Home | History | Annotate | Download | only in BitWriter_2_9
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ReaderWriter_2_9.h"
     15 #include "llvm/Bitcode/BitstreamWriter.h"
     16 #include "llvm/Bitcode/LLVMBitCodes.h"
     17 #include "ValueEnumerator.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/InlineAsm.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Operator.h"
     24 #include "llvm/ValueSymbolTable.h"
     25 #include "llvm/ADT/Triple.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Support/Program.h"
     30 #include <cctype>
     31 #include <map>
     32 using namespace llvm;
     33 
     34 // Redefine older bitcode opcodes for use here. Note that these come from
     35 // LLVM 2.7 (which is what HC shipped with).
     36 #define METADATA_NODE_2_7             2
     37 #define METADATA_FN_NODE_2_7          3
     38 #define METADATA_NAMED_NODE_2_7       5
     39 #define METADATA_ATTACHMENT_2_7       7
     40 #define FUNC_CODE_INST_CALL_2_7       22
     41 #define FUNC_CODE_DEBUG_LOC_2_7       32
     42 
     43 /// These are manifest constants used by the bitcode writer. They do not need to
     44 /// be kept in sync with the reader, but need to be consistent within this file.
     45 enum {
     46   CurVersion = 0,
     47 
     48   // VALUE_SYMTAB_BLOCK abbrev id's.
     49   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     50   VST_ENTRY_7_ABBREV,
     51   VST_ENTRY_6_ABBREV,
     52   VST_BBENTRY_6_ABBREV,
     53 
     54   // CONSTANTS_BLOCK abbrev id's.
     55   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     56   CONSTANTS_INTEGER_ABBREV,
     57   CONSTANTS_CE_CAST_Abbrev,
     58   CONSTANTS_NULL_Abbrev,
     59 
     60   // FUNCTION_BLOCK abbrev id's.
     61   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     62   FUNCTION_INST_BINOP_ABBREV,
     63   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     64   FUNCTION_INST_CAST_ABBREV,
     65   FUNCTION_INST_RET_VOID_ABBREV,
     66   FUNCTION_INST_RET_VAL_ABBREV,
     67   FUNCTION_INST_UNREACHABLE_ABBREV
     68 };
     69 
     70 
     71 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     72   switch (Opcode) {
     73   default: llvm_unreachable("Unknown cast instruction!");
     74   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     75   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     76   case Instruction::SExt    : return bitc::CAST_SEXT;
     77   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     78   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     79   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     80   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     81   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     82   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     83   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     84   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     85   case Instruction::BitCast : return bitc::CAST_BITCAST;
     86   }
     87 }
     88 
     89 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     90   switch (Opcode) {
     91   default: llvm_unreachable("Unknown binary instruction!");
     92   case Instruction::Add:
     93   case Instruction::FAdd: return bitc::BINOP_ADD;
     94   case Instruction::Sub:
     95   case Instruction::FSub: return bitc::BINOP_SUB;
     96   case Instruction::Mul:
     97   case Instruction::FMul: return bitc::BINOP_MUL;
     98   case Instruction::UDiv: return bitc::BINOP_UDIV;
     99   case Instruction::FDiv:
    100   case Instruction::SDiv: return bitc::BINOP_SDIV;
    101   case Instruction::URem: return bitc::BINOP_UREM;
    102   case Instruction::FRem:
    103   case Instruction::SRem: return bitc::BINOP_SREM;
    104   case Instruction::Shl:  return bitc::BINOP_SHL;
    105   case Instruction::LShr: return bitc::BINOP_LSHR;
    106   case Instruction::AShr: return bitc::BINOP_ASHR;
    107   case Instruction::And:  return bitc::BINOP_AND;
    108   case Instruction::Or:   return bitc::BINOP_OR;
    109   case Instruction::Xor:  return bitc::BINOP_XOR;
    110   }
    111 }
    112 
    113 static void WriteStringRecord(unsigned Code, StringRef Str,
    114                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    115   SmallVector<unsigned, 64> Vals;
    116 
    117   // Code: [strchar x N]
    118   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    119     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    120       AbbrevToUse = 0;
    121     Vals.push_back(Str[i]);
    122   }
    123 
    124   // Emit the finished record.
    125   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    126 }
    127 
    128 // Emit information about parameter attributes.
    129 static void WriteAttributeTable(const ValueEnumerator &VE,
    130                                 BitstreamWriter &Stream) {
    131   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
    132   if (Attrs.empty()) return;
    133 
    134   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    135 
    136   SmallVector<uint64_t, 64> Record;
    137   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    138     const AttrListPtr &A = Attrs[i];
    139     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
    140       const AttributeWithIndex &PAWI = A.getSlot(i);
    141       Record.push_back(PAWI.Index);
    142 
    143       // FIXME: remove in LLVM 3.0
    144       // Store the alignment in the bitcode as a 16-bit raw value instead of a
    145       // 5-bit log2 encoded value. Shift the bits above the alignment up by
    146       // 11 bits.
    147       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
    148       if (PAWI.Attrs & Attribute::Alignment)
    149         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
    150       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
    151 
    152       Record.push_back(FauxAttr);
    153     }
    154 
    155     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    156     Record.clear();
    157   }
    158 
    159   Stream.ExitBlock();
    160 }
    161 
    162 static void WriteTypeSymbolTable(const ValueEnumerator &VE,
    163                                  BitstreamWriter &Stream) {
    164   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
    165   Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD, 3);
    166 
    167   // 7-bit fixed width VST_CODE_ENTRY strings.
    168   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    169   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
    170   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    171                             Log2_32_Ceil(VE.getTypes().size()+1)));
    172   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    173   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    174   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
    175 
    176   SmallVector<unsigned, 64> NameVals;
    177 
    178   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    179     Type *T = TypeList[i];
    180 
    181     switch (T->getTypeID()) {
    182     case Type::StructTyID: {
    183       StructType *ST = cast<StructType>(T);
    184       if (ST->isLiteral()) {
    185         // Skip anonymous struct definitions in type symbol table
    186         // FIXME(srhines)
    187         break;
    188       }
    189 
    190       // TST_ENTRY: [typeid, namechar x N]
    191       NameVals.push_back(i);
    192 
    193       const std::string &Str = ST->getName();
    194       bool is7Bit = true;
    195       for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    196         NameVals.push_back((unsigned char)Str[i]);
    197         if (Str[i] & 128)
    198           is7Bit = false;
    199       }
    200 
    201       // Emit the finished record.
    202       Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    203       NameVals.clear();
    204 
    205       break;
    206     }
    207     default: break;
    208     }
    209   }
    210 
    211 #if 0
    212   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
    213        TI != TE; ++TI) {
    214     // TST_ENTRY: [typeid, namechar x N]
    215     NameVals.push_back(VE.getTypeID(TI->second));
    216 
    217     const std::string &Str = TI->first;
    218     bool is7Bit = true;
    219     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    220       NameVals.push_back((unsigned char)Str[i]);
    221       if (Str[i] & 128)
    222         is7Bit = false;
    223     }
    224 
    225     // Emit the finished record.
