &#8721;F / mass</center></b>
     95      *
     96      * <p>
     97      * For this reason, when the device is sitting on a table (and obviously not
     98      * accelerating), the accelerometer reads a magnitude of <b>g</b> = 9.81
     99      * m/s^2
    100      * </p>
    101      *
    102      * <p>
    103      * Similarly, when the device is in free-fall and therefore dangerously
    104      * accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
    105      * magnitude of 0 m/s^2.
    106      * </p>
    107      *
    108      * <p>
    109      * It should be apparent that in order to measure the real acceleration of
    110      * the device, the contribution of the force of gravity must be eliminated.
    111      * This can be achieved by applying a <i>high-pass</i> filter. Conversely, a
    112      * <i>low-pass</i> filter can be used to isolate the force of gravity.
    113      * </p>
    114      *
    115      * <pre class="prettyprint">
    116      *
    117      *     public void onSensorChanged(SensorEvent event)
    118      *     {
    119      *          // alpha is calculated as t / (t + dT)
    120      *          // with t, the low-pass filter's time-constant
    121      *          // and dT, the event delivery rate
    122      *
    123      *          final float alpha = 0.8;
    124      *
    125      *          gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
    126      *          gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
    127      *          gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
    128      *
    129      *          linear_acceleration[0] = event.values[0] - gravity[0];
    130      *          linear_acceleration[1] = event.values[1] - gravity[1];
    131      *          linear_acceleration[2] = event.values[2] - gravity[2];
    132      *     }
    133      * </pre>
    134      *
    135      * <p>
    136      * <u>Examples</u>:
    137      * <ul>
    138      * <li>When the device lies flat on a table and is pushed on its left side
    139      * toward the right, the x acceleration value is positive.</li>
    140      *
    141      * <li>When the device lies flat on a table, the acceleration value is
    142      * +9.81, which correspond to the acceleration of the device (0 m/s^2) minus
    143      * the force of gravity (-9.81 m/s^2).</li>
    144      *
    145      * <li>When the device lies flat on a table and is pushed toward the sky
    146      * with an acceleration of A m/s^2, the acceleration value is equal to
    147      * A+9.81 which correspond to the acceleration of the device (+A m/s^2)
    148      * minus the force of gravity (-9.81 m/s^2).</li>
    149      * </ul>
    150      *
    151      *
    152      * <h4>{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
    153      * Sensor.TYPE_MAGNETIC_FIELD}:</h4>
    154      * All values are in micro-Tesla (uT) and measure the ambient magnetic field
    155      * in the X, Y and Z axis.
    156      *
    157      * <h4>{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
    158      * </h4> All values are in radians/second and measure the rate of rotation
    159      * around the device's local X, Y and Z axis. The coordinate system is the
    160      * same as is used for the acceleration sensor. Rotation is positive in the
    161      * counter-clockwise direction. That is, an observer looking from some
    162      * positive location on the x, y or z axis at a device positioned on the
    163      * origin would report positive rotation if the device appeared to be
    164      * rotating counter clockwise. Note that this is the standard mathematical
    165      * definition of positive rotation and does not agree with the definition of
    166      * roll given earlier.
    167      * <ul>
    168      * <p>
    169      * values[0]: Angular speed around the x-axis
    170      * </p>
    171      * <p>
    172      * values[1]: Angular speed around the y-axis
    173      * </p>
    174      * <p>
    175      * values[2]: Angular speed around the z-axis
    176      * </p>
    177      * </ul>
    178      * <p>
    179      * Typically the output of the gyroscope is integrated over time to
    180      * calculate a rotation describing the change of angles over the timestep,
    181      * for example:
    182      * </p>
    183      *
    184      * <pre class="prettyprint">
    185      *     private static final float NS2S = 1.0f / 1000000000.0f;
    186      *     private final float[] deltaRotationVector = new float[4]();
    187      *     private float timestamp;
    188      *
    189      *     public void onSensorChanged(SensorEvent event) {
    190      *          // This timestep's delta rotation to be multiplied by the current rotation
    191      *          // after computing it from the gyro sample data.
    192      *          if (timestamp != 0) {
    193      *              final float dT = (event.timestamp - timestamp) * NS2S;
    194      *              // Axis of the rotation sample, not normalized yet.
    195      *              float axisX = event.values[0];
    196      *              float axisY = event.values[1];
    197      *              float axisZ = event.values[2];
    198      *
    199      *              // Calculate the angular speed of the sample
    200      *              float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
    201      *
    202      *              // Normalize the rotation vector if it's big enough to get the axis
    203      *              if (omegaMagnitude > EPSILON) {
    204      *                  axisX /= omegaMagnitude;
    205      *                  axisY /= omegaMagnitude;
    206      *                  axisZ /= omegaMagnitude;
    207      *              }
    208      *
    209      *              // Integrate around this axis with the angular speed by the timestep
    210      *              // in order to get a delta rotation from this sample over the timestep
    211      *              // We will convert this axis-angle representation of the delta rotation
    212      *              // into a quaternion before turning it into the rotation matrix.
