Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen and support common to all supported
     19  * ARM variants.  It is included by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  * which combines this common code with specific support found in the
     24  * applicable directory below this one.
     25  */
     26 
     27 /*
     28  * Mark garbage collection card. Skip if the value we're storing is null.
     29  */
     30 static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
     31 {
     32     int regCardBase = dvmCompilerAllocTemp(cUnit);
     33     int regCardNo = dvmCompilerAllocTemp(cUnit);
     34     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
     35     loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
     36                  regCardBase);
     37     opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
     38     storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
     39                      kUnsignedByte);
     40     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
     41     target->defMask = ENCODE_ALL;
     42     branchOver->generic.target = (LIR *)target;
     43     dvmCompilerFreeTemp(cUnit, regCardBase);
     44     dvmCompilerFreeTemp(cUnit, regCardNo);
     45 }
     46 
     47 static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
     48                                      int srcSize, int tgtSize)
     49 {
     50     /*
     51      * Don't optimize the register usage since it calls out to template
     52      * functions
     53      */
     54     RegLocation rlSrc;
     55     RegLocation rlDest;
     56     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
     57     if (srcSize == 1) {
     58         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
     59         loadValueDirectFixed(cUnit, rlSrc, r0);
     60     } else {
     61         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
     62         loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
     63     }
     64     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
     65     opReg(cUnit, kOpBlx, r2);
     66     dvmCompilerClobberCallRegs(cUnit);
     67     if (tgtSize == 1) {
     68         RegLocation rlResult;
     69         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
     70         rlResult = dvmCompilerGetReturn(cUnit);
     71         storeValue(cUnit, rlDest, rlResult);
     72     } else {
     73         RegLocation rlResult;
     74         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
     75         rlResult = dvmCompilerGetReturnWide(cUnit);
     76         storeValueWide(cUnit, rlDest, rlResult);
     77     }
     78     return false;
     79 }
     80 
     81 static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
     82                                     RegLocation rlDest, RegLocation rlSrc1,
     83                                     RegLocation rlSrc2)
     84 {
     85     RegLocation rlResult;
     86     void* funct;
     87 
     88     switch (mir->dalvikInsn.opcode) {
     89         case OP_ADD_FLOAT_2ADDR:
     90         case OP_ADD_FLOAT:
     91             funct = (void*) __aeabi_fadd;
     92             break;
     93         case OP_SUB_FLOAT_2ADDR:
     94         case OP_SUB_FLOAT:
     95             funct = (void*) __aeabi_fsub;
     96             break;
     97         case OP_DIV_FLOAT_2ADDR:
     98         case OP_DIV_FLOAT:
     99             funct = (void*) __aeabi_fdiv;
    100             break;
    101         case OP_MUL_FLOAT_2ADDR:
    102         case OP_MUL_FLOAT:
    103             funct = (void*) __aeabi_fmul;
    104             break;
    105         case OP_REM_FLOAT_2ADDR:
    106         case OP_REM_FLOAT:
    107             funct = (void*) fmodf;
    108             break;
    109         case OP_NEG_FLOAT: {
    110             genNegFloat(cUnit, rlDest, rlSrc1);
    111             return false;
    112         }
    113         default:
    114             return true;
    115     }
    116     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    117     loadValueDirectFixed(cUnit, rlSrc1, r0);
    118     loadValueDirectFixed(cUnit, rlSrc2, r1);
    119     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
    120     opReg(cUnit, kOpBlx, r2);
    121     dvmCompilerClobberCallRegs(cUnit);
    122     rlResult = dvmCompilerGetReturn(cUnit);
    123     storeValue(cUnit, rlDest, rlResult);
    124     return false;
    125 }
    126 
    127 static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
    128                                      RegLocation rlDest, RegLocation rlSrc1,
    129                                      RegLocation rlSrc2)
    130 {
    131     RegLocation rlResult;
    132     void* funct;
    133 
    134     switch (mir->dalvikInsn.opcode) {
    135         case OP_ADD_DOUBLE_2ADDR:
    136         case OP_ADD_DOUBLE:
    137             funct = (void*) __aeabi_dadd;
    138             break;
    139         case OP_SUB_DOUBLE_2ADDR:
    140         case OP_SUB_DOUBLE:
    141             funct = (void*) __aeabi_dsub;
    142             break;
    143         case OP_DIV_DOUBLE_2ADDR:
    144         case OP_DIV_DOUBLE:
    145             funct = (void*) __aeabi_ddiv;
    146             break;
    147         case OP_MUL_DOUBLE_2ADDR:
    148         case OP_MUL_DOUBLE:
    149             funct = (void*) __aeabi_dmul;
    150             break;
    151         case OP_REM_DOUBLE_2ADDR:
    152         case OP_REM_DOUBLE:
    153             funct = (void*) (double (*)(double, double)) fmod;
    154             break;
    155         case OP_NEG_DOUBLE: {
    156             genNegDouble(cUnit, rlDest, rlSrc1);
    157             return false;
    158         }
    159         default:
    160             return true;
    161     }
    162     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    163     LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
    164     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    165     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    166     opReg(cUnit, kOpBlx, r14lr);
    167     dvmCompilerClobberCallRegs(cUnit);
    168     rlResult = dvmCompilerGetReturnWide(cUnit);
    169     storeValueWide(cUnit, rlDest, rlResult);
    170 #if defined(WITH_SELF_VERIFICATION)
    171     cUnit->usesLinkRegister = true;
    172 #endif
    173     return false;
    174 }
    175 
    176 static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
    177 {
    178     Opcode opcode = mir->dalvikInsn.opcode;
    179 
    180     switch (opcode) {
    181         case OP_INT_TO_FLOAT:
    182             return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
    183         case OP_FLOAT_TO_INT:
    184             return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
    185         case OP_DOUBLE_TO_FLOAT:
    186             return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
    187         case OP_FLOAT_TO_DOUBLE:
    188             return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
    189         case OP_INT_TO_DOUBLE:
    190             return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
    191         case OP_DOUBLE_TO_INT:
    192             return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
    193         case OP_FLOAT_TO_LONG:
    194             return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
    195         case OP_LONG_TO_FLOAT:
    196             return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
    197         case OP_DOUBLE_TO_LONG:
    198             return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
    199         case OP_LONG_TO_DOUBLE:
    200             return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
    201         default:
    202             return true;
    203     }
    204     return false;
    205 }
    206 
    207 #if defined(WITH_SELF_VERIFICATION)
    208 static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
    209                           int dest, int src1)
    210 {
    211      ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
    212      insn->opcode = opcode;
    213      insn->operands[0] = dest;
    214      insn->operands[1] = src1;
    215      setupResourceMasks(insn);
    216      dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
    217 }
    218 
    219 /*
    220  * Example where r14 (LR) is preserved around a heap access under
    221  * self-verification mode in Thumb2:
    222  *
    223  * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
    224  * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
    225  * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
    226  * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
    227  * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
    228  * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
    229  * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
    230  * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
    231  * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
    232  * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
    233  * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
    234  * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
    235  * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
    236  * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
    237  * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
    238  * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
    239  * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
    240  * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
    241  * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
    242  *
    243  */
    244 static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
    245 {
    246     ArmLIR *thisLIR;
    247     TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
    248 
    249     for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
    250          thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
    251          thisLIR = NEXT_LIR(thisLIR)) {
    252         if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
    253             /*
    254              * Push r5(FP) and r14(LR) onto stack. We need to make sure that
    255              * SP is 8-byte aligned, and we use r5 as a temp to restore LR
    256              * for Thumb-only target since LR cannot be directly accessed in
    257              * Thumb mode. Another reason to choose r5 here is it is the Dalvik
    258              * frame pointer and cannot be the target of the emulated heap
    259              * load.