    226     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    227     NameVals.clear();
    228   }
    229 #endif
    230 
    231   Stream.ExitBlock();
    232 }
    233 
    234 /// WriteTypeTable - Write out the type table for a module.
    235 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
    236   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
    237 
    238   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_OLD, 4 /*count from # abbrevs */);
    239   SmallVector<uint64_t, 64> TypeVals;
    240 
    241   // Abbrev for TYPE_CODE_POINTER.
    242   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    243   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    244   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    245                             Log2_32_Ceil(VE.getTypes().size()+1)));
    246   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    247   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    248 
    249   // Abbrev for TYPE_CODE_FUNCTION.
    250   Abbv = new BitCodeAbbrev();
    251   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
    252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    253   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
    254   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    255   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    256                             Log2_32_Ceil(VE.getTypes().size()+1)));
    257   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    258 
    259 #if 0
    260   // Abbrev for TYPE_CODE_STRUCT_ANON.
    261   Abbv = new BitCodeAbbrev();
    262   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    263   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    264   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    265   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    266                             Log2_32_Ceil(VE.getTypes().size()+1)));
    267   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    268 
    269   // Abbrev for TYPE_CODE_STRUCT_NAME.
    270   Abbv = new BitCodeAbbrev();
    271   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    272   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    274   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    275 
    276   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    277   Abbv = new BitCodeAbbrev();
    278   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    279   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    280   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    281   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    282                             Log2_32_Ceil(VE.getTypes().size()+1)));
    283   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    284 #endif
    285 
    286   // Abbrev for TYPE_CODE_STRUCT.
    287   Abbv = new BitCodeAbbrev();
    288   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_OLD));
    289   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    290   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    291   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    292                             Log2_32_Ceil(VE.getTypes().size()+1)));
    293   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
    294 
    295   // Abbrev for TYPE_CODE_ARRAY.
    296   Abbv = new BitCodeAbbrev();
    297   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    298   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    299   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    300                             Log2_32_Ceil(VE.getTypes().size()+1)));
    301   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    302 
    303   // Emit an entry count so the reader can reserve space.
    304   TypeVals.push_back(TypeList.size());
    305   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    306   TypeVals.clear();
    307 
    308   // Loop over all of the types, emitting each in turn.
    309   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    310     Type *T = TypeList[i];
    311     int AbbrevToUse = 0;
    312     unsigned Code = 0;
    313 
    314     switch (T->getTypeID()) {
    315     default: llvm_unreachable("Unknown type!");
    316     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
    317     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
    318     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
    319     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
    320     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
    321     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    322     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
    323     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
    324     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
    325     case Type::IntegerTyID:
    326       // INTEGER: [width]
    327       Code = bitc::TYPE_CODE_INTEGER;
    328       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    329       break;
    330     case Type::PointerTyID: {
    331       PointerType *PTy = cast<PointerType>(T);
    332       // POINTER: [pointee type, address space]
    333       Code = bitc::TYPE_CODE_POINTER;
    334       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    335       unsigned AddressSpace = PTy->getAddressSpace();
    336       TypeVals.push_back(AddressSpace);
    337       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    338       break;
    339     }
    340     case Type::FunctionTyID: {
    341       FunctionType *FT = cast<FunctionType>(T);
    342       // FUNCTION: [isvararg, attrid, retty, paramty x N]
    343       Code = bitc::TYPE_CODE_FUNCTION;
    344       TypeVals.push_back(FT->isVarArg());
    345       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
    346       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    347       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    348         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    349       AbbrevToUse = FunctionAbbrev;
    350       break;
    351     }
    352     case Type::StructTyID: {
    353       StructType *ST = cast<StructType>(T);
    354       // STRUCT: [ispacked, eltty x N]
    355       TypeVals.push_back(ST->isPacked());
    356       // Output all of the element types.
    357       for (StructType::element_iterator I = ST->element_begin(),
    358            E = ST->element_end(); I != E; ++I)
    359         TypeVals.push_back(VE.getTypeID(*I));
    360       AbbrevToUse = StructAbbrev;
    361       break;
    362     }
    363     case Type::ArrayTyID: {
    364       ArrayType *AT = cast<ArrayType>(T);
    365       // ARRAY: [numelts, eltty]
    366       Code = bitc::TYPE_CODE_ARRAY;
    367       TypeVals.push_back(AT->getNumElements());
    368       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    369       AbbrevToUse = ArrayAbbrev;
    370       break;
    371     }
    372     case Type::VectorTyID: {
    373       VectorType *VT = cast<VectorType>(T);
    374       // VECTOR [numelts, eltty]
    375       Code = bitc::TYPE_CODE_VECTOR;
    376       TypeVals.push_back(VT->getNumElements());
    377       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    378       break;
    379     }
    380     }
    381 
    382     // Emit the finished record.
    383     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    384     TypeVals.clear();
    385   }
    386 
    387   Stream.ExitBlock();
    388 
    389   WriteTypeSymbolTable(VE, Stream);
    390 }
    391 
    392 static unsigned getEncodedLinkage(const GlobalValue *GV) {
    393   switch (GV->getLinkage()) {
    394   default: llvm_unreachable("Invalid linkage!");
    395   case GlobalValue::ExternalLinkage:                 return 0;
    396   case GlobalValue::WeakAnyLinkage:                  return 1;
    397   case GlobalValue::AppendingLinkage:                return 2;
    398   case GlobalValue::InternalLinkage:                 return 3;
    399   case GlobalValue::LinkOnceAnyLinkage:              return 4;
    400   case GlobalValue::DLLImportLinkage:                return 5;
    401   case GlobalValue::DLLExportLinkage:                return 6;
    402   case GlobalValue::ExternalWeakLinkage:             return 7;
    403   case GlobalValue::CommonLinkage:                   return 8;
    404   case GlobalValue::PrivateLinkage:                  return 9;
    405   case GlobalValue::WeakODRLinkage:                  return 10;
    406   case GlobalValue::LinkOnceODRLinkage:              return 11;
    407   case GlobalValue::AvailableExternallyLinkage:      return 12;
    408   case GlobalValue::LinkerPrivateLinkage:            return 13;
    409   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
    410   case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
    411   }
    412 }
    413 
    414 static unsigned getEncodedVisibility(const GlobalValue *GV) {
    415   switch (GV->getVisibility()) {
    416   default: llvm_unreachable("Invalid visibility!");
    417   case GlobalValue::DefaultVisibility:   return 0;
    418   case GlobalValue::HiddenVisibility:    return 1;
    419   case GlobalValue::ProtectedVisibility: return 2;
    420   }
    421 }
    422 
    423 // Emit top-level description of module, including target triple, inline asm,
    424 // descriptors for global variables, and function prototype info.
