Home | History | Annotate | Download | only in vold
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /* TO DO:
     18  *   1.  Perhaps keep several copies of the encrypted key, in case something
     19  *       goes horribly wrong?
     20  *
     21  */
     22 
     23 #include <sys/types.h>
     24 #include <sys/stat.h>
     25 #include <fcntl.h>
     26 #include <unistd.h>
     27 #include <stdio.h>
     28 #include <sys/ioctl.h>
     29 #include <linux/dm-ioctl.h>
     30 #include <libgen.h>
     31 #include <stdlib.h>
     32 #include <sys/param.h>
     33 #include <string.h>
     34 #include <sys/mount.h>
     35 #include <openssl/evp.h>
     36 #include <openssl/sha.h>
     37 #include <errno.h>
     38 #include <cutils/android_reboot.h>
     39 #include <ext4.h>
     40 #include <linux/kdev_t.h>
     41 #include "cryptfs.h"
     42 #define LOG_TAG "Cryptfs"
     43 #include "cutils/log.h"
     44 #include "cutils/properties.h"
     45 #include "hardware_legacy/power.h"
     46 #include "VolumeManager.h"
     47 
     48 #define DM_CRYPT_BUF_SIZE 4096
     49 #define DATA_MNT_POINT "/data"
     50 
     51 #define HASH_COUNT 2000
     52 #define KEY_LEN_BYTES 16
     53 #define IV_LEN_BYTES 16
     54 
     55 #define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
     56 #define KEY_IN_FOOTER  "footer"
     57 
     58 #define EXT4_FS 1
     59 #define FAT_FS 2
     60 
     61 char *me = "cryptfs";
     62 
     63 static unsigned char saved_master_key[KEY_LEN_BYTES];
     64 static char *saved_data_blkdev;
     65 static char *saved_mount_point;
     66 static int  master_key_saved = 0;
     67 
     68 static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
     69 {
     70     memset(io, 0, dataSize);
     71     io->data_size = dataSize;
     72     io->data_start = sizeof(struct dm_ioctl);
     73     io->version[0] = 4;
     74     io->version[1] = 0;
     75     io->version[2] = 0;
     76     io->flags = flags;
     77     if (name) {
     78         strncpy(io->name, name, sizeof(io->name));
     79     }
     80 }
     81 
     82 static unsigned int get_fs_size(char *dev)
     83 {
     84     int fd, block_size;
     85     struct ext4_super_block sb;
     86     off64_t len;
     87 
     88     if ((fd = open(dev, O_RDONLY)) < 0) {
     89         SLOGE("Cannot open device to get filesystem size ");
     90         return 0;
     91     }
     92 
     93     if (lseek64(fd, 1024, SEEK_SET) < 0) {
     94         SLOGE("Cannot seek to superblock");
     95         return 0;
     96     }
     97 
     98     if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
     99         SLOGE("Cannot read superblock");
    100         return 0;
    101     }
    102 
    103     close(fd);
    104 
    105     block_size = 1024 << sb.s_log_block_size;
    106     /* compute length in bytes */
    107     len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
    108 
    109     /* return length in sectors */
    110     return (unsigned int) (len / 512);
    111 }
    112 
    113 static unsigned int get_blkdev_size(int fd)
    114 {
    115   unsigned int nr_sec;
    116 
    117   if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
    118     nr_sec = 0;
    119   }
    120 
    121   return nr_sec;
    122 }
    123 
    124 /* key or salt can be NULL, in which case just skip writing that value.  Useful to
    125  * update the failed mount count but not change the key.
    126  */
    127 static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
    128                                   unsigned char *key, unsigned char *salt)
    129 {
    130   int fd;
    131   unsigned int nr_sec, cnt;
    132   off64_t off;
    133   int rc = -1;
    134   char *fname;
    135   char key_loc[PROPERTY_VALUE_MAX];
    136   struct stat statbuf;
    137 
    138   property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
    139 
    140   if (!strcmp(key_loc, KEY_IN_FOOTER)) {
    141     fname = real_blk_name;
    142     if ( (fd = open(fname, O_RDWR)) < 0) {
    143       SLOGE("Cannot open real block device %s\n", fname);
    144       return -1;
    145     }
    146 
    147     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
    148       SLOGE("Cannot get size of block device %s\n", fname);
    149       goto errout;
    150     }
    151 
    152     /* If it's an encrypted Android partition, the last 16 Kbytes contain the
    153      * encryption info footer and key, and plenty of bytes to spare for future
    154      * growth.
    155      */
    156     off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
    157 
    158     if (lseek64(fd, off, SEEK_SET) == -1) {
    159       SLOGE("Cannot seek to real block device footer\n");
    160       goto errout;
    161     }
    162   } else if (key_loc[0] == '/') {
    163     fname = key_loc;
    164     if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
    165       SLOGE("Cannot open footer file %s\n", fname);
    166       return -1;
    167     }
    168   } else {
    169     SLOGE("Unexpected value for" KEY_LOC_PROP "\n");
    170     return -1;;
    171   }
    172 
    173   if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
    174     SLOGE("Cannot write real block device footer\n");
    175     goto errout;
    176   }
    177 
    178   if (key) {
    179     if (crypt_ftr->keysize != KEY_LEN_BYTES) {
    180       SLOGE("Keysize of %d bits not supported for real block device %s\n",
    181             crypt_ftr->keysize*8, fname);
    182       goto errout;
    183     }
    184 
    185     if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
    186       SLOGE("Cannot write key for real block device %s\n", fname);
    187       goto errout;
    188     }
    189   }
    190 
    191   if (salt) {
    192     /* Compute the offset from the last write to the salt */
    193     off = KEY_TO_SALT_PADDING;
    194     if (! key)
    195       off += crypt_ftr->keysize;
    196 
    197     if (lseek64(fd, off, SEEK_CUR) == -1) {
    198       SLOGE("Cannot seek to real block device salt \n");
    199       goto errout;
    200     }
    201 
    202     if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) {
    203       SLOGE("Cannot write salt for real block device %s\n", fname);
    204       goto errout;
    205     }
    206   }
    207 
    208   fstat(fd, &statbuf);
    209   /* If the keys are kept on a raw block device, do not try to truncate it. */
    210   if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) {
    211     if (ftruncate(fd, 0x4000)) {
    212       SLOGE("Cannot set footer file size\n", fname);
    213       goto errout;
    214     }
    215   }
    216 
    217   /* Success! */
    218   rc = 0;
    219 
    220 errout:
    221   close(fd);
    222   return rc;
    223 
    224 }
    225 
    226 static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
    227                                   unsigned char *key, unsigned char *salt)
    228 {
    229   int fd;
    230   unsigned int nr_sec, cnt;
    231   off64_t off;
    232   int rc = -1;
    233   char key_loc[PROPERTY_VALUE_MAX];
    234   char *fname;
    235   struct stat statbuf;
    236 
    237   property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
    238 
    239   if (!strcmp(key_loc, KEY_IN_FOOTER)) {
    240     fname = real_blk_name;
    241     if ( (fd = open(fname, O_RDONLY)) < 0) {
    242       SLOGE("Cannot open real block device %s\n", fname);
    243       return -1;
    244     }
    245 
    246     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
    247       SLOGE("Cannot get size of block device %s\n", fname);
    248       goto errout;
    249     }
    250 
    251     /* If it's an encrypted Android partition, the last 16 Kbytes contain the
    252      * encryption info footer and key, and plenty of bytes to spare for future
    253      * growth.