    213      *              float thetaOverTwo = omegaMagnitude * dT / 2.0f;
    214      *              float sinThetaOverTwo = sin(thetaOverTwo);
    215      *              float cosThetaOverTwo = cos(thetaOverTwo);
    216      *              deltaRotationVector[0] = sinThetaOverTwo * axisX;
    217      *              deltaRotationVector[1] = sinThetaOverTwo * axisY;
    218      *              deltaRotationVector[2] = sinThetaOverTwo * axisZ;
    219      *              deltaRotationVector[3] = cosThetaOverTwo;
    220      *          }
    221      *          timestamp = event.timestamp;
    222      *          float[] deltaRotationMatrix = new float[9];
    223      *          SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
    224      *          // User code should concatenate the delta rotation we computed with the current rotation
    225      *          // in order to get the updated rotation.
    226      *          // rotationCurrent = rotationCurrent * deltaRotationMatrix;
    227      *     }
    228      * </pre>
    229      * <p>
    230      * In practice, the gyroscope noise and offset will introduce some errors
    231      * which need to be compensated for. This is usually done using the
    232      * information from other sensors, but is beyond the scope of this document.
    233      * </p>
    234      * <h4>{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:</h4>
    235      * <ul>
    236      * <p>
    237      * values[0]: Ambient light level in SI lux units
    238      * </ul>
    239      *
    240      * <h4>{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:</h4>
    241      * <ul>
    242      * <p>
    243      * values[0]: Atmospheric pressure in hPa (millibar)
    244      * </ul>
    245      *
    246      * <h4>{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
    247      * </h4>
    248      *
    249      * <ul>
    250      * <p>
    251      * values[0]: Proximity sensor distance measured in centimeters
    252      * </ul>
    253      *
    254      * <p>
    255      * <b>Note:</b> Some proximity sensors only support a binary <i>near</i> or
    256      * <i>far</i> measurement. In this case, the sensor should report its
    257      * {@link android.hardware.Sensor#getMaximumRange() maximum range} value in
    258      * the <i>far</i> state and a lesser value in the <i>near</i> state.
    259      * </p>
    260      *
    261      *  <h4>{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:</h4>
    262      *  <p>A three dimensional vector indicating the direction and magnitude of gravity.  Units
    263      *  are m/s^2. The coordinate system is the same as is used by the acceleration sensor.</p>
    264      *  <p><b>Note:</b> When the device is at rest, the output of the gravity sensor should be identical
    265      *  to that of the accelerometer.</p>
    266      *
    267      *  <h4>{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:</h4>
    268      *  A three dimensional vector indicating acceleration along each device axis, not including
    269      *  gravity.  All values have units of m/s^2.  The coordinate system is the same as is used by the
    270      *  acceleration sensor.
    271      *  <p>The output of the accelerometer, gravity and  linear-acceleration sensors must obey the
    272      *  following relation:</p>
    273      *   <p><ul>acceleration = gravity + linear-acceleration</ul></p>
    274      *
    275      *  <h4>{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:</h4>
    276      *  <p>The rotation vector represents the orientation of the device as a combination of an <i>angle</i>
    277      *  and an <i>axis</i>, in which the device has rotated through an angle &#952 around an axis
    278      *  &lt;x, y, z>.</p>
    279      *  <p>The three elements of the rotation vector are
    280      *  &lt;x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>, such that the magnitude of the rotation
    281      *  vector is equal to sin(&#952/2), and the direction of the rotation vector is equal to the
    282      *  direction of the axis of rotation.</p>
    283      *  </p>The three elements of the rotation vector are equal to
    284      *  the last three components of a <b>unit</b> quaternion
    285      *  &lt;cos(&#952/2), x*sin(&#952/2), y*sin(&#952/2), z*sin(&#952/2)>.</p>
    286      *  <p>Elements of the rotation vector are unitless.
    287      *  The x,y, and z axis are defined in the same way as the acceleration
    288      *  sensor.</p>
    289      *  The reference coordinate system is defined as a direct orthonormal basis,
    290      *  where:
    291      * </p>
    292      *
    293      * <ul>
    294      * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
    295      * the ground at the device's current location and roughly points East).</li>
    296      * <li>Y is tangential to the ground at the device's current location and
    297      * points towards magnetic north.</li>
    298      * <li>Z points towards the sky and is perpendicular to the ground.</li>
    299      * </ul>
    300      *
    301      * <p>
    302      * <center><img src="../../../images/axis_globe.png"
    303      * alt="World coordinate-system diagram." border="0" /></center>
    304      * </p>
    305      *
    306      * <ul>
    307      * <p>
    308      * values[0]: x*sin(&#952/2)
    309      * </p>
    310      * <p>
    311      * values[1]: y*sin(&#952/2)
    312      * </p>
    313      * <p>
    314      * values[2]: z*sin(&#952/2)
    315      * </p>
    316      * <p>
    317      * values[3]: cos(&#952/2) <i>(optional: only if value.length = 4)</i>
    318      * </p>
    319      * </ul>
    320      *
    321      * <h4>{@link android.hardware.Sensor#TYPE_ORIENTATION
    322      * Sensor.TYPE_ORIENTATION}:</h4> All values are angles in degrees.