    425 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
    426                             BitstreamWriter &Stream) {
    427   // Emit the list of dependent libraries for the Module.
    428   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
    429     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
    430 
    431   // Emit various pieces of data attached to a module.
    432   if (!M->getTargetTriple().empty())
    433     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    434                       0/*TODO*/, Stream);
    435   if (!M->getDataLayout().empty())
    436     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
    437                       0/*TODO*/, Stream);
    438   if (!M->getModuleInlineAsm().empty())
    439     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    440                       0/*TODO*/, Stream);
    441 
    442   // Emit information about sections and GC, computing how many there are. Also
    443   // compute the maximum alignment value.
    444   std::map<std::string, unsigned> SectionMap;
    445   std::map<std::string, unsigned> GCMap;
    446   unsigned MaxAlignment = 0;
    447   unsigned MaxGlobalType = 0;
    448   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    449        GV != E; ++GV) {
    450     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    451     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    452 
    453     if (!GV->hasSection()) continue;
    454     // Give section names unique ID's.
    455     unsigned &Entry = SectionMap[GV->getSection()];
    456     if (Entry != 0) continue;
    457     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
    458                       0/*TODO*/, Stream);
    459     Entry = SectionMap.size();
    460   }
    461   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    462     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    463     if (F->hasSection()) {
    464       // Give section names unique ID's.
    465       unsigned &Entry = SectionMap[F->getSection()];
    466       if (!Entry) {
    467         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
    468                           0/*TODO*/, Stream);
    469         Entry = SectionMap.size();
    470       }
    471     }
    472     if (F->hasGC()) {
    473       // Same for GC names.
    474       unsigned &Entry = GCMap[F->getGC()];
    475       if (!Entry) {
    476         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
    477                           0/*TODO*/, Stream);
    478         Entry = GCMap.size();
    479       }
    480     }
    481   }
    482 
    483   // Emit abbrev for globals, now that we know # sections and max alignment.
    484   unsigned SimpleGVarAbbrev = 0;
    485   if (!M->global_empty()) {
    486     // Add an abbrev for common globals with no visibility or thread localness.
    487     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    488     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    490                               Log2_32_Ceil(MaxGlobalType+1)));
    491     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    492     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    493     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    494     if (MaxAlignment == 0)                                      // Alignment.
    495       Abbv->Add(BitCodeAbbrevOp(0));
    496     else {
    497       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    498       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    499                                Log2_32_Ceil(MaxEncAlignment+1)));
    500     }
    501     if (SectionMap.empty())                                    // Section.
    502       Abbv->Add(BitCodeAbbrevOp(0));
    503     else
    504       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    505                                Log2_32_Ceil(SectionMap.size()+1)));
    506     // Don't bother emitting vis + thread local.
    507     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    508   }
    509 
    510   // Emit the global variable information.
    511   SmallVector<unsigned, 64> Vals;
    512   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    513        GV != E; ++GV) {
    514     unsigned AbbrevToUse = 0;
    515 
    516     // GLOBALVAR: [type, isconst, initid,
    517     //             linkage, alignment, section, visibility, threadlocal,
    518     //             unnamed_addr]
    519     Vals.push_back(VE.getTypeID(GV->getType()));
    520     Vals.push_back(GV->isConstant());
    521     Vals.push_back(GV->isDeclaration() ? 0 :
    522                    (VE.getValueID(GV->getInitializer()) + 1));
    523     Vals.push_back(getEncodedLinkage(GV));
    524     Vals.push_back(Log2_32(GV->getAlignment())+1);
    525     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    526     if (GV->isThreadLocal() ||
    527         GV->getVisibility() != GlobalValue::DefaultVisibility ||
    528         GV->hasUnnamedAddr()) {
    529       Vals.push_back(getEncodedVisibility(GV));
    530       Vals.push_back(GV->isThreadLocal());
    531       Vals.push_back(GV->hasUnnamedAddr());
    532     } else {
    533       AbbrevToUse = SimpleGVarAbbrev;
    534     }
    535 
    536     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    537     Vals.clear();
    538   }
    539 
    540   // Emit the function proto information.
    541   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    542     // FUNCTION:  [type, callingconv, isproto, paramattr,
    543     //             linkage, alignment, section, visibility, gc, unnamed_addr]
    544     Vals.push_back(VE.getTypeID(F->getType()));
    545     Vals.push_back(F->getCallingConv());
    546     Vals.push_back(F->isDeclaration());
    547     Vals.push_back(getEncodedLinkage(F));
    548     Vals.push_back(VE.getAttributeID(F->getAttributes()));
    549     Vals.push_back(Log2_32(F->getAlignment())+1);
    550     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    551     Vals.push_back(getEncodedVisibility(F));
    552     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
    553     Vals.push_back(F->hasUnnamedAddr());
    554 
    555     unsigned AbbrevToUse = 0;
    556     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    557     Vals.clear();
    558   }
    559 
    560   // Emit the alias information.
    561   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
    562        AI != E; ++AI) {
    563     Vals.push_back(VE.getTypeID(AI->getType()));
    564     Vals.push_back(VE.getValueID(AI->getAliasee()));
    565     Vals.push_back(getEncodedLinkage(AI));
    566     Vals.push_back(getEncodedVisibility(AI));
    567     unsigned AbbrevToUse = 0;
    568     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    569     Vals.clear();
    570   }
    571 }
    572 
    573 static uint64_t GetOptimizationFlags(const Value *V) {
    574   uint64_t Flags = 0;
    575 
    576   if (const OverflowingBinaryOperator *OBO =
    577         dyn_cast<OverflowingBinaryOperator>(V)) {
    578     if (OBO->hasNoSignedWrap())
    579       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    580     if (OBO->hasNoUnsignedWrap())
    581       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    582   } else if (const PossiblyExactOperator *PEO =
    583                dyn_cast<PossiblyExactOperator>(V)) {
    584     if (PEO->isExact())
    585       Flags |= 1 << bitc::PEO_EXACT;
    586   }
    587 
    588   return Flags;
    589 }
    590 
    591 static void WriteMDNode(const MDNode *N,
    592                         const ValueEnumerator &VE,
    593                         BitstreamWriter &Stream,
    594                         SmallVector<uint64_t, 64> &Record) {
    595   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    596     if (N->getOperand(i)) {
    597       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
    598       Record.push_back(VE.getValueID(N->getOperand(i)));
    599     } else {
    600       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
    601       Record.push_back(0);
    602     }
    603   }
    604   unsigned MDCode = N->isFunctionLocal() ? METADATA_FN_NODE_2_7 :
    605                                            METADATA_NODE_2_7;
    606   Stream.EmitRecord(MDCode, Record, 0);
    607   Record.clear();
    608 }
    609 
    610 static void WriteModuleMetadata(const Module *M,
    611                                 const ValueEnumerator &VE,
    612                                 BitstreamWriter &Stream) {
    613   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
    614   bool StartedMetadataBlock = false;
    615   unsigned MDSAbbrev = 0;
    616   SmallVector<uint64_t, 64> Record;
    617   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    618 
    619     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
    620       if (!N->isFunctionLocal() || !N->getFunction()) {
    621         if (!StartedMetadataBlock) {
    622           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    623           StartedMetadataBlock = true;
    624         }
    625         WriteMDNode(N, VE, Stream, Record);
    626       }
    627     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
    628       if (!StartedMetadataBlock)  {
    629         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    630 
    631         // Abbrev for METADATA_STRING.