    254      */
    255     off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
    256 
    257     if (lseek64(fd, off, SEEK_SET) == -1) {
    258       SLOGE("Cannot seek to real block device footer\n");
    259       goto errout;
    260     }
    261   } else if (key_loc[0] == '/') {
    262     fname = key_loc;
    263     if ( (fd = open(fname, O_RDONLY)) < 0) {
    264       SLOGE("Cannot open footer file %s\n", fname);
    265       return -1;
    266     }
    267 
    268     /* Make sure it's 16 Kbytes in length */
    269     fstat(fd, &statbuf);
    270     if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
    271       SLOGE("footer file %s is not the expected size!\n", fname);
    272       goto errout;
    273     }
    274   } else {
    275     SLOGE("Unexpected value for" KEY_LOC_PROP "\n");
    276     return -1;;
    277   }
    278 
    279   if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
    280     SLOGE("Cannot read real block device footer\n");
    281     goto errout;
    282   }
    283 
    284   if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
    285     SLOGE("Bad magic for real block device %s\n", fname);
    286     goto errout;
    287   }
    288 
    289   if (crypt_ftr->major_version != 1) {
    290     SLOGE("Cannot understand major version %d real block device footer\n",
    291           crypt_ftr->major_version);
    292     goto errout;
    293   }
    294 
    295   if (crypt_ftr->minor_version != 0) {
    296     SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n",
    297           crypt_ftr->minor_version);
    298   }
    299 
    300   if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) {
    301     /* the footer size is bigger than we expected.
    302      * Skip to it's stated end so we can read the key.
    303      */
    304     if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr),  SEEK_CUR) == -1) {
    305       SLOGE("Cannot seek to start of key\n");
    306       goto errout;
    307     }
    308   }
    309 
    310   if (crypt_ftr->keysize != KEY_LEN_BYTES) {
    311     SLOGE("Keysize of %d bits not supported for real block device %s\n",
    312           crypt_ftr->keysize * 8, fname);
    313     goto errout;
    314   }
    315 
    316   if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
    317     SLOGE("Cannot read key for real block device %s\n", fname);
    318     goto errout;
    319   }
    320 
    321   if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) {
    322     SLOGE("Cannot seek to real block device salt\n");
    323     goto errout;
    324   }
    325 
    326   if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) {
    327     SLOGE("Cannot read salt for real block device %s\n", fname);
    328     goto errout;
    329   }
    330 
    331   /* Success! */
    332   rc = 0;
    333 
    334 errout:
    335   close(fd);
    336   return rc;
    337 }
    338 
    339 /* Convert a binary key of specified length into an ascii hex string equivalent,
    340  * without the leading 0x and with null termination
    341  */
    342 void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
    343                               char *master_key_ascii)
    344 {
    345   unsigned int i, a;
    346   unsigned char nibble;
    347 
    348   for (i=0, a=0; i<keysize; i++, a+=2) {
    349     /* For each byte, write out two ascii hex digits */
    350     nibble = (master_key[i] >> 4) & 0xf;
    351     master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
    352 
    353     nibble = master_key[i] & 0xf;
    354     master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
    355   }
    356 
    357   /* Add the null termination */
    358   master_key_ascii[a] = '\0';
    359 
    360 }
    361 
    362 static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
    363                                     char *real_blk_name, char *crypto_blk_name, const char *name)
    364 {
    365   char buffer[DM_CRYPT_BUF_SIZE];
    366   char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
    367   char *crypt_params;
    368   struct dm_ioctl *io;
    369   struct dm_target_spec *tgt;
    370   unsigned int minor;
    371   int fd;
    372   int retval = -1;
    373 
    374   if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
    375     SLOGE("Cannot open device-mapper\n");
    376     goto errout;
    377   }
    378 
    379   io = (struct dm_ioctl *) buffer;
    380 
    381   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
    382   if (ioctl(fd, DM_DEV_CREATE, io)) {
    383     SLOGE("Cannot create dm-crypt device\n");
    384     goto errout;
    385   }
    386 
    387   /* Get the device status, in particular, the name of it's device file */
    388   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
    389   if (ioctl(fd, DM_DEV_STATUS, io)) {
    390     SLOGE("Cannot retrieve dm-crypt device status\n");
    391     goto errout;
    392   }
    393   minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
    394   snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
    395 
    396   /* Load the mapping table for this device */
    397   tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
    398 
    399   ioctl_init(io, 4096, name, 0);
    400   io->target_count = 1;
    401   tgt->status = 0;
    402   tgt->sector_start = 0;
    403   tgt->length = crypt_ftr->fs_size;
    404   strcpy(tgt->target_type, "crypt");
    405 
    406   crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
    407   convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
    408   sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name,
    409           master_key_ascii, real_blk_name);
    410   crypt_params += strlen(crypt_params) + 1;
    411   crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
    412   tgt->next = crypt_params - buffer;
    413 
    414   if (ioctl(fd, DM_TABLE_LOAD, io)) {
    415       SLOGE("Cannot load dm-crypt mapping table.\n");
    416       goto errout;
    417   }
    418 
    419   /* Resume this device to activate it */
    420   ioctl_init(io, 4096, name, 0);
    421 
    422   if (ioctl(fd, DM_DEV_SUSPEND, io)) {