    323      *
    324      * <ul>
    325      * <p>
    326      * values[0]: Azimuth, angle between the magnetic north direction and the
    327      * y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
    328      * 270=West
    329      * </p>
    330      *
    331      * <p>
    332      * values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
    333      * values when the z-axis moves <b>toward</b> the y-axis.
    334      * </p>
    335      *
    336      * <p>
    337      * values[2]: Roll, rotation around y-axis (-90 to 90), with positive values
    338      * when the x-axis moves <b>toward</b> the z-axis.
    339      * </p>
    340      * </ul>
    341      *
    342      * <p>
    343      * <b>Note:</b> This definition is different from <b>yaw, pitch and roll</b>
    344      * used in aviation where the X axis is along the long side of the plane
    345      * (tail to nose).
    346      * </p>
    347      *
    348      * <p>
    349      * <b>Note:</b> This sensor type exists for legacy reasons, please use
    350      * {@link android.hardware.SensorManager#getRotationMatrix
    351      * getRotationMatrix()} in conjunction with
    352      * {@link android.hardware.SensorManager#remapCoordinateSystem
    353      * remapCoordinateSystem()} and
    354      * {@link android.hardware.SensorManager#getOrientation getOrientation()} to
    355      * compute these values instead.
    356      * </p>
    357      *
    358      * <p>
    359      * <b>Important note:</b> For historical reasons the roll angle is positive
    360      * in the clockwise direction (mathematically speaking, it should be
    361      * positive in the counter-clockwise direction).
    362      * </p>
    363      *
    364      * <h4>{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
    365      * Sensor.TYPE_RELATIVE_HUMIDITY}:</h4>
    366      * <ul>
    367      * <p>
    368      * values[0]: Relative ambient air humidity in percent
    369      * </p>
    370      * </ul>
    371      * <p>
    372      * When relative ambient air humidity and ambient temperature are
    373      * measured, the dew point and absolute humidity can be calculated.
    374      * </p>
    375      * <u>Dew Point</u>
    376      * <p>
    377      * The dew point is the temperature to which a given parcel of air must be
    378      * cooled, at constant barometric pressure, for water vapor to condense
    379      * into water.
    380      * </p>
    381      * <center><pre>
    382      *                    ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)
    383      * t<sub>d</sub>(t,RH) = T<sub>n</sub> &#183; ------------------------------
    384      *                 m - [ln(RH/100%) + m&#183;t/(T<sub>n</sub>+t)]
    385      * </pre></center>
    386      * <dl>
    387      * <dt>t<sub>d</sub></dt> <dd>dew point temperature in &deg;C</dd>
    388      * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
    389      * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
    390      * <dt>m</dt>             <dd>17.62</dd>
    391      * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
    392      * </dl>
    393      * <p>for example:</p>
    394      * <pre class="prettyprint">
    395      * h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
    396      * td = 243.12 * h / (17.62 - h);
    397      * </pre>
    398      * <u>Absolute Humidity</u>
    399      * <p>
    400      * The absolute humidity is the mass of water vapor in a particular volume
    401      * of dry air. The unit is g/m<sup>3</sup>.
    402      * </p>
    403      * <center><pre>
    404      *                    RH/100%&#183;A&#183;exp(m&#183;t/(T<sub>n</sub>+t))
    405      * d<sub>v</sub>(t,RH) = 216.7 &#183; -------------------------
    406      *                           273.15 + t
    407      * </pre></center>
    408      * <dl>
    409      * <dt>d<sub>v</sub></dt> <dd>absolute humidity in g/m<sup>3</sup></dd>
    410      * <dt>t</dt>             <dd>actual temperature in &deg;C</dd>
    411      * <dt>RH</dt>            <dd>actual relative humidity in %</dd>
    412      * <dt>m</dt>             <dd>17.62</dd>
    413      * <dt>T<sub>n</sub></dt> <dd>243.12 &deg;C</dd>
    414      * <dt>A</dt>             <dd>6.112 hPa</dd>
    415      * </dl>
    416      * <p>for example:</p>
    417      * <pre class="prettyprint">
    418      * dv = 216.7 *
    419      * (rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
    420      * </pre>
    421      *
    422      * <h4>{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
    423      * </h4>
    424      *
    425      * <ul>
    426      * <p>
    427      * values[0]: ambient (room) temperature in degree Celsius.
    428      * </ul>
    429      *
    430      * @see SensorEvent
    431      * @see GeomagneticField
    432      */
    433 
    434     public final float[] values;
    435 
    436     /**
    437      * The sensor that generated this event. See
    438      * {@link android.hardware.SensorManager SensorManager} for details.
    439      */
    440    public Sensor sensor;
    441 
    442     /**
    443      * The accuracy of this event. See {@link android.hardware.SensorManager
    444      * SensorManager} for details.
    445      */
    446     public int accuracy;
    447 
    448 
    449     /**
    450      * The time in nanosecond at which the event happened
    451      */
    452     public long timestamp;
    453 
    454 
    455     SensorEvent(int size) {
    456         values = new float[size];
    457     }
    458 }
    459