    632         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    633         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
    634         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    635         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    636         MDSAbbrev = Stream.EmitAbbrev(Abbv);
    637         StartedMetadataBlock = true;
    638       }
    639 
    640       // Code: [strchar x N]
    641       Record.append(MDS->begin(), MDS->end());
    642 
    643       // Emit the finished record.
    644       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
    645       Record.clear();
    646     }
    647   }
    648 
    649   // Write named metadata.
    650   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
    651        E = M->named_metadata_end(); I != E; ++I) {
    652     const NamedMDNode *NMD = I;
    653     if (!StartedMetadataBlock)  {
    654       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    655       StartedMetadataBlock = true;
    656     }
    657 
    658     // Write name.
    659     StringRef Str = NMD->getName();
    660     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    661       Record.push_back(Str[i]);
    662     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
    663     Record.clear();
    664 
    665     // Write named metadata operands.
    666     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    667       Record.push_back(VE.getValueID(NMD->getOperand(i)));
    668     Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0);
    669     Record.clear();
    670   }
    671 
    672   if (StartedMetadataBlock)
    673     Stream.ExitBlock();
    674 }
    675 
    676 static void WriteFunctionLocalMetadata(const Function &F,
    677                                        const ValueEnumerator &VE,
    678                                        BitstreamWriter &Stream) {
    679   bool StartedMetadataBlock = false;
    680   SmallVector<uint64_t, 64> Record;
    681   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
    682   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
    683     if (const MDNode *N = Vals[i])
    684       if (N->isFunctionLocal() && N->getFunction() == &F) {
    685         if (!StartedMetadataBlock) {
    686           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    687           StartedMetadataBlock = true;
    688         }
    689         WriteMDNode(N, VE, Stream, Record);
    690       }
    691 
    692   if (StartedMetadataBlock)
    693     Stream.ExitBlock();
    694 }
    695 
    696 static void WriteMetadataAttachment(const Function &F,
    697                                     const ValueEnumerator &VE,
    698                                     BitstreamWriter &Stream) {
    699   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    700 
    701   SmallVector<uint64_t, 64> Record;
    702 
    703   // Write metadata attachments
    704   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    705   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
    706 
    707   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    708     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    709          I != E; ++I) {
    710       MDs.clear();
    711       I->getAllMetadataOtherThanDebugLoc(MDs);
    712 
    713       // If no metadata, ignore instruction.
    714       if (MDs.empty()) continue;
    715 
    716       Record.push_back(VE.getInstructionID(I));
    717 
    718       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    719         Record.push_back(MDs[i].first);
    720         Record.push_back(VE.getValueID(MDs[i].second));
    721       }
    722       Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0);
    723       Record.clear();
    724     }
    725 
    726   Stream.ExitBlock();
    727 }
    728 
    729 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    730   SmallVector<uint64_t, 64> Record;
    731 
    732   // Write metadata kinds
    733   // METADATA_KIND - [n x [id, name]]
    734   SmallVector<StringRef, 4> Names;
    735   M->getMDKindNames(Names);
    736 
    737   if (Names.empty()) return;
    738 
    739   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    740 
    741   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    742     Record.push_back(MDKindID);
    743     StringRef KName = Names[MDKindID];
    744     Record.append(KName.begin(), KName.end());
    745 
    746     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    747     Record.clear();
    748   }
    749 
    750   Stream.ExitBlock();
    751 }
    752 
    753 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    754                            const ValueEnumerator &VE,
    755                            BitstreamWriter &Stream, bool isGlobal) {
    756   if (FirstVal == LastVal) return;
    757 
    758   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    759 
    760   unsigned AggregateAbbrev = 0;
    761   unsigned String8Abbrev = 0;
    762   unsigned CString7Abbrev = 0;
    763   unsigned CString6Abbrev = 0;
    764   // If this is a constant pool for the module, emit module-specific abbrevs.
    765   if (isGlobal) {
    766     // Abbrev for CST_CODE_AGGREGATE.
    767     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    768     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    769     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    770     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    771     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    772 
    773     // Abbrev for CST_CODE_STRING.
    774     Abbv = new BitCodeAbbrev();
    775     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    776     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    777     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    778     String8Abbrev = Stream.EmitAbbrev(Abbv);
    779     // Abbrev for CST_CODE_CSTRING.
    780     Abbv = new BitCodeAbbrev();
    781     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    782     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    783     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    784     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    785     // Abbrev for CST_CODE_CSTRING.
    786     Abbv = new BitCodeAbbrev();
    787     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    788     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    789     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    790     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    791   }
    792 
    793   SmallVector<uint64_t, 64> Record;
    794 
    795   const ValueEnumerator::ValueList &Vals = VE.getValues();
    796   Type *LastTy = 0;
    797   for (unsigned i = FirstVal; i != LastVal; ++i) {
    798     const Value *V = Vals[i].first;
    799     // If we need to switch types, do so now.
    800     if (V->getType() != LastTy) {
    801       LastTy = V->getType();
    802       Record.push_back(VE.getTypeID(LastTy));
    803       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    804                         CONSTANTS_SETTYPE_ABBREV);
    805       Record.clear();
    806     }
    807 
    808     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    809       Record.push_back(unsigned(IA->hasSideEffects()) |
    810                        unsigned(IA->isAlignStack()) << 1);
    811 
    812       // Add the asm string.
    813       const std::string &AsmStr = IA->getAsmString();
    814       Record.push_back(AsmStr.size());
    815       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    816         Record.push_back(AsmStr[i]);
    817 
    818       // Add the constraint string.
    819       const std::string &ConstraintStr = IA->getConstraintString();
    820       Record.push_back(ConstraintStr.size());
    821       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    822         Record.push_back(ConstraintStr[i]);
    823       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    824       Record.clear();
    825       continue;
    826     }
    827     const Constant *C = cast<Constant>(V);
    828     unsigned Code = -1U;
    829     unsigned AbbrevToUse = 0;
    830     if (C->isNullValue()) {
    831       Code = bitc::CST_CODE_NULL;
    832     } else if (isa<UndefValue>(C)) {
    833       Code = bitc::CST_CODE_UNDEF;
    834     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    835       if (IV->getBitWidth() <= 64) {
    836         uint64_t V = IV->getSExtValue();
    837         if ((int64_t)V >= 0)
    838           Record.push_back(V << 1);
    839         else
    840           Record.push_back((-V << 1) | 1);
    841         Code = bitc::CST_CODE_INTEGER;
    842         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    843       } else {                             // Wide integers, > 64 bits in size.