    423     SLOGE("Cannot resume the dm-crypt device\n");
    424     goto errout;
    425   }
    426 
    427   /* We made it here with no errors.  Woot! */
    428   retval = 0;
    429 
    430 errout:
    431   close(fd);   /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
    432 
    433   return retval;
    434 }
    435 
    436 static int delete_crypto_blk_dev(char *name)
    437 {
    438   int fd;
    439   char buffer[DM_CRYPT_BUF_SIZE];
    440   struct dm_ioctl *io;
    441   int retval = -1;
    442 
    443   if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
    444     SLOGE("Cannot open device-mapper\n");
    445     goto errout;
    446   }
    447 
    448   io = (struct dm_ioctl *) buffer;
    449 
    450   ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
    451   if (ioctl(fd, DM_DEV_REMOVE, io)) {
    452     SLOGE("Cannot remove dm-crypt device\n");
    453     goto errout;
    454   }
    455 
    456   /* We made it here with no errors.  Woot! */
    457   retval = 0;
    458 
    459 errout:
    460   close(fd);    /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
    461 
    462   return retval;
    463 
    464 }
    465 
    466 static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey)
    467 {
    468     /* Turn the password into a key and IV that can decrypt the master key */
    469     PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
    470                            HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
    471 }
    472 
    473 static int encrypt_master_key(char *passwd, unsigned char *salt,
    474                               unsigned char *decrypted_master_key,
    475                               unsigned char *encrypted_master_key)
    476 {
    477     unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
    478     EVP_CIPHER_CTX e_ctx;
    479     int encrypted_len, final_len;
    480 
    481     /* Turn the password into a key and IV that can decrypt the master key */
    482     pbkdf2(passwd, salt, ikey);
    483 
    484     /* Initialize the decryption engine */
    485     if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
    486         SLOGE("EVP_EncryptInit failed\n");
    487         return -1;
    488     }
    489     EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
    490 
    491     /* Encrypt the master key */
    492     if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
    493                               decrypted_master_key, KEY_LEN_BYTES)) {
    494         SLOGE("EVP_EncryptUpdate failed\n");
    495         return -1;
    496     }
    497     if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
    498         SLOGE("EVP_EncryptFinal failed\n");
    499         return -1;
    500     }
    501 
    502     if (encrypted_len + final_len != KEY_LEN_BYTES) {
    503         SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
    504         return -1;
    505     } else {
    506         return 0;
    507     }
    508 }
    509 
    510 static int decrypt_master_key(char *passwd, unsigned char *salt,
    511                               unsigned char *encrypted_master_key,
    512                               unsigned char *decrypted_master_key)
    513 {
    514   unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
    515   EVP_CIPHER_CTX d_ctx;
    516   int decrypted_len, final_len;
    517 
    518   /* Turn the password into a key and IV that can decrypt the master key */
    519   pbkdf2(passwd, salt, ikey);
    520 
    521   /* Initialize the decryption engine */
    522   if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
    523     return -1;
    524   }
    525   EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
    526   /* Decrypt the master key */
    527   if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
    528                             encrypted_master_key, KEY_LEN_BYTES)) {
    529     return -1;
    530   }
    531   if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
    532     return -1;
    533   }
    534 
    535   if (decrypted_len + final_len != KEY_LEN_BYTES) {
    536     return -1;
    537   } else {
    538     return 0;
    539   }
    540 }
    541 
    542 static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt)
    543 {
    544     int fd;
    545     unsigned char key_buf[KEY_LEN_BYTES];
    546     EVP_CIPHER_CTX e_ctx;
    547     int encrypted_len, final_len;
    548 
    549     /* Get some random bits for a key */
    550     fd = open("/dev/urandom", O_RDONLY);
    551     read(fd, key_buf, sizeof(key_buf));
    552     read(fd, salt, SALT_LEN);
    553     close(fd);
    554 
    555     /* Now encrypt it with the password */
    556     return encrypt_master_key(passwd, salt, key_buf, master_key);
    557 }
    558 
    559 static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev,
    560                                 unsigned long *mnt_flags, char *fs_options)
    561 {
    562   char mount_point2[PROPERTY_VALUE_MAX];
    563   char fs_flags[PROPERTY_VALUE_MAX];
    564 
    565   property_get("ro.crypto.fs_type", fs_type, "");
    566   property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
    567   property_get("ro.crypto.fs_mnt_point", mount_point2, "");
    568   property_get("ro.crypto.fs_options", fs_options, "");
    569   property_get("ro.crypto.fs_flags", fs_flags, "");
    570   *mnt_flags = strtol(fs_flags, 0, 0);
    571 
    572   if (strcmp(mount_point, mount_point2)) {
    573     /* Consistency check.  These should match. If not, something odd happened. */
    574     return -1;
    575   }
    576 
    577   return 0;
    578 }
    579 
    580 static int wait_and_unmount(char *mountpoint)
    581 {
    582     int i, rc;
    583 #define WAIT_UNMOUNT_COUNT 20
    584 
    585     /*  Now umount the tmpfs filesystem */
    586     for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
    587         if (umount(mountpoint)) {
    588             if (errno == EINVAL) {
    589                 /* EINVAL is returned if the directory is not a mountpoint,
    590                  * i.e. there is no filesystem mounted there.  So just get out.