    260              */
    261             if (cUnit->usesLinkRegister) {
    262                 genSelfVerificationPreBranch(cUnit, thisLIR);
    263             }
    264 
    265             /* Branch to mem op decode template */
    266             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
    267                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
    268                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
    269             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
    270                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
    271                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
    272 
    273             /* Restore LR */
    274             if (cUnit->usesLinkRegister) {
    275                 genSelfVerificationPostBranch(cUnit, thisLIR);
    276             }
    277         }
    278     }
    279 }
    280 #endif
    281 
    282 /* Generate conditional branch instructions */
    283 static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
    284                                     ArmConditionCode cond,
    285                                     ArmLIR *target)
    286 {
    287     ArmLIR *branch = opCondBranch(cUnit, cond);
    288     branch->generic.target = (LIR *) target;
    289     return branch;
    290 }
    291 
    292 /* Generate a unconditional branch to go to the interpreter */
    293 static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
    294                                   ArmLIR *pcrLabel)
    295 {
    296     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    297     return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    298 }
    299 
    300 /* Load a wide field from an object instance */
    301 static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    302 {
    303     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    304     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    305     RegLocation rlResult;
    306     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    307     int regPtr = dvmCompilerAllocTemp(cUnit);
    308 
    309     assert(rlDest.wide);
    310 
    311     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    312                  NULL);/* null object? */
    313     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    314     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    315 
    316     HEAP_ACCESS_SHADOW(true);
    317     loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    318     HEAP_ACCESS_SHADOW(false);
    319 
    320     dvmCompilerFreeTemp(cUnit, regPtr);
    321     storeValueWide(cUnit, rlDest, rlResult);
    322 }
    323 
    324 /* Store a wide field to an object instance */
    325 static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    326 {
    327     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    328     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
    329     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    330     int regPtr;
    331     rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
    332     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    333                  NULL);/* null object? */
    334     regPtr = dvmCompilerAllocTemp(cUnit);
    335     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    336 
    337     HEAP_ACCESS_SHADOW(true);
    338     storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    339     HEAP_ACCESS_SHADOW(false);
    340 
    341     dvmCompilerFreeTemp(cUnit, regPtr);
    342 }
    343 
    344 /*
    345  * Load a field from an object instance
    346  *
    347  */
    348 static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    349                     int fieldOffset, bool isVolatile)
    350 {
    351     RegLocation rlResult;
    352     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    353     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    354     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    355     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    356     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    357     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    358                  NULL);/* null object? */
    359 
    360     HEAP_ACCESS_SHADOW(true);
    361     loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
    362                  size, rlObj.sRegLow);
    363     HEAP_ACCESS_SHADOW(false);
    364     if (isVolatile) {
    365         dvmCompilerGenMemBarrier(cUnit, kSY);
    366     }
    367 
    368     storeValue(cUnit, rlDest, rlResult);
    369 }
    370 
    371 /*
    372  * Store a field to an object instance
    373  *
    374  */
    375 static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    376                     int fieldOffset, bool isObject, bool isVolatile)
    377 {
    378     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    379     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    380     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
    381     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    382     rlSrc = loadValue(cUnit, rlSrc, regClass);
    383     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    384                  NULL);/* null object? */
    385 
    386     if (isVolatile) {
    387         dvmCompilerGenMemBarrier(cUnit, kST);
    388     }
    389     HEAP_ACCESS_SHADOW(true);
    390     storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
    391     HEAP_ACCESS_SHADOW(false);
    392     if (isVolatile) {
    393         dvmCompilerGenMemBarrier(cUnit, kSY);
    394     }
    395     if (isObject) {
    396         /* NOTE: marking card based on object head */
    397         markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
    398     }
    399 }
    400 
    401 
    402 /*
    403  * Generate array load
    404  */
    405 static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    406                         RegLocation rlArray, RegLocation rlIndex,
    407                         RegLocation rlDest, int scale)
    408 {
    409     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    410     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    411     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    412     RegLocation rlResult;
    413     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    414     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    415     int regPtr;
    416 
    417     /* null object? */
    418     ArmLIR * pcrLabel = NULL;
    419 
    420     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    421         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
    422                                 rlArray.lowReg, mir->offset, NULL);
    423     }
    424 
    425     regPtr = dvmCompilerAllocTemp(cUnit);
    426 
    427     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    428         int regLen = dvmCompilerAllocTemp(cUnit);
    429         /* Get len */
    430         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    431         /* regPtr -> array data */
    432         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    433         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    434                        pcrLabel);
    435         dvmCompilerFreeTemp(cUnit, regLen);
    436     } else {
    437         /* regPtr -> array data */
    438         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    439     }
    440     if ((size == kLong) || (size == kDouble)) {
    441         if (scale) {
    442             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    443             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    444             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    445             dvmCompilerFreeTemp(cUnit, rNewIndex);
    446         } else {
    447             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    448         }
    449         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    450 
    451         HEAP_ACCESS_SHADOW(true);
    452         loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    453         HEAP_ACCESS_SHADOW(false);
    454 
    455         dvmCompilerFreeTemp(cUnit, regPtr);
    456         storeValueWide(cUnit, rlDest, rlResult);
    457     } else {
    458         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    459 
    460         HEAP_ACCESS_SHADOW(true);
    461         loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
    462                         scale, size);
    463         HEAP_ACCESS_SHADOW(false);
    464 
    465         dvmCompilerFreeTemp(cUnit, regPtr);
    466         storeValue(cUnit, rlDest, rlResult);
    467     }
    468 }
    469 
    470 /*
    471  * Generate array store
    472  *
    473  */
    474 static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    475                         RegLocation rlArray, RegLocation rlIndex,
    476                         RegLocation rlSrc, int scale)
    477 {
    478     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    479     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    480     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    481 
    482     int regPtr;
    483     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    484     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    485 
    486     if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
    487         dvmCompilerClobber(cUnit, rlArray.lowReg);
    488         regPtr = rlArray.lowReg;
    489     } else {
    490         regPtr = dvmCompilerAllocTemp(cUnit);
    491         genRegCopy(cUnit, regPtr, rlArray.lowReg);
    492     }
    493 
    494     /* null object? */
    495     ArmLIR * pcrLabel = NULL;
    496 
    497     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    498         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
    499                                 mir->offset, NULL);
    500     }
    501 
    502     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    503         int regLen = dvmCompilerAllocTemp(cUnit);
    504         //NOTE: max live temps(4) here.