    844         // We have an arbitrary precision integer value to write whose
    845         // bit width is > 64. However, in canonical unsigned integer
    846         // format it is likely that the high bits are going to be zero.
    847         // So, we only write the number of active words.
    848         unsigned NWords = IV->getValue().getActiveWords();
    849         const uint64_t *RawWords = IV->getValue().getRawData();
    850         for (unsigned i = 0; i != NWords; ++i) {
    851           int64_t V = RawWords[i];
    852           if (V >= 0)
    853             Record.push_back(V << 1);
    854           else
    855             Record.push_back((-V << 1) | 1);
    856         }
    857         Code = bitc::CST_CODE_WIDE_INTEGER;
    858       }
    859     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    860       Code = bitc::CST_CODE_FLOAT;
    861       Type *Ty = CFP->getType();
    862       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    863         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    864       } else if (Ty->isX86_FP80Ty()) {
    865         // api needed to prevent premature destruction
    866         // bits are not in the same order as a normal i80 APInt, compensate.
    867         APInt api = CFP->getValueAPF().bitcastToAPInt();
    868         const uint64_t *p = api.getRawData();
    869         Record.push_back((p[1] << 48) | (p[0] >> 16));
    870         Record.push_back(p[0] & 0xffffLL);
    871       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    872         APInt api = CFP->getValueAPF().bitcastToAPInt();
    873         const uint64_t *p = api.getRawData();
    874         Record.push_back(p[0]);
    875         Record.push_back(p[1]);
    876       } else {
    877         assert (0 && "Unknown FP type!");
    878       }
    879     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
    880       const ConstantArray *CA = cast<ConstantArray>(C);
    881       // Emit constant strings specially.
    882       unsigned NumOps = CA->getNumOperands();
    883       // If this is a null-terminated string, use the denser CSTRING encoding.
    884       if (CA->getOperand(NumOps-1)->isNullValue()) {
    885         Code = bitc::CST_CODE_CSTRING;
    886         --NumOps;  // Don't encode the null, which isn't allowed by char6.
    887       } else {
    888         Code = bitc::CST_CODE_STRING;
    889         AbbrevToUse = String8Abbrev;
    890       }
    891       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
    892       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
    893       for (unsigned i = 0; i != NumOps; ++i) {
    894         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
    895         Record.push_back(V);
    896         isCStr7 &= (V & 128) == 0;
    897         if (isCStrChar6)
    898           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
    899       }
    900 
    901       if (isCStrChar6)
    902         AbbrevToUse = CString6Abbrev;
    903       else if (isCStr7)
    904         AbbrevToUse = CString7Abbrev;
    905     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
    906                isa<ConstantVector>(V)) {
    907       Code = bitc::CST_CODE_AGGREGATE;
    908       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    909         Record.push_back(VE.getValueID(C->getOperand(i)));
    910       AbbrevToUse = AggregateAbbrev;
    911     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    912       switch (CE->getOpcode()) {
    913       default:
    914         if (Instruction::isCast(CE->getOpcode())) {
    915           Code = bitc::CST_CODE_CE_CAST;
    916           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
    917           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    918           Record.push_back(VE.getValueID(C->getOperand(0)));
    919           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
    920         } else {
    921           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
    922           Code = bitc::CST_CODE_CE_BINOP;
    923           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
    924           Record.push_back(VE.getValueID(C->getOperand(0)));
    925           Record.push_back(VE.getValueID(C->getOperand(1)));
    926           uint64_t Flags = GetOptimizationFlags(CE);
    927           if (Flags != 0)
    928             Record.push_back(Flags);
    929         }
    930         break;
    931       case Instruction::GetElementPtr:
    932         Code = bitc::CST_CODE_CE_GEP;
    933         if (cast<GEPOperator>(C)->isInBounds())
    934           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
    935         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
    936           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
    937           Record.push_back(VE.getValueID(C->getOperand(i)));
    938         }
    939         break;
    940       case Instruction::Select:
    941         Code = bitc::CST_CODE_CE_SELECT;
    942         Record.push_back(VE.getValueID(C->getOperand(0)));
    943         Record.push_back(VE.getValueID(C->getOperand(1)));
    944         Record.push_back(VE.getValueID(C->getOperand(2)));
    945         break;
    946       case Instruction::ExtractElement:
    947         Code = bitc::CST_CODE_CE_EXTRACTELT;
    948         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    949         Record.push_back(VE.getValueID(C->getOperand(0)));
    950         Record.push_back(VE.getValueID(C->getOperand(1)));
    951         break;
    952       case Instruction::InsertElement:
    953         Code = bitc::CST_CODE_CE_INSERTELT;
    954         Record.push_back(VE.getValueID(C->getOperand(0)));
    955         Record.push_back(VE.getValueID(C->getOperand(1)));
    956         Record.push_back(VE.getValueID(C->getOperand(2)));
    957         break;
    958       case Instruction::ShuffleVector:
    959         // If the return type and argument types are the same, this is a
    960         // standard shufflevector instruction.  If the types are different,
    961         // then the shuffle is widening or truncating the input vectors, and
    962         // the argument type must also be encoded.
    963         if (C->getType() == C->getOperand(0)->getType()) {
    964           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
    965         } else {
    966           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
    967           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    968         }
    969         Record.push_back(VE.getValueID(C->getOperand(0)));
    970         Record.push_back(VE.getValueID(C->getOperand(1)));
    971         Record.push_back(VE.getValueID(C->getOperand(2)));
    972         break;
    973       case Instruction::ICmp:
    974       case Instruction::FCmp:
    975         Code = bitc::CST_CODE_CE_CMP;
    976         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    977         Record.push_back(VE.getValueID(C->getOperand(0)));
    978         Record.push_back(VE.getValueID(C->getOperand(1)));
    979         Record.push_back(CE->getPredicate());
    980         break;
    981       }
    982     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
    983       Code = bitc::CST_CODE_BLOCKADDRESS;
    984       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
    985       Record.push_back(VE.getValueID(BA->getFunction()));
    986       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
    987     } else {
    988 #ifndef NDEBUG
    989       C->dump();
    990 #endif
    991       llvm_unreachable("Unknown constant!");
    992     }
    993     Stream.EmitRecord(Code, Record, AbbrevToUse);
    994     Record.clear();
    995   }
    996 
    997   Stream.ExitBlock();
    998 }
    999 
   1000 static void WriteModuleConstants(const ValueEnumerator &VE,
   1001                                  BitstreamWriter &Stream) {
   1002   const ValueEnumerator::ValueList &Vals = VE.getValues();
   1003 
   1004   // Find the first constant to emit, which is the first non-globalvalue value.