    591                  */
    592                 break;
    593             }
    594             sleep(1);
    595             i++;
    596         } else {
    597           break;
    598         }
    599     }
    600 
    601     if (i < WAIT_UNMOUNT_COUNT) {
    602       SLOGD("unmounting %s succeeded\n", mountpoint);
    603       rc = 0;
    604     } else {
    605       SLOGE("unmounting %s failed\n", mountpoint);
    606       rc = -1;
    607     }
    608 
    609     return rc;
    610 }
    611 
    612 #define DATA_PREP_TIMEOUT 100
    613 static int prep_data_fs(void)
    614 {
    615     int i;
    616 
    617     /* Do the prep of the /data filesystem */
    618     property_set("vold.post_fs_data_done", "0");
    619     property_set("vold.decrypt", "trigger_post_fs_data");
    620     SLOGD("Just triggered post_fs_data\n");
    621 
    622     /* Wait a max of 25 seconds, hopefully it takes much less */
    623     for (i=0; i<DATA_PREP_TIMEOUT; i++) {
    624         char p[PROPERTY_VALUE_MAX];
    625 
    626         property_get("vold.post_fs_data_done", p, "0");
    627         if (*p == '1') {
    628             break;
    629         } else {
    630             usleep(250000);
    631         }
    632     }
    633     if (i == DATA_PREP_TIMEOUT) {
    634         /* Ugh, we failed to prep /data in time.  Bail. */
    635         return -1;
    636     } else {
    637         SLOGD("post_fs_data done\n");
    638         return 0;
    639     }
    640 }
    641 
    642 int cryptfs_restart(void)
    643 {
    644     char fs_type[32];
    645     char real_blkdev[MAXPATHLEN];
    646     char crypto_blkdev[MAXPATHLEN];
    647     char fs_options[256];
    648     unsigned long mnt_flags;
    649     struct stat statbuf;
    650     int rc = -1, i;
    651     static int restart_successful = 0;
    652 
    653     /* Validate that it's OK to call this routine */
    654     if (! master_key_saved) {
    655         SLOGE("Encrypted filesystem not validated, aborting");
    656         return -1;
    657     }
    658 
    659     if (restart_successful) {
    660         SLOGE("System already restarted with encrypted disk, aborting");
    661         return -1;
    662     }
    663 
    664     /* Here is where we shut down the framework.  The init scripts
    665      * start all services in one of three classes: core, main or late_start.
    666      * On boot, we start core and main.  Now, we stop main, but not core,
    667      * as core includes vold and a few other really important things that
    668      * we need to keep running.  Once main has stopped, we should be able
    669      * to umount the tmpfs /data, then mount the encrypted /data.
    670      * We then restart the class main, and also the class late_start.
    671      * At the moment, I've only put a few things in late_start that I know
    672      * are not needed to bring up the framework, and that also cause problems
    673      * with unmounting the tmpfs /data, but I hope to add add more services
    674      * to the late_start class as we optimize this to decrease the delay
    675      * till the user is asked for the password to the filesystem.
    676      */
    677 
    678     /* The init files are setup to stop the class main when vold.decrypt is
    679      * set to trigger_reset_main.
    680      */
    681     property_set("vold.decrypt", "trigger_reset_main");
    682     SLOGD("Just asked init to shut down class main\n");
    683 
    684     /* Now that the framework is shutdown, we should be able to umount()
    685      * the tmpfs filesystem, and mount the real one.
    686      */
    687 
    688     property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
    689     if (strlen(crypto_blkdev) == 0) {
    690         SLOGE("fs_crypto_blkdev not set\n");
    691         return -1;
    692     }
    693 
    694     if (! get_orig_mount_parms(DATA_MNT_POINT, fs_type, real_blkdev, &mnt_flags, fs_options)) {
    695         SLOGD("Just got orig mount parms\n");
    696 
    697         if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
    698             /* If that succeeded, then mount the decrypted filesystem */
    699             mount(crypto_blkdev, DATA_MNT_POINT, fs_type, mnt_flags, fs_options);
    700 
    701             property_set("vold.decrypt", "trigger_load_persist_props");
    702             /* Create necessary paths on /data */
    703             if (prep_data_fs()) {
    704                 return -1;
    705             }
    706 
    707             /* startup service classes main and late_start */
    708             property_set("vold.decrypt", "trigger_restart_framework");
    709             SLOGD("Just triggered restart_framework\n");
    710 
    711             /* Give it a few moments to get started */
    712             sleep(1);
    713         }
    714     }
    715 
    716     if (rc == 0) {
    717         restart_successful = 1;
    718     }
    719 
    720     return rc;
    721 }
    722 
    723 static int do_crypto_complete(char *mount_point)
    724 {
    725   struct crypt_mnt_ftr crypt_ftr;
    726   unsigned char encrypted_master_key[32];
    727   unsigned char salt[SALT_LEN];
    728   char real_blkdev[MAXPATHLEN];
    729   char fs_type[PROPERTY_VALUE_MAX];
    730   char fs_options[PROPERTY_VALUE_MAX];
    731   unsigned long mnt_flags;
    732   char encrypted_state[PROPERTY_VALUE_MAX];
    733 
    734   property_get("ro.crypto.state", encrypted_state, "");
    735   if (strcmp(encrypted_state, "encrypted") ) {
    736     SLOGE("not running with encryption, aborting");
    737     return 1;
    738   }
    739 
    740   if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
    741     SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
    742     return -1;
    743   }
    744 
    745   if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
    746     SLOGE("Error getting crypt footer and key\n");
    747     return -1;
    748   }
    749 
    750   if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
    751     SLOGE("Encryption process didn't finish successfully\n");
    752     return -2;  /* -2 is the clue to the UI that there is no usable data on the disk,
    753                  * and give the user an option to wipe the disk */
    754   }
    755 
    756   /* We passed the test! We shall diminish, and return to the west */
    757   return 0;
    758 }
    759 
    760 static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label)
    761 {
    762   struct crypt_mnt_ftr crypt_ftr;
    763   /* Allocate enough space for a 256 bit key, but we may use less */
    764   unsigned char encrypted_master_key[32], decrypted_master_key[32];
    765   unsigned char salt[SALT_LEN];
    766   char crypto_blkdev[MAXPATHLEN];
    767   char real_blkdev[MAXPATHLEN];
    768   char fs_type[PROPERTY_VALUE_MAX];
    769   char fs_options[PROPERTY_VALUE_MAX];
    770   char tmp_mount_point[64];
    771   unsigned long mnt_flags;
    772   unsigned int orig_failed_decrypt_count;
    773   char encrypted_state[PROPERTY_VALUE_MAX];
    774   int rc;
    775 
    776   property_get("ro.crypto.state", encrypted_state, "");
    777   if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
    778     SLOGE("encrypted fs already validated or not running with encryption, aborting");
    779     return -1;
    780   }
    781 
    782   if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
    783     SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
    784     return -1;
    785   }
    786 
    787   if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
    788     SLOGE("Error getting crypt footer and key\n");
    789     return -1;
    790   }
    791 
    792   SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
    793   orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
    794 
    795   if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
    796     decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
    797   }
    798 
    799   if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
    800                                real_blkdev, crypto_blkdev, label)) {
    801     SLOGE("Error creating decrypted block device\n");
    802     return -1;
    803   }
    804 
    805   /* If init detects an encrypted filesystme, it writes a file for each such
    806    * encrypted fs into the tmpfs /data filesystem, and then the framework finds those
    807    * files and passes that data to me */
    808   /* Create a tmp mount point to try mounting the decryptd fs
    809    * Since we're here, the mount_point should be a tmpfs filesystem, so make
    810    * a directory in it to test mount the decrypted filesystem.