    505         /* Get len */
    506         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    507         /* regPtr -> array data */
    508         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    509         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    510                        pcrLabel);
    511         dvmCompilerFreeTemp(cUnit, regLen);
    512     } else {
    513         /* regPtr -> array data */
    514         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    515     }
    516     /* at this point, regPtr points to array, 2 live temps */
    517     if ((size == kLong) || (size == kDouble)) {
    518         //TODO: need specific wide routine that can handle fp regs
    519         if (scale) {
    520             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    521             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    522             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    523             dvmCompilerFreeTemp(cUnit, rNewIndex);
    524         } else {
    525             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    526         }
    527         rlSrc = loadValueWide(cUnit, rlSrc, regClass);
    528 
    529         HEAP_ACCESS_SHADOW(true);
    530         storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    531         HEAP_ACCESS_SHADOW(false);
    532 
    533         dvmCompilerFreeTemp(cUnit, regPtr);
    534     } else {
    535         rlSrc = loadValue(cUnit, rlSrc, regClass);
    536 
    537         HEAP_ACCESS_SHADOW(true);
    538         storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
    539                          scale, size);
    540         HEAP_ACCESS_SHADOW(false);
    541     }
    542 }
    543 
    544 /*
    545  * Generate array object store
    546  * Must use explicit register allocation here because of
    547  * call-out to dvmCanPutArrayElement
    548  */
    549 static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
    550                               RegLocation rlArray, RegLocation rlIndex,
    551                               RegLocation rlSrc, int scale)
    552 {
    553     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    554     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    555 
    556     dvmCompilerFlushAllRegs(cUnit);
    557 
    558     int regLen = r0;
    559     int regPtr = r4PC;  /* Preserved across call */
    560     int regArray = r1;
    561     int regIndex = r7;  /* Preserved across call */
    562 
    563     loadValueDirectFixed(cUnit, rlArray, regArray);
    564     loadValueDirectFixed(cUnit, rlIndex, regIndex);
    565 
    566     /* null object? */
    567     ArmLIR * pcrLabel = NULL;
    568 
    569     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    570         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
    571                                 mir->offset, NULL);
    572     }
    573 
    574     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    575         /* Get len */
    576         loadWordDisp(cUnit, regArray, lenOffset, regLen);
    577         /* regPtr -> array data */
    578         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    579         genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
    580                        pcrLabel);
    581     } else {
    582         /* regPtr -> array data */
    583         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    584     }
    585 
    586     /* Get object to store */
    587     loadValueDirectFixed(cUnit, rlSrc, r0);
    588     LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
    589 
    590     /* Are we storing null?  If so, avoid check */
    591     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
    592 
    593     /* Make sure the types are compatible */
    594     loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
    595     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
    596     opReg(cUnit, kOpBlx, r2);
    597     dvmCompilerClobberCallRegs(cUnit);
    598 
    599     /*
    600      * Using fixed registers here, and counting on r4 and r7 being
    601      * preserved across the above call.  Tell the register allocation
    602      * utilities about the regs we are using directly
    603      */
    604     dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
    605     dvmCompilerLockTemp(cUnit, regIndex); // r7
    606     dvmCompilerLockTemp(cUnit, r0);
    607     dvmCompilerLockTemp(cUnit, r1);
    608 
    609     /* Bad? - roll back and re-execute if so */
    610     genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
    611 
    612     /* Resume here - must reload element & array, regPtr & index preserved */
    613     loadValueDirectFixed(cUnit, rlSrc, r0);
    614     loadValueDirectFixed(cUnit, rlArray, r1);
    615 
    616     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
    617     target->defMask = ENCODE_ALL;
    618     branchOver->generic.target = (LIR *) target;
    619 
    620     HEAP_ACCESS_SHADOW(true);
    621     storeBaseIndexed(cUnit, regPtr, regIndex, r0,
    622                      scale, kWord);
    623     HEAP_ACCESS_SHADOW(false);
    624 
    625     dvmCompilerFreeTemp(cUnit, regPtr);
    626     dvmCompilerFreeTemp(cUnit, regIndex);
    627 
    628     /* NOTE: marking card here based on object head */
    629     markCard(cUnit, r0, r1);
    630 }
    631 
    632 static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
    633                            RegLocation rlDest, RegLocation rlSrc1,
    634                            RegLocation rlShift)
    635 {
    636     /*
    637      * Don't mess with the regsiters here as there is a particular calling
    638      * convention to the out-of-line handler.
    639      */
    640     RegLocation rlResult;
    641 
    642     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    643     loadValueDirect(cUnit, rlShift, r2);
    644     switch( mir->dalvikInsn.opcode) {
    645         case OP_SHL_LONG:
    646         case OP_SHL_LONG_2ADDR:
    647             genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
    648             break;
    649         case OP_SHR_LONG:
    650         case OP_SHR_LONG_2ADDR:
    651             genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
    652             break;
    653         case OP_USHR_LONG:
    654         case OP_USHR_LONG_2ADDR:
    655             genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
    656             break;
    657         default:
    658             return true;
    659     }
    660     rlResult = dvmCompilerGetReturnWide(cUnit);
    661     storeValueWide(cUnit, rlDest, rlResult);
    662     return false;
    663 }
    664 
    665 static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
    666                            RegLocation rlDest, RegLocation rlSrc1,
    667                            RegLocation rlSrc2)
    668 {
    669     RegLocation rlResult;
    670     OpKind firstOp = kOpBkpt;
    671     OpKind secondOp = kOpBkpt;
    672     bool callOut = false;
    673     void *callTgt;
    674     int retReg = r0;
    675 
    676     switch (mir->dalvikInsn.opcode) {
    677         case OP_NOT_LONG:
    678             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    679             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    680             opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
    681             opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
    682             storeValueWide(cUnit, rlDest, rlResult);
    683             return false;
    684             break;
    685         case OP_ADD_LONG:
    686         case OP_ADD_LONG_2ADDR:
    687             firstOp = kOpAdd;
    688             secondOp = kOpAdc;
    689             break;
    690         case OP_SUB_LONG:
    691         case OP_SUB_LONG_2ADDR:
    692             firstOp = kOpSub;
    693             secondOp = kOpSbc;
    694             break;
    695         case OP_MUL_LONG:
    696         case OP_MUL_LONG_2ADDR:
    697             genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
    698             return false;
    699         case OP_DIV_LONG:
    700         case OP_DIV_LONG_2ADDR:
    701             callOut = true;
    702             retReg = r0;
    703             callTgt = (void*)__aeabi_ldivmod;
    704             break;
    705         /* NOTE - result is in r2/r3 instead of r0/r1 */
    706         case OP_REM_LONG:
    707         case OP_REM_LONG_2ADDR:
    708             callOut = true;
    709             callTgt = (void*)__aeabi_ldivmod;
    710             retReg = r2;
    711             break;
    712         case OP_AND_LONG_2ADDR:
    713         case OP_AND_LONG:
    714             firstOp = kOpAnd;
    715             secondOp = kOpAnd;
    716             break;
    717         case OP_OR_LONG:
    718         case OP_OR_LONG_2ADDR:
    719             firstOp = kOpOr;
    720             secondOp = kOpOr;
    721             break;
    722         case OP_XOR_LONG:
    723         case OP_XOR_LONG_2ADDR:
    724             firstOp = kOpXor;
    725             secondOp = kOpXor;
    726             break;
    727         case OP_NEG_LONG: {
    728             //TUNING: can improve this using Thumb2 code
    729             int tReg = dvmCompilerAllocTemp(cUnit);
    730             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    731             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    732             loadConstantNoClobber(cUnit, tReg, 0);
    733             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
    734                         tReg, rlSrc2.lowReg);
    735             opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
    736             genRegCopy(cUnit, rlResult.highReg, tReg);
    737             storeValueWide(cUnit, rlDest, rlResult);
    738             return false;
    739         }
    740         default:
    741             ALOGE("Invalid long arith op");
    742             dvmCompilerAbort(cUnit);
    743     }
    744     if (!callOut) {
    745         genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
    746     } else {
    747         // Adjust return regs in to handle case of rem returning r2/r3
    748         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    749         loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    750         LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
    751         loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    752         opReg(cUnit, kOpBlx, r14lr);
    753         dvmCompilerClobberCallRegs(cUnit);
    754         if (retReg == r0)
    755             rlResult = dvmCompilerGetReturnWide(cUnit);
    756         else
    757             rlResult = dvmCompilerGetReturnWideAlt(cUnit);
    758         storeValueWide(cUnit, rlDest, rlResult);
    759 #if defined(WITH_SELF_VERIFICATION)
    760         cUnit->usesLinkRegister = true;
    761 #endif
    762     }
    763     return false;
    764 }
    765 
    766 static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
    767                           RegLocation rlDest, RegLocation rlSrc1,
    768                           RegLocation rlSrc2)
    769 {
    770     OpKind op = kOpBkpt;
    771     bool callOut = false;
    772     bool checkZero = false;
    773     bool unary = false;
    774     int retReg = r0;
    775     int (*callTgt)(int, int);
    776     RegLocation rlResult;
    777     bool shiftOp = false;
    778 
    779     switch (mir->dalvikInsn.opcode) {
    780         case OP_NEG_INT:
    781             op = kOpNeg;