   1005   // We know globalvalues have been emitted by WriteModuleInfo.
   1006   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1007     if (!isa<GlobalValue>(Vals[i].first)) {
   1008       WriteConstants(i, Vals.size(), VE, Stream, true);
   1009       return;
   1010     }
   1011   }
   1012 }
   1013 
   1014 /// PushValueAndType - The file has to encode both the value and type id for
   1015 /// many values, because we need to know what type to create for forward
   1016 /// references.  However, most operands are not forward references, so this type
   1017 /// field is not needed.
   1018 ///
   1019 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   1020 /// instruction ID, then it is a forward reference, and it also includes the
   1021 /// type ID.
   1022 static bool PushValueAndType(const Value *V, unsigned InstID,
   1023                              SmallVector<unsigned, 64> &Vals,
   1024                              ValueEnumerator &VE) {
   1025   unsigned ValID = VE.getValueID(V);
   1026   Vals.push_back(ValID);
   1027   if (ValID >= InstID) {
   1028     Vals.push_back(VE.getTypeID(V->getType()));
   1029     return true;
   1030   }
   1031   return false;
   1032 }
   1033 
   1034 /// WriteInstruction - Emit an instruction to the specified stream.
   1035 static void WriteInstruction(const Instruction &I, unsigned InstID,
   1036                              ValueEnumerator &VE, BitstreamWriter &Stream,
   1037                              SmallVector<unsigned, 64> &Vals) {
   1038   unsigned Code = 0;
   1039   unsigned AbbrevToUse = 0;
   1040   VE.setInstructionID(&I);
   1041   switch (I.getOpcode()) {
   1042   default:
   1043     if (Instruction::isCast(I.getOpcode())) {
   1044       Code = bitc::FUNC_CODE_INST_CAST;
   1045       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1046         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1047       Vals.push_back(VE.getTypeID(I.getType()));
   1048       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1049     } else {
   1050       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1051       Code = bitc::FUNC_CODE_INST_BINOP;
   1052       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1053         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1054       Vals.push_back(VE.getValueID(I.getOperand(1)));
   1055       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1056       uint64_t Flags = GetOptimizationFlags(&I);
   1057       if (Flags != 0) {
   1058         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1059           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1060         Vals.push_back(Flags);
   1061       }
   1062     }
   1063     break;
   1064 
   1065   case Instruction::GetElementPtr:
   1066     Code = bitc::FUNC_CODE_INST_GEP;
   1067     if (cast<GEPOperator>(&I)->isInBounds())
   1068       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
   1069     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1070       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1071     break;
   1072   case Instruction::ExtractValue: {
   1073     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1074     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1075     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1076     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1077       Vals.push_back(*i);
   1078     break;
   1079   }
   1080   case Instruction::InsertValue: {
   1081     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1082     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1083     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1084     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1085     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1086       Vals.push_back(*i);
   1087     break;
   1088   }
   1089   case Instruction::Select:
   1090     Code = bitc::FUNC_CODE_INST_VSELECT;
   1091     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1092     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1093     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1094     break;
   1095   case Instruction::ExtractElement:
   1096     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1097     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1098     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1099     break;
   1100   case Instruction::InsertElement:
   1101     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1102     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1103     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1104     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1105     break;
   1106   case Instruction::ShuffleVector:
   1107     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1108     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1109     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1110     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1111     break;
   1112   case Instruction::ICmp:
   1113   case Instruction::FCmp:
   1114     // compare returning Int1Ty or vector of Int1Ty
   1115     Code = bitc::FUNC_CODE_INST_CMP2;
   1116     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1117     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1118     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1119     break;
   1120 
   1121   case Instruction::Ret:
   1122     {
   1123       Code = bitc::FUNC_CODE_INST_RET;
   1124       unsigned NumOperands = I.getNumOperands();
   1125       if (NumOperands == 0)
   1126         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1127       else if (NumOperands == 1) {
   1128         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1129           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1130       } else {
   1131         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1132           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1133       }
   1134     }
   1135     break;
   1136   case Instruction::Br:
   1137     {
   1138       Code = bitc::FUNC_CODE_INST_BR;
   1139       BranchInst &II = cast<BranchInst>(I);
   1140       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1141       if (II.isConditional()) {
   1142         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1143         Vals.push_back(VE.getValueID(II.getCondition()));
   1144       }
   1145     }
   1146     break;
   1147   case Instruction::Switch:
   1148     Code = bitc::FUNC_CODE_INST_SWITCH;
   1149     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1150     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1151       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1152     break;
   1153   case Instruction::IndirectBr:
   1154     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1155     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1156     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1157       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1158     break;
   1159 
   1160   case Instruction::Invoke: {
   1161     const InvokeInst *II = cast<InvokeInst>(&I);
   1162     const Value *Callee(II->getCalledValue());
   1163     PointerType *PTy = cast<PointerType>(Callee->getType());
   1164     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1165     Code = bitc::FUNC_CODE_INST_INVOKE;
   1166 
   1167     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1168     Vals.push_back(II->getCallingConv());
   1169     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1170     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1171     PushValueAndType(Callee, InstID, Vals, VE);
   1172 
   1173     // Emit value #'s for the fixed parameters.
   1174     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1175       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
   1176 
   1177     // Emit type/value pairs for varargs params.
   1178     if (FTy->isVarArg()) {
   1179       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1180            i != e; ++i)
   1181         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1182     }
   1183     break;
   1184   }
   1185   case Instruction::Unwind:
   1186     Code = bitc::FUNC_CODE_INST_UNWIND;
   1187     break;
   1188   case Instruction::Unreachable:
   1189     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1190     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1191     break;
   1192 
   1193   case Instruction::PHI: {
   1194     const PHINode &PN = cast<PHINode>(I);
   1195     Code = bitc::FUNC_CODE_INST_PHI;
   1196     Vals.push_back(VE.getTypeID(PN.getType()));
   1197     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1198       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
   1199       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1200     }
   1201     break;
   1202   }
   1203 
   1204   case Instruction::Alloca:
   1205     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1206     Vals.push_back(VE.getTypeID(I.getType()));
   1207     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1208     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1209     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1210     break;
   1211 
   1212   case Instruction::Load:
   1213     Code = bitc::FUNC_CODE_INST_LOAD;
   1214     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1215       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1216 
   1217     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1218     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1219     break;
   1220   case Instruction::Store:
   1221     Code = bitc::FUNC_CODE_INST_STORE;
   1222     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1223     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
   1224     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1225     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1226     break;
   1227   case Instruction::Call: {
   1228     const CallInst &CI = cast<CallInst>(I);
   1229     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1230     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1231 
   1232     Code = FUNC_CODE_INST_CALL_2_7;
   1233 
   1234     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1235     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1236     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1237 
   1238     // Emit value #'s for the fixed parameters.