    811    */
    812   sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
    813   mkdir(tmp_mount_point, 0755);
    814   if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) {
    815     SLOGE("Error temp mounting decrypted block device\n");
    816     delete_crypto_blk_dev(label);
    817     crypt_ftr.failed_decrypt_count++;
    818   } else {
    819     /* Success, so just umount and we'll mount it properly when we restart
    820      * the framework.
    821      */
    822     umount(tmp_mount_point);
    823     crypt_ftr.failed_decrypt_count  = 0;
    824   }
    825 
    826   if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
    827     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
    828   }
    829 
    830   if (crypt_ftr.failed_decrypt_count) {
    831     /* We failed to mount the device, so return an error */
    832     rc = crypt_ftr.failed_decrypt_count;
    833 
    834   } else {
    835     /* Woot!  Success!  Save the name of the crypto block device
    836      * so we can mount it when restarting the framework.
    837      */
    838     property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
    839 
    840     /* Also save a the master key so we can reencrypted the key
    841      * the key when we want to change the password on it.
    842      */
    843     memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
    844     saved_data_blkdev = strdup(real_blkdev);
    845     saved_mount_point = strdup(mount_point);
    846     master_key_saved = 1;
    847     rc = 0;
    848   }
    849 
    850   return rc;
    851 }
    852 
    853 /* Called by vold when it wants to undo the crypto mapping of a volume it
    854  * manages.  This is usually in response to a factory reset, when we want
    855  * to undo the crypto mapping so the volume is formatted in the clear.
    856  */
    857 int cryptfs_revert_volume(const char *label)
    858 {
    859     return delete_crypto_blk_dev((char *)label);
    860 }
    861 
    862 /*
    863  * Called by vold when it's asked to mount an encrypted, nonremovable volume.
    864  * Setup a dm-crypt mapping, use the saved master key from
    865  * setting up the /data mapping, and return the new device path.
    866  */
    867 int cryptfs_setup_volume(const char *label, int major, int minor,
    868                          char *crypto_sys_path, unsigned int max_path,
    869                          int *new_major, int *new_minor)
    870 {
    871     char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
    872     struct crypt_mnt_ftr sd_crypt_ftr;
    873     unsigned char key[32], salt[32];
    874     struct stat statbuf;
    875     int nr_sec, fd;
    876 
    877     sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
    878 
    879     /* Just want the footer, but gotta get it all */
    880     get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt);
    881 
    882     /* Update the fs_size field to be the size of the volume */
    883     fd = open(real_blkdev, O_RDONLY);
    884     nr_sec = get_blkdev_size(fd);
    885     close(fd);
    886     if (nr_sec == 0) {
    887         SLOGE("Cannot get size of volume %s\n", real_blkdev);
    888         return -1;
    889     }
    890 
    891     sd_crypt_ftr.fs_size = nr_sec;
    892     create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
    893                           crypto_blkdev, label);
    894 
    895     stat(crypto_blkdev, &statbuf);
    896     *new_major = MAJOR(statbuf.st_rdev);
    897     *new_minor = MINOR(statbuf.st_rdev);
    898 
    899     /* Create path to sys entry for this block device */
    900     snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
    901 
    902     return 0;
    903 }
    904 
    905 int cryptfs_crypto_complete(void)
    906 {
    907   return do_crypto_complete("/data");
    908 }
    909 
    910 int cryptfs_check_passwd(char *passwd)
    911 {
    912     int rc = -1;
    913 
    914     rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata");
    915 
    916     return rc;
    917 }
    918 
    919 int cryptfs_verify_passwd(char *passwd)
    920 {
    921     struct crypt_mnt_ftr crypt_ftr;
    922     /* Allocate enough space for a 256 bit key, but we may use less */
    923     unsigned char encrypted_master_key[32], decrypted_master_key[32];
    924     unsigned char salt[SALT_LEN];
    925     char real_blkdev[MAXPATHLEN];
    926     char fs_type[PROPERTY_VALUE_MAX];
    927     char fs_options[PROPERTY_VALUE_MAX];
    928     unsigned long mnt_flags;
    929     char encrypted_state[PROPERTY_VALUE_MAX];
    930     int rc;
    931 
    932     property_get("ro.crypto.state", encrypted_state, "");
    933     if (strcmp(encrypted_state, "encrypted") ) {
    934         SLOGE("device not encrypted, aborting");
    935         return -2;
    936     }
    937 
    938     if (!master_key_saved) {
    939         SLOGE("encrypted fs not yet mounted, aborting");
    940         return -1;
    941     }
    942 
    943     if (!saved_mount_point) {
    944         SLOGE("encrypted fs failed to save mount point, aborting");
    945         return -1;
    946     }
    947 
    948     if (get_orig_mount_parms(saved_mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
    949         SLOGE("Error reading original mount parms for mount point %s\n", saved_mount_point);
    950         return -1;
    951     }
    952 
    953     if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
    954         SLOGE("Error getting crypt footer and key\n");
    955         return -1;
    956     }
    957 
    958     if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
    959         /* If the device has no password, then just say the password is valid */
    960         rc = 0;
    961     } else {
    962         decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
    963         if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
    964             /* They match, the password is correct */
    965             rc = 0;
    966         } else {
    967             /* If incorrect, sleep for a bit to prevent dictionary attacks */
    968             sleep(1);
    969             rc = 1;
    970         }
    971     }
    972 
    973     return rc;
    974 }
    975 
    976 /* Initialize a crypt_mnt_ftr structure.  The keysize is
    977  * defaulted to 16 bytes, and the filesystem size to 0.