    782             unary = true;
    783             break;
    784         case OP_NOT_INT:
    785             op = kOpMvn;
    786             unary = true;
    787             break;
    788         case OP_ADD_INT:
    789         case OP_ADD_INT_2ADDR:
    790             op = kOpAdd;
    791             break;
    792         case OP_SUB_INT:
    793         case OP_SUB_INT_2ADDR:
    794             op = kOpSub;
    795             break;
    796         case OP_MUL_INT:
    797         case OP_MUL_INT_2ADDR:
    798             op = kOpMul;
    799             break;
    800         case OP_DIV_INT:
    801         case OP_DIV_INT_2ADDR:
    802             callOut = true;
    803             checkZero = true;
    804             callTgt = __aeabi_idiv;
    805             retReg = r0;
    806             break;
    807         /* NOTE: returns in r1 */
    808         case OP_REM_INT:
    809         case OP_REM_INT_2ADDR:
    810             callOut = true;
    811             checkZero = true;
    812             callTgt = __aeabi_idivmod;
    813             retReg = r1;
    814             break;
    815         case OP_AND_INT:
    816         case OP_AND_INT_2ADDR:
    817             op = kOpAnd;
    818             break;
    819         case OP_OR_INT:
    820         case OP_OR_INT_2ADDR:
    821             op = kOpOr;
    822             break;
    823         case OP_XOR_INT:
    824         case OP_XOR_INT_2ADDR:
    825             op = kOpXor;
    826             break;
    827         case OP_SHL_INT:
    828         case OP_SHL_INT_2ADDR:
    829             shiftOp = true;
    830             op = kOpLsl;
    831             break;
    832         case OP_SHR_INT:
    833         case OP_SHR_INT_2ADDR:
    834             shiftOp = true;
    835             op = kOpAsr;
    836             break;
    837         case OP_USHR_INT:
    838         case OP_USHR_INT_2ADDR:
    839             shiftOp = true;
    840             op = kOpLsr;
    841             break;
    842         default:
    843             ALOGE("Invalid word arith op: %#x(%d)",
    844                  mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
    845             dvmCompilerAbort(cUnit);
    846     }
    847     if (!callOut) {
    848         rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
    849         if (unary) {
    850             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    851             opRegReg(cUnit, op, rlResult.lowReg,
    852                      rlSrc1.lowReg);
    853         } else {
    854             rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
    855             if (shiftOp) {
    856                 int tReg = dvmCompilerAllocTemp(cUnit);
    857                 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
    858                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    859                 opRegRegReg(cUnit, op, rlResult.lowReg,
    860                             rlSrc1.lowReg, tReg);
    861                 dvmCompilerFreeTemp(cUnit, tReg);
    862             } else {
    863                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    864                 opRegRegReg(cUnit, op, rlResult.lowReg,
    865                             rlSrc1.lowReg, rlSrc2.lowReg);
    866             }
    867         }
    868         storeValue(cUnit, rlDest, rlResult);
    869     } else {
    870         RegLocation rlResult;
    871         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    872         loadValueDirectFixed(cUnit, rlSrc2, r1);
    873         LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
    874         loadValueDirectFixed(cUnit, rlSrc1, r0);
    875         if (checkZero) {
    876             genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
    877         }
    878         opReg(cUnit, kOpBlx, r2);
    879         dvmCompilerClobberCallRegs(cUnit);
    880         if (retReg == r0)
    881             rlResult = dvmCompilerGetReturn(cUnit);
    882         else
    883             rlResult = dvmCompilerGetReturnAlt(cUnit);
    884         storeValue(cUnit, rlDest, rlResult);
    885     }
    886     return false;
    887 }
    888 
    889 static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
    890 {
    891     Opcode opcode = mir->dalvikInsn.opcode;
    892     RegLocation rlDest;
    893     RegLocation rlSrc1;
    894     RegLocation rlSrc2;
    895     /* Deduce sizes of operands */
    896     if (mir->ssaRep->numUses == 2) {
    897         rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    898         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    899     } else if (mir->ssaRep->numUses == 3) {
    900         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    901         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
    902     } else {
    903         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    904         rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
    905         assert(mir->ssaRep->numUses == 4);
    906     }
    907     if (mir->ssaRep->numDefs == 1) {
    908         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    909     } else {
    910         assert(mir->ssaRep->numDefs == 2);
    911         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    912     }
    913 
    914     if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
    915         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    916     }
    917     if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
    918         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    919     }
    920     if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
    921         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    922     }
    923     if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
    924         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    925     }
    926     if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
    927         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    928     }
    929     if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
    930         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    931     }
    932     if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
    933         return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    934     }
    935     if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
    936         return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
    937     }
    938     if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
    939         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    940     }
    941     if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
    942         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    943     }
    944     return true;
    945 }
    946 
    947 /* Generate unconditional branch instructions */
    948 static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
    949 {
    950     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    951     branch->generic.target = (LIR *) target;
    952     return branch;
    953 }
    954 
    955 /* Perform the actual operation for OP_RETURN_* */
    956 static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
    957 {
    958     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
    959                          TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
    960 #if defined(WITH_JIT_TUNING)
    961     gDvmJit.returnOp++;
    962 #endif
    963     int dPC = (int) (cUnit->method->insns + mir->offset);
    964     /* Insert branch, but defer setting of target */
    965     ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
    966     /* Set up the place holder to reconstruct this Dalvik PC */
    967     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
    968     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
    969     pcrLabel->operands[0] = dPC;
    970     pcrLabel->operands[1] = mir->offset;
    971     /* Insert the place holder to the growable list */
    972     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
    973     /* Branch to the PC reconstruction code */
    974     branch->generic.target = (LIR *) pcrLabel;
    975 }
    976 
    977 static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
    978                                   DecodedInstruction *dInsn,
    979                                   ArmLIR **pcrLabel)
    980 {
    981     unsigned int i;
    982     unsigned int regMask = 0;
    983     RegLocation rlArg;
    984     int numDone = 0;
    985 
    986     /*
    987      * Load arguments to r0..r4.  Note that these registers may contain
    988      * live values, so we clobber them immediately after loading to prevent
    989      * them from being used as sources for subsequent loads.
    990      */
    991     dvmCompilerLockAllTemps(cUnit);
    992     for (i = 0; i < dInsn->vA; i++) {
    993         regMask |= 1 << i;
    994         rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
    995         loadValueDirectFixed(cUnit, rlArg, i);
    996     }
    997     if (regMask) {
    998         /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
    999         opRegRegImm(cUnit, kOpSub, r7, r5FP,
   1000                     sizeof(StackSaveArea) + (dInsn->vA << 2));
   1001         /* generate null check */
   1002         if (pcrLabel) {
   1003             *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
   1004                                      mir->offset, NULL);
   1005         }
   1006         storeMultiple(cUnit, r7, regMask);
   1007     }
   1008 }
   1009 
   1010 static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
   1011                                 DecodedInstruction *dInsn,
   1012                                 ArmLIR **pcrLabel)
   1013 {
   1014     int srcOffset = dInsn->vC << 2;
   1015     int numArgs = dInsn->vA;
   1016     int regMask;
   1017 
   1018     /*
   1019      * Note: here, all promoted registers will have been flushed
   1020      * back to the Dalvik base locations, so register usage restrictins
   1021      * are lifted.  All parms loaded from original Dalvik register
   1022      * region - even though some might conceivably have valid copies
   1023      * cached in a preserved register.
   1024      */
   1025     dvmCompilerLockAllTemps(cUnit);
   1026 
   1027     /*
   1028      * r4PC     : &r5FP[vC]
   1029      * r7: &newFP[0]
   1030      */
   1031     opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
   1032     /* load [r0 .. min(numArgs,4)] */
   1033     regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
   1034     /*
   1035      * Protect the loadMultiple instruction from being reordered with other
   1036      * Dalvik stack accesses.
   1037      */
   1038     if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
   1039 
   1040     opRegRegImm(cUnit, kOpSub, r7, r5FP,
   1041                 sizeof(StackSaveArea) + (numArgs << 2));
   1042     /* generate null check */
   1043     if (pcrLabel) {
   1044         *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
   1045                                  mir->offset, NULL);
   1046     }
   1047 
   1048     /*
   1049      * Handle remaining 4n arguments:
   1050      * store previously loaded 4 values and load the next 4 values
   1051      */
   1052     if (numArgs >= 8) {
   1053         ArmLIR *loopLabel = NULL;
   1054         /*
   1055          * r0 contains "this" and it will be used later, so push it to the stack
   1056          * first. Pushing r5FP is just for stack alignment purposes.