   1239     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1240       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
   1241 
   1242     // Emit type/value pairs for varargs params.
   1243     if (FTy->isVarArg()) {
   1244       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1245            i != e; ++i)
   1246         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1247     }
   1248     break;
   1249   }
   1250   case Instruction::VAArg:
   1251     Code = bitc::FUNC_CODE_INST_VAARG;
   1252     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1253     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
   1254     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1255     break;
   1256   }
   1257 
   1258   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1259   Vals.clear();
   1260 }
   1261 
   1262 // Emit names for globals/functions etc.
   1263 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1264                                   const ValueEnumerator &VE,
   1265                                   BitstreamWriter &Stream) {
   1266   if (VST.empty()) return;
   1267   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1268 
   1269   // FIXME: Set up the abbrev, we know how many values there are!
   1270   // FIXME: We know if the type names can use 7-bit ascii.
   1271   SmallVector<unsigned, 64> NameVals;
   1272 
   1273   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1274        SI != SE; ++SI) {
   1275 
   1276     const ValueName &Name = *SI;
   1277 
   1278     // Figure out the encoding to use for the name.
   1279     bool is7Bit = true;
   1280     bool isChar6 = true;
   1281     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1282          C != E; ++C) {
   1283       if (isChar6)
   1284         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1285       if ((unsigned char)*C & 128) {
   1286         is7Bit = false;
   1287         break;  // don't bother scanning the rest.
   1288       }
   1289     }
   1290 
   1291     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1292 
   1293     // VST_ENTRY:   [valueid, namechar x N]
   1294     // VST_BBENTRY: [bbid, namechar x N]
   1295     unsigned Code;
   1296     if (isa<BasicBlock>(SI->getValue())) {
   1297       Code = bitc::VST_CODE_BBENTRY;
   1298       if (isChar6)
   1299         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1300     } else {
   1301       Code = bitc::VST_CODE_ENTRY;
   1302       if (isChar6)
   1303         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1304       else if (is7Bit)
   1305         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1306     }
   1307 
   1308     NameVals.push_back(VE.getValueID(SI->getValue()));
   1309     for (const char *P = Name.getKeyData(),
   1310          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1311       NameVals.push_back((unsigned char)*P);
   1312 
   1313     // Emit the finished record.
   1314     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1315     NameVals.clear();
   1316   }
   1317   Stream.ExitBlock();
   1318 }
   1319 
   1320 /// WriteFunction - Emit a function body to the module stream.
   1321 static void WriteFunction(const Function &F, ValueEnumerator &VE,
   1322                           BitstreamWriter &Stream) {
   1323   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1324   VE.incorporateFunction(F);
   1325 
   1326   SmallVector<unsigned, 64> Vals;
   1327 
   1328   // Emit the number of basic blocks, so the reader can create them ahead of
   1329   // time.
   1330   Vals.push_back(VE.getBasicBlocks().size());
   1331   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1332   Vals.clear();
   1333 
   1334   // If there are function-local constants, emit them now.
   1335   unsigned CstStart, CstEnd;
   1336   VE.getFunctionConstantRange(CstStart, CstEnd);
   1337   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1338 
   1339   // If there is function-local metadata, emit it now.
   1340   WriteFunctionLocalMetadata(F, VE, Stream);
   1341 
   1342   // Keep a running idea of what the instruction ID is.
   1343   unsigned InstID = CstEnd;
   1344 
   1345   bool NeedsMetadataAttachment = false;
   1346 
   1347   DebugLoc LastDL;
   1348 
   1349   // Finally, emit all the instructions, in order.
   1350   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1351     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1352          I != E; ++I) {
   1353       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1354 
   1355       if (!I->getType()->isVoidTy())
   1356         ++InstID;
   1357 
   1358       // If the instruction has metadata, write a metadata attachment later.
   1359       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1360 
   1361       // If the instruction has a debug location, emit it.
   1362       DebugLoc DL = I->getDebugLoc();
   1363       if (DL.isUnknown()) {
   1364         // nothing todo.
   1365       } else if (DL == LastDL) {
   1366         // Just repeat the same debug loc as last time.
   1367         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1368       } else {
   1369         MDNode *Scope, *IA;
   1370         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
   1371 
   1372         Vals.push_back(DL.getLine());
   1373         Vals.push_back(DL.getCol());
   1374         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
   1375         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
   1376         Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals);
   1377         Vals.clear();
   1378 
   1379         LastDL = DL;
   1380       }
   1381     }
   1382 
   1383   // Emit names for all the instructions etc.
   1384   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1385 
   1386   if (NeedsMetadataAttachment)
   1387     WriteMetadataAttachment(F, VE, Stream);
   1388   VE.purgeFunction();
   1389   Stream.ExitBlock();
   1390 }
   1391 
   1392 // Emit blockinfo, which defines the standard abbreviations etc.
   1393 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   1394   // We only want to emit block info records for blocks that have multiple
   1395   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   1396   // blocks can defined their abbrevs inline.
   1397   Stream.EnterBlockInfoBlock(2);
   1398 
   1399   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1400     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1401     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1402     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1403     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1404     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1405     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1406                                    Abbv) != VST_ENTRY_8_ABBREV)
   1407       llvm_unreachable("Unexpected abbrev ordering!");
   1408   }
   1409 
   1410   { // 7-bit fixed width VST_ENTRY strings.
   1411     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1412     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1413     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1414     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1415     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1416     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1417                                    Abbv) != VST_ENTRY_7_ABBREV)
   1418       llvm_unreachable("Unexpected abbrev ordering!");
   1419   }
   1420   { // 6-bit char6 VST_ENTRY strings.
   1421     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1422     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1423     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1424     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1426     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1427                                    Abbv) != VST_ENTRY_6_ABBREV)
   1428       llvm_unreachable("Unexpected abbrev ordering!");
   1429   }
   1430   { // 6-bit char6 VST_BBENTRY strings.
   1431     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1432     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1433     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1436     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1437                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1438       llvm_unreachable("Unexpected abbrev ordering!");
   1439   }
   1440 
   1441 
   1442 
   1443   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1444     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1445     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1446     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1447                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1448     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1449                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1450       llvm_unreachable("Unexpected abbrev ordering!");
   1451   }
   1452 
   1453   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1454     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1455     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1457     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1458                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1459       llvm_unreachable("Unexpected abbrev ordering!");
   1460   }
   1461 
   1462   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1463     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1464     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1465     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1466     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1467                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1468     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1469 
   1470     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1471                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1472       llvm_unreachable("Unexpected abbrev ordering!");
   1473   }
   1474   { // NULL abbrev for CONSTANTS_BLOCK.
   1475     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1476     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1477     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1478                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1479       llvm_unreachable("Unexpected abbrev ordering!");
   1480   }
   1481 
   1482   // FIXME: This should only use space for first class types!