    978  * Presumably, at a minimum, the caller will update the
    979  * filesystem size and crypto_type_name after calling this function.
    980  */
    981 static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
    982 {
    983     ftr->magic = CRYPT_MNT_MAGIC;
    984     ftr->major_version = 1;
    985     ftr->minor_version = 0;
    986     ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
    987     ftr->flags = 0;
    988     ftr->keysize = KEY_LEN_BYTES;
    989     ftr->spare1 = 0;
    990     ftr->fs_size = 0;
    991     ftr->failed_decrypt_count = 0;
    992     ftr->crypto_type_name[0] = '\0';
    993 }
    994 
    995 static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
    996 {
    997     char cmdline[256];
    998     int rc = -1;
    999 
   1000     if (type == EXT4_FS) {
   1001         snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s",
   1002                  size * 512, crypto_blkdev);
   1003         SLOGI("Making empty filesystem with command %s\n", cmdline);
   1004     } else if (type== FAT_FS) {
   1005         snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s",
   1006                  size, crypto_blkdev);
   1007         SLOGI("Making empty filesystem with command %s\n", cmdline);
   1008     } else {
   1009         SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
   1010         return -1;
   1011     }
   1012 
   1013     if (system(cmdline)) {
   1014       SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev);
   1015     } else {
   1016       SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev);
   1017       rc = 0;
   1018     }
   1019 
   1020     return rc;
   1021 }
   1022 
   1023 static inline int unix_read(int  fd, void*  buff, int  len)
   1024 {
   1025     int  ret;
   1026     do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR);
   1027     return ret;
   1028 }
   1029 
   1030 static inline int unix_write(int  fd, const void*  buff, int  len)
   1031 {
   1032     int  ret;
   1033     do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR);
   1034     return ret;
   1035 }
   1036 
   1037 #define CRYPT_INPLACE_BUFSIZE 4096
   1038 #define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
   1039 static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size,
   1040                                   off64_t *size_already_done, off64_t tot_size)
   1041 {
   1042     int realfd, cryptofd;
   1043     char *buf[CRYPT_INPLACE_BUFSIZE];
   1044     int rc = -1;
   1045     off64_t numblocks, i, remainder;
   1046     off64_t one_pct, cur_pct, new_pct;
   1047     off64_t blocks_already_done, tot_numblocks;
   1048 
   1049     if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
   1050         SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
   1051         return -1;
   1052     }
   1053 
   1054     if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
   1055         SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
   1056         close(realfd);
   1057         return -1;
   1058     }
   1059 
   1060     /* This is pretty much a simple loop of reading 4K, and writing 4K.
   1061      * The size passed in is the number of 512 byte sectors in the filesystem.
   1062      * So compute the number of whole 4K blocks we should read/write,
   1063      * and the remainder.
   1064      */
   1065     numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
   1066     remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
   1067     tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
   1068     blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
   1069 
   1070     SLOGE("Encrypting filesystem in place...");
   1071 
   1072     one_pct = tot_numblocks / 100;
   1073     cur_pct = 0;
   1074     /* process the majority of the filesystem in blocks */
   1075     for (i=0; i<numblocks; i++) {
   1076         new_pct = (i + blocks_already_done) / one_pct;
   1077         if (new_pct > cur_pct) {
   1078             char buf[8];
   1079 
   1080             cur_pct = new_pct;
   1081             snprintf(buf, sizeof(buf), "%lld", cur_pct);
   1082             property_set("vold.encrypt_progress", buf);
   1083         }
   1084         if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
   1085             SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
   1086             goto errout;
   1087         }
   1088         if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
   1089             SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
   1090             goto errout;
   1091         }
   1092     }
   1093 
   1094     /* Do any remaining sectors */
   1095     for (i=0; i<remainder; i++) {
   1096         if (unix_read(realfd, buf, 512) <= 0) {
   1097             SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
   1098             goto errout;
   1099         }
   1100         if (unix_write(cryptofd, buf, 512) <= 0) {
   1101             SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
   1102             goto errout;
   1103         }
   1104     }
   1105 
   1106     *size_already_done += size;
   1107     rc = 0;
   1108 
   1109 errout:
   1110     close(realfd);
   1111     close(cryptofd);
   1112 
   1113     return rc;
   1114 }
   1115 
   1116 #define CRYPTO_ENABLE_WIPE 1
   1117 #define CRYPTO_ENABLE_INPLACE 2
   1118 
   1119 #define FRAMEWORK_BOOT_WAIT 60
   1120 
   1121 static inline int should_encrypt(struct volume_info *volume)
   1122 {
   1123     return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
   1124             (VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
   1125 }
   1126 
   1127 int cryptfs_enable(char *howarg, char *passwd)
   1128 {
   1129     int how = 0;
   1130     char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN];
   1131     char fs_type[PROPERTY_VALUE_MAX], fs_options[PROPERTY_VALUE_MAX],
   1132          mount_point[PROPERTY_VALUE_MAX];
   1133     unsigned long mnt_flags, nr_sec;
   1134     unsigned char master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
   1135     unsigned char salt[SALT_LEN];
   1136     int rc=-1, fd, i, ret;
   1137     struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;;
   1138     char tmpfs_options[PROPERTY_VALUE_MAX];
   1139     char encrypted_state[PROPERTY_VALUE_MAX];