   1057          */
   1058         opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
   1059         /* No need to generate the loop structure if numArgs <= 11 */
   1060         if (numArgs > 11) {
   1061             loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
   1062             loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1063             loopLabel->defMask = ENCODE_ALL;
   1064         }
   1065         storeMultiple(cUnit, r7, regMask);
   1066         /*
   1067          * Protect the loadMultiple instruction from being reordered with other
   1068          * Dalvik stack accesses.
   1069          */
   1070         loadMultiple(cUnit, r4PC, regMask);
   1071         /* No need to generate the loop structure if numArgs <= 11 */
   1072         if (numArgs > 11) {
   1073             opRegImm(cUnit, kOpSub, r5FP, 4);
   1074             genConditionalBranch(cUnit, kArmCondNe, loopLabel);
   1075         }
   1076     }
   1077 
   1078     /* Save the last batch of loaded values */
   1079     if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
   1080 
   1081     /* Generate the loop epilogue - don't use r0 */
   1082     if ((numArgs > 4) && (numArgs % 4)) {
   1083         regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
   1084         /*
   1085          * Protect the loadMultiple instruction from being reordered with other
   1086          * Dalvik stack accesses.
   1087          */
   1088         loadMultiple(cUnit, r4PC, regMask);
   1089     }
   1090     if (numArgs >= 8)
   1091         opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
   1092 
   1093     /* Save the modulo 4 arguments */
   1094     if ((numArgs > 4) && (numArgs % 4)) {
   1095         storeMultiple(cUnit, r7, regMask);
   1096     }
   1097 }
   1098 
   1099 /*
   1100  * Generate code to setup the call stack then jump to the chaining cell if it
   1101  * is not a native method.
   1102  */
   1103 static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
   1104                                      BasicBlock *bb, ArmLIR *labelList,
   1105                                      ArmLIR *pcrLabel,
   1106                                      const Method *calleeMethod)
   1107 {
   1108     /*
   1109      * Note: all Dalvik register state should be flushed to
   1110      * memory by the point, so register usage restrictions no
   1111      * longer apply.  All temp & preserved registers may be used.
   1112      */
   1113     dvmCompilerLockAllTemps(cUnit);
   1114     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   1115 
   1116     /* r1 = &retChainingCell */
   1117     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1118 
   1119     /* r4PC = dalvikCallsite */
   1120     loadConstant(cUnit, r4PC,
   1121                  (int) (cUnit->method->insns + mir->offset));
   1122     addrRetChain->generic.target = (LIR *) retChainingCell;
   1123 
   1124     /* r7 = calleeMethod->registersSize */
   1125     loadConstant(cUnit, r7, calleeMethod->registersSize);
   1126     /*
   1127      * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
   1128      * r1 = &ChainingCell
   1129      * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
   1130      * r4PC = callsiteDPC
   1131      * r7 = calleeMethod->registersSize
   1132      */
   1133     if (dvmIsNativeMethod(calleeMethod)) {
   1134         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1135             TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
   1136             TEMPLATE_INVOKE_METHOD_NATIVE);
   1137 #if defined(WITH_JIT_TUNING)
   1138         gDvmJit.invokeNative++;
   1139 #endif
   1140     } else {
   1141         /* For Java callees, set up r2 to be calleeMethod->outsSize */
   1142         loadConstant(cUnit, r2, calleeMethod->outsSize);
   1143         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1144             TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
   1145             TEMPLATE_INVOKE_METHOD_CHAIN);
   1146 #if defined(WITH_JIT_TUNING)
   1147         gDvmJit.invokeMonomorphic++;
   1148 #endif
   1149         /* Branch to the chaining cell */
   1150         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1151     }
   1152     /* Handle exceptions using the interpreter */
   1153     genTrap(cUnit, mir->offset, pcrLabel);
   1154 }
   1155 
   1156 /*
   1157  * Generate code to check the validity of a predicted chain and take actions
   1158  * based on the result.
   1159  *
   1160  * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
   1161  * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
   1162  * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
   1163  * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
   1164  * 0x426a99b2 : blx_2   see above     --+
   1165  * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
   1166  * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
   1167  * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
   1168  * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
   1169  * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
   1170  * 0x426a99be : ldr     r7, [pc, #off]--+ dvmJitToPatchPredictedChain
   1171  * 0x426a99c0 : blx     r7            --+
   1172  * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
   1173  * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   1174  * 0x426a99c6 : blx_2   see above     --+
   1175  */
   1176 static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
   1177                                    int methodIndex,
   1178                                    ArmLIR *retChainingCell,
   1179                                    ArmLIR *predChainingCell,
   1180                                    ArmLIR *pcrLabel)
   1181 {
   1182     /*
   1183      * Note: all Dalvik register state should be flushed to
   1184      * memory by the point, so register usage restrictions no
   1185      * longer apply.  Lock temps to prevent them from being
   1186      * allocated by utility routines.
   1187      */
   1188     dvmCompilerLockAllTemps(cUnit);
   1189 
   1190     /*
   1191      * For verbose printing, store the method pointer in operands[1] first as
   1192      * operands[0] will be clobbered in dvmCompilerMIR2LIR.
   1193      */
   1194     predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
   1195 
   1196     /* "this" is already left in r0 by genProcessArgs* */
   1197 
   1198     /* r4PC = dalvikCallsite */
   1199     loadConstant(cUnit, r4PC,
   1200                  (int) (cUnit->method->insns + mir->offset));
   1201 
   1202     /* r1 = &retChainingCell */
   1203     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1204     addrRetChain->generic.target = (LIR *) retChainingCell;
   1205 
   1206     /* r2 = &predictedChainingCell */
   1207     ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
   1208     predictedChainingCell->generic.target = (LIR *) predChainingCell;
   1209 
   1210     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1211         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
   1212         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   1213 
   1214     /* return through lr - jump to the chaining cell */
   1215     genUnconditionalBranch(cUnit, predChainingCell);
   1216 
   1217     /*
   1218      * null-check on "this" may have been eliminated, but we still need a PC-
   1219      * reconstruction label for stack overflow bailout.
   1220      */
   1221     if (pcrLabel == NULL) {
   1222         int dPC = (int) (cUnit->method->insns + mir->offset);
   1223         pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   1224         pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   1225         pcrLabel->operands[0] = dPC;
   1226         pcrLabel->operands[1] = mir->offset;
   1227         /* Insert the place holder to the growable list */
   1228         dvmInsertGrowableList(&cUnit->pcReconstructionList,
   1229                               (intptr_t) pcrLabel);
   1230     }
   1231 
   1232     /* return through lr+2 - punt to the interpreter */
   1233     genUnconditionalBranch(cUnit, pcrLabel);
   1234 
   1235     /*
   1236      * return through lr+4 - fully resolve the callee method.
   1237      * r1 <- count
   1238      * r2 <- &predictedChainCell
   1239      * r3 <- this->class
   1240      * r4 <- dPC
   1241      * r7 <- this->class->vtable
   1242      */
   1243 
   1244     /* r0 <- calleeMethod */
   1245     loadWordDisp(cUnit, r7, methodIndex * 4, r0);
   1246 
   1247     /* Check if rechain limit is reached */
   1248     ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
   1249 
   1250     LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
   1251 
   1252     genRegCopy(cUnit, r1, r6SELF);
   1253 
   1254     /*
   1255      * r0 = calleeMethod
   1256      * r2 = &predictedChainingCell
   1257      * r3 = class
   1258      *
   1259      * &returnChainingCell has been loaded into r1 but is not needed
   1260      * when patching the chaining cell and will be clobbered upon
   1261      * returning so it will be reconstructed again.