   1483 
   1484   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1485     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1486     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1490     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1491                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1492       llvm_unreachable("Unexpected abbrev ordering!");
   1493   }
   1494   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1495     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1496     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1497     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1499     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1500     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1501                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1502       llvm_unreachable("Unexpected abbrev ordering!");
   1503   }
   1504   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1505     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1506     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1509     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1511     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1512                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1513       llvm_unreachable("Unexpected abbrev ordering!");
   1514   }
   1515   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1516     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1517     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1518     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1519     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1520                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1522     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1523                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1524       llvm_unreachable("Unexpected abbrev ordering!");
   1525   }
   1526 
   1527   { // INST_RET abbrev for FUNCTION_BLOCK.
   1528     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1529     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1530     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1531                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1532       llvm_unreachable("Unexpected abbrev ordering!");
   1533   }
   1534   { // INST_RET abbrev for FUNCTION_BLOCK.
   1535     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1536     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1537     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1538     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1539                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1540       llvm_unreachable("Unexpected abbrev ordering!");
   1541   }
   1542   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1543     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1544     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1545     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1546                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1547       llvm_unreachable("Unexpected abbrev ordering!");
   1548   }
   1549 
   1550   Stream.ExitBlock();
   1551 }
   1552 
   1553 
   1554 /// WriteModule - Emit the specified module to the bitstream.
   1555 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1556   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1557 
   1558   // Emit the version number if it is non-zero.
   1559   if (CurVersion) {
   1560     SmallVector<unsigned, 1> Vals;
   1561     Vals.push_back(CurVersion);
   1562     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1563   }
   1564 
   1565   // Analyze the module, enumerating globals, functions, etc.
   1566   ValueEnumerator VE(M);
   1567 
   1568   // Emit blockinfo, which defines the standard abbreviations etc.
   1569   WriteBlockInfo(VE, Stream);
   1570 
   1571   // Emit information about parameter attributes.
   1572   WriteAttributeTable(VE, Stream);
   1573 
   1574   // Emit information describing all of the types in the module.
   1575   WriteTypeTable(VE, Stream);
   1576 
   1577   // Emit top-level description of module, including target triple, inline asm,
   1578   // descriptors for global variables, and function prototype info.
   1579   WriteModuleInfo(M, VE, Stream);
   1580 
   1581   // Emit constants.
   1582   WriteModuleConstants(VE, Stream);
   1583 
   1584   // Emit metadata.
   1585   WriteModuleMetadata(M, VE, Stream);
   1586 
   1587   // Emit function bodies.
   1588   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1589     if (!F->isDeclaration())
   1590       WriteFunction(*F, VE, Stream);
   1591 
   1592   // Emit metadata.
   1593   WriteModuleMetadataStore(M, Stream);
   1594 
   1595   // Emit names for globals/functions etc.
   1596   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1597 
   1598   Stream.ExitBlock();
   1599 }
   1600 
   1601 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1602 /// header and trailer to make it compatible with the system archiver.  To do
   1603 /// this we emit the following header, and then emit a trailer that pads the
   1604 /// file out to be a multiple of 16 bytes.
   1605 ///
   1606 /// struct bc_header {
   1607 ///   uint32_t Magic;         // 0x0B17C0DE
   1608 ///   uint32_t Version;       // Version, currently always 0.
   1609 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   1610 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   1611 ///   uint32_t CPUType;       // CPU specifier.
   1612 ///   ... potentially more later ...
   1613 /// };
   1614 enum {
   1615   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   1616   DarwinBCHeaderSize = 5*4
   1617 };
   1618 
   1619 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) {
   1620   unsigned CPUType = ~0U;
   1621 
   1622   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   1623   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   1624   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   1625   // specific constants here because they are implicitly part of the Darwin ABI.
   1626   enum {
   1627     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   1628     DARWIN_CPU_TYPE_X86        = 7,
   1629     DARWIN_CPU_TYPE_ARM        = 12,
   1630     DARWIN_CPU_TYPE_POWERPC    = 18
   1631   };
   1632 
   1633   Triple::ArchType Arch = TT.getArch();
   1634   if (Arch == Triple::x86_64)
   1635     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   1636   else if (Arch == Triple::x86)
   1637     CPUType = DARWIN_CPU_TYPE_X86;
   1638   else if (Arch == Triple::ppc)
   1639     CPUType = DARWIN_CPU_TYPE_POWERPC;
   1640   else if (Arch == Triple::ppc64)
   1641     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   1642   else if (Arch == Triple::arm || Arch == Triple::thumb)
   1643     CPUType = DARWIN_CPU_TYPE_ARM;
   1644 
   1645   // Traditional Bitcode starts after header.
   1646   unsigned BCOffset = DarwinBCHeaderSize;
   1647 
   1648   Stream.Emit(0x0B17C0DE, 32);
   1649   Stream.Emit(0         , 32);  // Version.
   1650   Stream.Emit(BCOffset  , 32);
   1651   Stream.Emit(0         , 32);  // Filled in later.
   1652   Stream.Emit(CPUType   , 32);
   1653 }
   1654 
   1655 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
   1656 /// finalize the header.
   1657 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
   1658   // Update the size field in the header.
   1659   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
   1660 
   1661   // If the file is not a multiple of 16 bytes, insert dummy padding.
   1662   while (BufferSize & 15) {
   1663     Stream.Emit(0, 8);
   1664     ++BufferSize;
   1665   }
   1666 }
   1667 
   1668 
   1669 /// WriteBitcodeToFile - Write the specified module to the specified output
   1670 /// stream.
   1671 void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   1672   std::vector<unsigned char> Buffer;
   1673   BitstreamWriter Stream(Buffer);
   1674 
   1675   Buffer.reserve(256*1024);
   1676 
   1677   WriteBitcodeToStream( M, Stream );
   1678 
   1679   // Write the generated bitstream to "Out".
   1680   Out.write((char*)&Buffer.front(), Buffer.size());
   1681 }
   1682 
   1683 /// WriteBitcodeToStream - Write the specified module to the specified output
   1684 /// stream.
   1685 void llvm_2_9::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
   1686   // If this is darwin or another generic macho target, emit a file header and
   1687   // trailer if needed.
   1688   Triple TT(M->getTargetTriple());
   1689   if (TT.isOSDarwin())
   1690     EmitDarwinBCHeader(Stream, TT);
   1691 
   1692   // Emit the file header.
   1693   Stream.Emit((unsigned)'B', 8);
   1694   Stream.Emit((unsigned)'C', 8);
   1695   Stream.Emit(0x0, 4);
   1696   Stream.Emit(0xC, 4);
   1697   Stream.Emit(0xE, 4);
   1698   Stream.Emit(0xD, 4);
   1699 
   1700   // Emit the module.
   1701   WriteModule(M, Stream);
   1702 
   1703   if (TT.isOSDarwin())
   1704     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
   1705 }
   1706