   1140     char lockid[32] = { 0 };
   1141     char key_loc[PROPERTY_VALUE_MAX];
   1142     char fuse_sdcard[PROPERTY_VALUE_MAX];
   1143     char *sd_mnt_point;
   1144     char sd_blk_dev[256] = { 0 };
   1145     int num_vols;
   1146     struct volume_info *vol_list = 0;
   1147     off64_t cur_encryption_done=0, tot_encryption_size=0;
   1148 
   1149     property_get("ro.crypto.state", encrypted_state, "");
   1150     if (strcmp(encrypted_state, "unencrypted")) {
   1151         SLOGE("Device is already running encrypted, aborting");
   1152         goto error_unencrypted;
   1153     }
   1154 
   1155     property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
   1156 
   1157     if (!strcmp(howarg, "wipe")) {
   1158       how = CRYPTO_ENABLE_WIPE;
   1159     } else if (! strcmp(howarg, "inplace")) {
   1160       how = CRYPTO_ENABLE_INPLACE;
   1161     } else {
   1162       /* Shouldn't happen, as CommandListener vets the args */
   1163       goto error_unencrypted;
   1164     }
   1165 
   1166     get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options);
   1167 
   1168     /* Get the size of the real block device */
   1169     fd = open(real_blkdev, O_RDONLY);
   1170     if ( (nr_sec = get_blkdev_size(fd)) == 0) {
   1171         SLOGE("Cannot get size of block device %s\n", real_blkdev);
   1172         goto error_unencrypted;
   1173     }
   1174     close(fd);
   1175 
   1176     /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
   1177     if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
   1178         unsigned int fs_size_sec, max_fs_size_sec;
   1179 
   1180         fs_size_sec = get_fs_size(real_blkdev);
   1181         max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
   1182 
   1183         if (fs_size_sec > max_fs_size_sec) {
   1184             SLOGE("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
   1185             goto error_unencrypted;
   1186         }
   1187     }
   1188 
   1189     /* Get a wakelock as this may take a while, and we don't want the
   1190      * device to sleep on us.  We'll grab a partial wakelock, and if the UI
   1191      * wants to keep the screen on, it can grab a full wakelock.
   1192      */
   1193     snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
   1194     acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
   1195 
   1196      /* Get the sdcard mount point */
   1197      sd_mnt_point = getenv("EXTERNAL_STORAGE");
   1198      if (! sd_mnt_point) {
   1199          sd_mnt_point = "/mnt/sdcard";
   1200      }
   1201 
   1202     num_vols=vold_getNumDirectVolumes();
   1203     vol_list = malloc(sizeof(struct volume_info) * num_vols);
   1204     vold_getDirectVolumeList(vol_list);
   1205 
   1206     for (i=0; i<num_vols; i++) {
   1207         if (should_encrypt(&vol_list[i])) {
   1208             fd = open(vol_list[i].blk_dev, O_RDONLY);
   1209             if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) {
   1210                 SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev);
   1211                 goto error_unencrypted;
   1212             }
   1213             close(fd);
   1214 
   1215             ret=vold_disableVol(vol_list[i].label);
   1216             if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) {
   1217                 /* -2 is returned when the device exists but is not currently mounted.
   1218                  * ignore the error and continue. */
   1219                 SLOGE("Failed to unmount volume %s\n", vol_list[i].label);
   1220                 goto error_unencrypted;
   1221             }
   1222         }
   1223     }
   1224 
   1225     /* The init files are setup to stop the class main and late start when
   1226      * vold sets trigger_shutdown_framework.
   1227      */
   1228     property_set("vold.decrypt", "trigger_shutdown_framework");
   1229     SLOGD("Just asked init to shut down class main\n");
   1230 
   1231     property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
   1232     if (!strcmp(fuse_sdcard, "true")) {
   1233         /* This is a device using the fuse layer to emulate the sdcard semantics
   1234          * on top of the userdata partition.  vold does not manage it, it is managed
   1235          * by the sdcard service.  The sdcard service was killed by the property trigger
   1236          * above, so just unmount it now.  We must do this _AFTER_ killing the framework,
   1237          * unlike the case for vold managed devices above.
   1238          */
   1239         if (wait_and_unmount(sd_mnt_point)) {
   1240             goto error_shutting_down;
   1241         }
   1242     }
   1243 
   1244     /* Now unmount the /data partition. */
   1245     if (wait_and_unmount(DATA_MNT_POINT)) {
   1246         goto error_shutting_down;
   1247     }
   1248 
   1249     /* Do extra work for a better UX when doing the long inplace encryption */
   1250     if (how == CRYPTO_ENABLE_INPLACE) {
   1251         /* Now that /data is unmounted, we need to mount a tmpfs
   1252          * /data, set a property saying we're doing inplace encryption,
   1253          * and restart the framework.
   1254          */
   1255         property_get("ro.crypto.tmpfs_options", tmpfs_options, "");
   1256         if (mount("tmpfs", DATA_MNT_POINT, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV,
   1257             tmpfs_options) < 0) {
   1258             goto error_shutting_down;
   1259         }
   1260         /* Tells the framework that inplace encryption is starting */
   1261         property_set("vold.encrypt_progress", "0");
   1262 
   1263         /* restart the framework. */
   1264         /* Create necessary paths on /data */
   1265         if (prep_data_fs()) {
   1266             goto error_shutting_down;
   1267         }
   1268 
   1269         /* startup service classes main and late_start */
   1270         property_set("vold.decrypt", "trigger_restart_min_framework");
   1271         SLOGD("Just triggered restart_min_framework\n");
   1272 
   1273         /* OK, the framework is restarted and will soon be showing a
   1274          * progress bar.  Time to setup an encrypted mapping, and
   1275          * either write a new filesystem, or encrypt in place updating
   1276          * the progress bar as we work.