   1262      */
   1263     opReg(cUnit, kOpBlx, r7);
   1264 
   1265     /* r1 = &retChainingCell */
   1266     addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1267     addrRetChain->generic.target = (LIR *) retChainingCell;
   1268 
   1269     bypassRechaining->generic.target = (LIR *) addrRetChain;
   1270     /*
   1271      * r0 = calleeMethod,
   1272      * r1 = &ChainingCell,
   1273      * r4PC = callsiteDPC,
   1274      */
   1275     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1276         TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
   1277         TEMPLATE_INVOKE_METHOD_NO_OPT);
   1278 #if defined(WITH_JIT_TUNING)
   1279     gDvmJit.invokePolymorphic++;
   1280 #endif
   1281     /* Handle exceptions using the interpreter */
   1282     genTrap(cUnit, mir->offset, pcrLabel);
   1283 }
   1284 
   1285 /* "this" pointer is already in r0 */
   1286 static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
   1287                                         MIR *mir,
   1288                                         void *calleeAddr,
   1289                                         ArmLIR *retChainingCell)
   1290 {
   1291     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   1292     dvmCompilerLockAllTemps(cUnit);
   1293 
   1294     loadClassPointer(cUnit, r1, (int) callsiteInfo);
   1295 
   1296     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
   1297     /* Branch to the slow path if classes are not equal */
   1298     opRegReg(cUnit, kOpCmp, r1, r2);
   1299     /*
   1300      * Set the misPredBranchOver target so that it will be generated when the
   1301      * code for the non-optimized invoke is generated.
   1302      */
   1303     ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
   1304 
   1305     /* r0 = the Dalvik PC of the callsite */
   1306     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1307 
   1308     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
   1309     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
   1310     genUnconditionalBranch(cUnit, retChainingCell);
   1311 
   1312     /* Target of slow path */
   1313     ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1314 
   1315     slowPathLabel->defMask = ENCODE_ALL;
   1316     classCheck->generic.target = (LIR *) slowPathLabel;
   1317 
   1318     // FIXME
   1319     cUnit->printMe = true;
   1320 }
   1321 
   1322 static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
   1323                                           MIR *mir,
   1324                                           void *calleeAddr,
   1325                                           ArmLIR *retChainingCell)
   1326 {
   1327     /* r0 = the Dalvik PC of the callsite */
   1328     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1329 
   1330     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
   1331     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
   1332     genUnconditionalBranch(cUnit, retChainingCell);
   1333 
   1334     // FIXME
   1335     cUnit->printMe = true;
   1336 }
   1337 
   1338 /* Geneate a branch to go back to the interpreter */
   1339 static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
   1340 {
   1341     /* r0 = dalvik pc */
   1342     dvmCompilerFlushAllRegs(cUnit);
   1343     loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
   1344     loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   1345                  jitToInterpEntries.dvmJitToInterpPunt), r1);
   1346     opReg(cUnit, kOpBlx, r1);
   1347 }
   1348 
   1349 /*
   1350  * Attempt to single step one instruction using the interpreter and return
   1351  * to the compiled code for the next Dalvik instruction
   1352  */
   1353 static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
   1354 {
   1355     int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
   1356     int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
   1357 
   1358     // Single stepping is considered loop mode breaker
   1359     if (cUnit->jitMode == kJitLoop) {
   1360         cUnit->quitLoopMode = true;
   1361         return;
   1362     }
   1363 
   1364     //If already optimized out, just ignore
   1365     if (mir->dalvikInsn.opcode == OP_NOP)
   1366         return;
   1367 
   1368     //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
   1369     dvmCompilerFlushAllRegs(cUnit);
   1370 
   1371     if ((mir->next == NULL) || (flags & flagsToCheck)) {
   1372        genPuntToInterp(cUnit, mir->offset);
   1373        return;
   1374     }
   1375     int entryAddr = offsetof(Thread,
   1376                              jitToInterpEntries.dvmJitToInterpSingleStep);
   1377     loadWordDisp(cUnit, r6SELF, entryAddr, r2);
   1378     /* r0 = dalvik pc */
   1379     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1380     /* r1 = dalvik pc of following instruction */
   1381     loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
   1382     opReg(cUnit, kOpBlx, r2);
   1383 }
   1384 
   1385 #if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
   1386 /*
   1387  * To prevent a thread in a monitor wait from blocking the Jit from
   1388  * resetting the code cache, heavyweight monitor lock will not
   1389  * be allowed to return to an existing translation.  Instead, we will
   1390  * handle them by branching to a handler, which will in turn call the
   1391  * runtime lock routine and then branch directly back to the
   1392  * interpreter main loop.  Given the high cost of the heavyweight
   1393  * lock operation, this additional cost should be slight (especially when
   1394  * considering that we expect the vast majority of lock operations to
   1395  * use the fast-path thin lock bypass).
   1396  */
   1397 static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
   1398 {
   1399     bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
   1400     genExportPC(cUnit, mir);
   1401     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
   1402     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1403     loadValueDirectFixed(cUnit, rlSrc, r1);
   1404     genRegCopy(cUnit, r0, r6SELF);
   1405     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
   1406     if (isEnter) {
   1407         /* Get dPC of next insn */
   1408         loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
   1409                  dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
   1410         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
   1411     } else {
   1412         LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
   1413         /* Do the call */
   1414         opReg(cUnit, kOpBlx, r2);
   1415         /* Did we throw? */
   1416         ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   1417         loadConstant(cUnit, r0,
   1418                      (int) (cUnit->method->insns + mir->offset +
   1419                      dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
   1420         genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1421         ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1422         target->defMask = ENCODE_ALL;
   1423         branchOver->generic.target = (LIR *) target;
   1424         dvmCompilerClobberCallRegs(cUnit);
   1425     }
   1426 }
   1427 #endif
   1428 
   1429 /*
   1430  * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
   1431  * punt to the interpreter.
   1432  */
   1433 static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
   1434 {
   1435     int rTemp = dvmCompilerAllocTemp(cUnit);
   1436     ArmLIR *ld;
   1437     ld = loadBaseDisp(cUnit, NULL, r6SELF,
   1438                       offsetof(Thread, interpBreak.ctl.breakFlags),
   1439                       rTemp, kUnsignedByte, INVALID_SREG);
   1440     setMemRefType(ld, true /* isLoad */, kMustNotAlias);
   1441     genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
   1442 }
   1443 
   1444 /*
   1445  * The following are the first-level codegen routines that analyze the format
   1446  * of each bytecode then either dispatch special purpose codegen routines
   1447  * or produce corresponding Thumb instructions directly.
   1448  */
   1449 
   1450 static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
   1451                                        BasicBlock *bb, ArmLIR *labelList)
   1452 {
   1453     /* backward branch? */
   1454     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   1455 
   1456     if (backwardBranch &&
   1457         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   1458         genSuspendPoll(cUnit, mir);
   1459     }
   1460 
   1461     int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
   1462     /*
   1463      * Things could be hoisted out of the taken block into the predecessor, so
   1464      * make sure it is dominated by the predecessor.
   1465      */
   1466     if (numPredecessors == 1 && bb->taken->visited == false &&
   1467         bb->taken->blockType == kDalvikByteCode) {
   1468         cUnit->nextCodegenBlock = bb->taken;
   1469     } else {
   1470         /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
   1471         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1472     }
   1473     return false;
   1474 }
   1475 
   1476 static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
   1477 {
   1478     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   1479     if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
   1480         ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
   1481         return true;
   1482     }
   1483     switch (dalvikOpcode) {
   1484         case OP_RETURN_VOID_BARRIER:
   1485             dvmCompilerGenMemBarrier(cUnit, kST);
   1486             // Intentional fallthrough
   1487         case OP_RETURN_VOID:
   1488             genReturnCommon(cUnit,mir);
   1489             break;
   1490         case OP_UNUSED_73:
   1491         case OP_UNUSED_79:
   1492         case OP_UNUSED_7A:
   1493         case OP_UNUSED_FF:
   1494             ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
   1495             return true;
   1496         case OP_NOP:
   1497             break;
   1498         default:
   1499             return true;
   1500     }
   1501     return false;
   1502 }
   1503 
   1504 static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
   1505 {
   1506     RegLocation rlDest;
   1507     RegLocation rlResult;
   1508     if (mir->ssaRep->numDefs == 2) {
   1509         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1510     } else {
   1511         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1512     }
   1513 
   1514     switch (mir->dalvikInsn.opcode) {
   1515         case OP_CONST:
   1516         case OP_CONST_4: {
   1517             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1518             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1519             storeValue(cUnit, rlDest, rlResult);
   1520             break;
   1521         }
   1522         case OP_CONST_WIDE_32: {
   1523             //TUNING: single routine to load constant pair for support doubles
   1524             //TUNING: load 0/-1 separately to avoid load dependency
   1525             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1526             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1527             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1528                         rlResult.lowReg, 31);
   1529             storeValueWide(cUnit, rlDest, rlResult);
   1530             break;
   1531         }
   1532         default:
   1533             return true;
   1534     }
   1535     return false;
   1536 }
   1537 
   1538 static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
   1539 {
   1540     RegLocation rlDest;
   1541     RegLocation rlResult;
   1542     if (mir->ssaRep->numDefs == 2) {
   1543         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1544     } else {
   1545         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1546     }
   1547     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1548 
   1549     switch (mir->dalvikInsn.opcode) {
   1550         case OP_CONST_HIGH16: {
   1551             loadConstantNoClobber(cUnit, rlResult.lowReg,
   1552                                   mir->dalvikInsn.vB << 16);
   1553             storeValue(cUnit, rlDest, rlResult);
   1554             break;
   1555         }
   1556         case OP_CONST_WIDE_HIGH16: {
   1557             loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
   1558                                   0, mir->dalvikInsn.vB << 16);
   1559             storeValueWide(cUnit, rlDest, rlResult);
   1560             break;
   1561         }
   1562         default:
   1563             return true;
   1564     }
   1565     return false;
   1566 }
   1567 
   1568 static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
   1569 {
   1570     /* For OP_THROW_VERIFICATION_ERROR */
   1571     genInterpSingleStep(cUnit, mir);
   1572     return false;
   1573 }
   1574 
   1575 static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
   1576 {
   1577     RegLocation rlResult;
   1578     RegLocation rlDest;
   1579     RegLocation rlSrc;
   1580 
   1581     switch (mir->dalvikInsn.opcode) {
   1582         case OP_CONST_STRING_JUMBO:
   1583         case OP_CONST_STRING: {
   1584             void *strPtr = (void*)
   1585               (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
   1586 
   1587             if (strPtr == NULL) {
   1588                 BAIL_LOOP_COMPILATION();
   1589                 ALOGE("Unexpected null string");
   1590                 dvmAbort();
   1591             }
   1592 
   1593             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1594             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1595             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
   1596             storeValue(cUnit, rlDest, rlResult);
   1597             break;
   1598         }
   1599         case OP_CONST_CLASS: {
   1600             void *classPtr = (void*)
   1601               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1602 
   1603             if (classPtr == NULL) {
   1604                 BAIL_LOOP_COMPILATION();
   1605                 ALOGE("Unexpected null class");
   1606                 dvmAbort();
   1607             }
   1608 
   1609             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1610             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1611             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
   1612             storeValue(cUnit, rlDest, rlResult);
   1613             break;
   1614         }
   1615         case OP_SGET:
   1616         case OP_SGET_VOLATILE:
   1617         case OP_SGET_OBJECT:
   1618         case OP_SGET_OBJECT_VOLATILE:
   1619         case OP_SGET_BOOLEAN:
   1620         case OP_SGET_CHAR:
   1621         case OP_SGET_BYTE:
   1622         case OP_SGET_SHORT: {
   1623             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1624             int tReg = dvmCompilerAllocTemp(cUnit);
   1625             bool isVolatile;
   1626             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1627                 mir->meta.calleeMethod : cUnit->method;
   1628             void *fieldPtr = (void*)
   1629               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1630 
   1631             if (fieldPtr == NULL) {
   1632                 BAIL_LOOP_COMPILATION();
   1633                 ALOGE("Unexpected null static field");
   1634                 dvmAbort();
   1635             }
   1636 
   1637             /*
   1638              * On SMP systems, Dalvik opcodes found to be referencing
   1639              * volatile fields are rewritten to their _VOLATILE variant.
   1640              * However, this does not happen on non-SMP systems. The JIT
   1641              * still needs to know about volatility to avoid unsafe
   1642              * optimizations so we determine volatility based on either
   1643              * the opcode or the field access flags.
   1644              */
   1645 #if ANDROID_SMP != 0
   1646             Opcode opcode = mir->dalvikInsn.opcode;
   1647             isVolatile = (opcode == OP_SGET_VOLATILE) ||
   1648                          (opcode == OP_SGET_OBJECT_VOLATILE);
   1649             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   1650 #else
   1651             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   1652 #endif
   1653 
   1654             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1655             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1656             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1657 
   1658             if (isVolatile) {
   1659                 dvmCompilerGenMemBarrier(cUnit, kSY);
   1660             }
   1661             HEAP_ACCESS_SHADOW(true);
   1662             loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
   1663             HEAP_ACCESS_SHADOW(false);
   1664 
   1665             storeValue(cUnit, rlDest, rlResult);
   1666             break;
   1667         }
   1668         case OP_SGET_WIDE: {
   1669             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1670             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1671                 mir->meta.calleeMethod : cUnit->method;
   1672             void *fieldPtr = (void*)
   1673               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1674 
   1675             if (fieldPtr == NULL) {
   1676                 BAIL_LOOP_COMPILATION();
   1677                 ALOGE("Unexpected null static field");
   1678                 dvmAbort();
   1679             }
   1680 
   1681             int tReg = dvmCompilerAllocTemp(cUnit);
   1682             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1683             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1684             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1685 
   1686             HEAP_ACCESS_SHADOW(true);
   1687             loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
   1688             HEAP_ACCESS_SHADOW(false);
   1689 
   1690             storeValueWide(cUnit, rlDest, rlResult);
   1691             break;
   1692         }
   1693         case OP_SPUT:
   1694         case OP_SPUT_VOLATILE:
   1695         case OP_SPUT_OBJECT:
   1696         case OP_SPUT_OBJECT_VOLATILE:
   1697         case OP_SPUT_BOOLEAN:
   1698         case OP_SPUT_CHAR:
   1699         case OP_SPUT_BYTE:
   1700         case OP_SPUT_SHORT: {
   1701             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1702             int tReg = dvmCompilerAllocTemp(cUnit);
   1703             int objHead;
   1704             bool isVolatile;
   1705             bool isSputObject;
   1706             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1707                 mir->meta.calleeMethod : cUnit->method;
   1708             void *fieldPtr = (void*)
   1709               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1710             Opcode opcode = mir->dalvikInsn.opcode;
   1711 
   1712             if (fieldPtr == NULL) {
   1713                 BAIL_LOOP_COMPILATION();
   1714                 ALOGE("Unexpected null static field");
   1715                 dvmAbort();
   1716             }
   1717 
   1718 #if ANDROID_SMP != 0
   1719             isVolatile = (opcode == OP_SPUT_VOLATILE) ||
   1720                          (opcode == OP_SPUT_OBJECT_VOLATILE);
   1721             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   1722 #else
   1723             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   1724 #endif
   1725 
   1726             isSputObject = (opcode == OP_SPUT_OBJECT) ||
   1727                            (opcode == OP_SPUT_OBJECT_VOLATILE);
   1728 
   1729             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1730             rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
   1731             loadConstant(cUnit, tReg,  (int) fieldPtr);
   1732             if (isSputObject) {
   1733                 objHead = dvmCompilerAllocTemp(cUnit);
   1734                 loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
   1735             }
   1736             if (isVolatile) {
   1737                 dvmCompilerGenMemBarrier(cUnit, kST);
   1738             }
   1739             HEAP_ACCESS_SHADOW(true);
   1740             storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
   1741             dvmCompilerFreeTemp(cUnit, tReg);
   1742             HEAP_ACCESS_SHADOW(false);
   1743             if (isVolatile) {
   1744                 dvmCompilerGenMemBarrier(cUnit, kSY);
   1745             }
   1746             if (isSputObject) {
   1747                 /* NOTE: marking card based sfield->clazz */
   1748                 markCard(cUnit, rlSrc.lowReg, objHead);
   1749                 dvmCompilerFreeTemp(cUnit, objHead);
   1750             }
   1751 
   1752             break;
   1753         }
   1754         case OP_SPUT_WIDE: {
   1755             int tReg = dvmCompilerAllocTemp(cUnit);
   1756             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1757             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1758                 mir->meta.calleeMethod : cUnit->method;
   1759             void *fieldPtr = (void*)
   1760               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1761 
   1762             if (fieldPtr == NULL) {
   1763                 BAIL_LOOP_COMPILATION();
   1764                 ALOGE("Unexpected null static field");
   1765                 dvmAbort();
   1766             }
   1767 
   1768             rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1769             rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
   1770             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1771 
   1772             HEAP_ACCESS_SHADOW(true);
   1773             storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
   1774             HEAP_ACCESS_SHADOW(false);
   1775             break;
   1776         }
   1777         case OP_NEW_INSTANCE: {
   1778             /*
   1779              * Obey the calling convention and don't mess with the register
   1780              * usage.