   1277          */
   1278     }
   1279 
   1280     /* Start the actual work of making an encrypted filesystem */
   1281     /* Initialize a crypt_mnt_ftr for the partition */
   1282     cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
   1283     if (!strcmp(key_loc, KEY_IN_FOOTER)) {
   1284         crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
   1285     } else {
   1286         crypt_ftr.fs_size = nr_sec;
   1287     }
   1288     crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
   1289     strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
   1290 
   1291     /* Make an encrypted master key */
   1292     if (create_encrypted_random_key(passwd, master_key, salt)) {
   1293         SLOGE("Cannot create encrypted master key\n");
   1294         goto error_unencrypted;
   1295     }
   1296 
   1297     /* Write the key to the end of the partition */
   1298     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key, salt);
   1299 
   1300     decrypt_master_key(passwd, salt, master_key, decrypted_master_key);
   1301     create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
   1302                           "userdata");
   1303 
   1304     /* The size of the userdata partition, and add in the vold volumes below */
   1305     tot_encryption_size = crypt_ftr.fs_size;
   1306 
   1307     /* setup crypto mapping for all encryptable volumes handled by vold */
   1308     for (i=0; i<num_vols; i++) {
   1309         if (should_encrypt(&vol_list[i])) {
   1310             vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */
   1311             vol_list[i].crypt_ftr.fs_size = vol_list[i].size;
   1312             create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key,
   1313                                   vol_list[i].blk_dev, vol_list[i].crypto_blkdev,
   1314                                   vol_list[i].label);
   1315             tot_encryption_size += vol_list[i].size;
   1316         }
   1317     }
   1318 
   1319     if (how == CRYPTO_ENABLE_WIPE) {
   1320         rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS);
   1321         /* Encrypt all encryptable volumes handled by vold */
   1322         if (!rc) {
   1323             for (i=0; i<num_vols; i++) {
   1324                 if (should_encrypt(&vol_list[i])) {
   1325                     rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev,
   1326                                              vol_list[i].crypt_ftr.fs_size, FAT_FS);
   1327                 }
   1328             }
   1329         }
   1330     } else if (how == CRYPTO_ENABLE_INPLACE) {
   1331         rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size,
   1332                                     &cur_encryption_done, tot_encryption_size);
   1333         /* Encrypt all encryptable volumes handled by vold */
   1334         if (!rc) {
   1335             for (i=0; i<num_vols; i++) {
   1336                 if (should_encrypt(&vol_list[i])) {
   1337                     rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev,
   1338                                                 vol_list[i].blk_dev,
   1339                                                 vol_list[i].crypt_ftr.fs_size,
   1340                                                 &cur_encryption_done, tot_encryption_size);
   1341                 }
   1342             }
   1343         }
   1344         if (!rc) {
   1345             /* The inplace routine never actually sets the progress to 100%
   1346              * due to the round down nature of integer division, so set it here */
   1347             property_set("vold.encrypt_progress", "100");
   1348         }
   1349     } else {
   1350         /* Shouldn't happen */
   1351         SLOGE("cryptfs_enable: internal error, unknown option\n");
   1352         goto error_unencrypted;
   1353     }
   1354 
   1355     /* Undo the dm-crypt mapping whether we succeed or not */
   1356     delete_crypto_blk_dev("userdata");
   1357     for (i=0; i<num_vols; i++) {
   1358         if (should_encrypt(&vol_list[i])) {
   1359             delete_crypto_blk_dev(vol_list[i].label);
   1360         }
   1361     }
   1362 
   1363     free(vol_list);
   1364 
   1365     if (! rc) {
   1366         /* Success */
   1367 
   1368         /* Clear the encryption in progres flag in the footer */
   1369         crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
   1370         put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
   1371 
   1372         sleep(2); /* Give the UI a chance to show 100% progress */
   1373         android_reboot(ANDROID_RB_RESTART, 0, 0);
   1374     } else {
   1375         property_set("vold.encrypt_progress", "error_partially_encrypted");
   1376         release_wake_lock(lockid);
   1377         return -1;
   1378     }
   1379 
   1380     /* hrm, the encrypt step claims success, but the reboot failed.
   1381      * This should not happen.
   1382      * Set the property and return.  Hope the framework can deal with it.
   1383      */
   1384     property_set("vold.encrypt_progress", "error_reboot_failed");
   1385     release_wake_lock(lockid);
   1386     return rc;
   1387 
   1388 error_unencrypted:
   1389     free(vol_list);
   1390     property_set("vold.encrypt_progress", "error_not_encrypted");
   1391     if (lockid[0]) {
   1392         release_wake_lock(lockid);
   1393     }
   1394     return -1;
   1395 
   1396 error_shutting_down:
   1397     /* we failed, and have not encrypted anthing, so the users's data is still intact,
   1398      * but the framework is stopped and not restarted to show the error, so it's up to
   1399      * vold to restart the system.
   1400      */
   1401     SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
   1402     android_reboot(ANDROID_RB_RESTART, 0, 0);
   1403 
   1404     /* shouldn't get here */
   1405     property_set("vold.encrypt_progress", "error_shutting_down");
   1406     free(vol_list);
   1407     if (lockid[0]) {
   1408         release_wake_lock(lockid);
   1409     }
   1410     return -1;
   1411 }
   1412 
   1413 int cryptfs_changepw(char *newpw)
   1414 {
   1415     struct crypt_mnt_ftr crypt_ftr;
   1416     unsigned char encrypted_master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
   1417     unsigned char salt[SALT_LEN];
   1418     char real_blkdev[MAXPATHLEN];
   1419 
   1420     /* This is only allowed after we've successfully decrypted the master key */
   1421     if (! master_key_saved) {
   1422         SLOGE("Key not saved, aborting");
   1423         return -1;
   1424     }
   1425 
   1426     property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
   1427     if (strlen(real_blkdev) == 0) {
   1428         SLOGE("Can't find real blkdev");
   1429         return -1;
   1430     }
   1431 
   1432     /* get key */
   1433     if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
   1434       SLOGE("Error getting crypt footer and key");
   1435       return -1;
   1436     }
   1437 
   1438     encrypt_master_key(newpw, salt, saved_master_key, encrypted_master_key);
   1439 
   1440     /* save the key */
   1441     put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt);
   1442 
   1443     return 0;
   1444 }
   1445