   1781              */
   1782             ClassObject *classPtr = (ClassObject *)
   1783               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1784 
   1785             if (classPtr == NULL) {
   1786                 BAIL_LOOP_COMPILATION();
   1787                 ALOGE("Unexpected null class");
   1788                 dvmAbort();
   1789             }
   1790 
   1791             /*
   1792              * If it is going to throw, it should not make to the trace to begin
   1793              * with.  However, Alloc might throw, so we need to genExportPC()
   1794              */
   1795             assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
   1796             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1797             genExportPC(cUnit, mir);
   1798             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
   1799             loadConstant(cUnit, r0, (int) classPtr);
   1800             loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
   1801             opReg(cUnit, kOpBlx, r2);
   1802             dvmCompilerClobberCallRegs(cUnit);
   1803             /* generate a branch over if allocation is successful */
   1804             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   1805             /*
   1806              * OOM exception needs to be thrown here and cannot re-execute
   1807              */
   1808             loadConstant(cUnit, r0,
   1809                          (int) (cUnit->method->insns + mir->offset));
   1810             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1811             /* noreturn */
   1812 
   1813             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1814             target->defMask = ENCODE_ALL;
   1815             branchOver->generic.target = (LIR *) target;
   1816             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1817             rlResult = dvmCompilerGetReturn(cUnit);
   1818             storeValue(cUnit, rlDest, rlResult);
   1819             break;
   1820         }
   1821         case OP_CHECK_CAST: {
   1822             /*
   1823              * Obey the calling convention and don't mess with the register
   1824              * usage.
   1825              */
   1826             ClassObject *classPtr =
   1827               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1828             /*
   1829              * Note: It is possible that classPtr is NULL at this point,
   1830              * even though this instruction has been successfully interpreted.
   1831              * If the previous interpretation had a null source, the
   1832              * interpreter would not have bothered to resolve the clazz.
   1833              * Bail out to the interpreter in this case, and log it
   1834              * so that we can tell if it happens frequently.
   1835              */
   1836             if (classPtr == NULL) {
   1837                 BAIL_LOOP_COMPILATION();
   1838                 LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
   1839                 genInterpSingleStep(cUnit, mir);
   1840                 return false;
   1841             }
   1842             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1843             loadConstant(cUnit, r1, (int) classPtr );
   1844             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1845             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1846             /* Null? */
   1847             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
   1848                                               rlSrc.lowReg, 0);
   1849             /*
   1850              *  rlSrc.lowReg now contains object->clazz.  Note that
   1851              *  it could have been allocated r0, but we're okay so long
   1852              *  as we don't do anything desctructive until r0 is loaded
   1853              *  with clazz.
   1854              */
   1855             /* r0 now contains object->clazz */
   1856             loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
   1857             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
   1858             opRegReg(cUnit, kOpCmp, r0, r1);
   1859             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   1860             opReg(cUnit, kOpBlx, r2);
   1861             dvmCompilerClobberCallRegs(cUnit);
   1862             /*
   1863              * If null, check cast failed - punt to the interpreter.  Because
   1864              * interpreter will be the one throwing, we don't need to
   1865              * genExportPC() here.
   1866              */
   1867             genZeroCheck(cUnit, r0, mir->offset, NULL);
   1868             /* check cast passed - branch target here */
   1869             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1870             target->defMask = ENCODE_ALL;
   1871             branch1->generic.target = (LIR *)target;
   1872             branch2->generic.target = (LIR *)target;
   1873             break;
   1874         }
   1875         case OP_SGET_WIDE_VOLATILE:
   1876         case OP_SPUT_WIDE_VOLATILE:
   1877             genInterpSingleStep(cUnit, mir);
   1878             break;
   1879         default:
   1880             return true;
   1881     }
   1882     return false;
   1883 }
   1884 
   1885 /*
   1886  * A typical example of inlined getter/setter from a monomorphic callsite:
   1887  *
   1888  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
   1889  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
   1890  * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
   1891  * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
   1892  * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
   1893  * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
   1894  * D/dalvikvm(  289): L0x0003:
   1895  * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
   1896  *
   1897  * Note the invoke-static and move-result-object with the (I) notation are
   1898  * turned into no-op.
   1899  */
   1900 static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
   1901 {
   1902     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   1903     RegLocation rlResult;
   1904     switch (dalvikOpcode) {
   1905         case OP_MOVE_EXCEPTION: {
   1906             int exOffset = offsetof(Thread, exception);
   1907             int resetReg = dvmCompilerAllocTemp(cUnit);
   1908             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1909             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1910             loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
   1911             loadConstant(cUnit, resetReg, 0);
   1912             storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
   1913             storeValue(cUnit, rlDest, rlResult);
   1914            break;
   1915         }
   1916         case OP_MOVE_RESULT:
   1917         case OP_MOVE_RESULT_OBJECT: {
   1918             /* An inlined move result is effectively no-op */
   1919             if (mir->OptimizationFlags & MIR_INLINED)
   1920                 break;
   1921             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1922             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
   1923             rlSrc.fp = rlDest.fp;
   1924             storeValue(cUnit, rlDest, rlSrc);
   1925             break;
   1926         }
   1927         case OP_MOVE_RESULT_WIDE: {
   1928             /* An inlined move result is effectively no-op */
   1929             if (mir->OptimizationFlags & MIR_INLINED)
   1930                 break;
   1931             RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1932             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
   1933             rlSrc.fp = rlDest.fp;
   1934             storeValueWide(cUnit, rlDest, rlSrc);
   1935             break;
   1936         }
   1937         case OP_RETURN_WIDE: {
   1938             RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1939             RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
   1940             rlDest.fp = rlSrc.fp;
   1941             storeValueWide(cUnit, rlDest, rlSrc);
   1942             genReturnCommon(cUnit,mir);
   1943             break;
   1944         }
   1945         case OP_RETURN:
   1946         case OP_RETURN_OBJECT: {
   1947             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1948             RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
   1949             rlDest.fp = rlSrc.fp;
   1950             storeValue(cUnit, rlDest, rlSrc);
   1951             genReturnCommon(cUnit, mir);
   1952             break;
   1953         }
   1954         case OP_MONITOR_EXIT:
   1955         case OP_MONITOR_ENTER:
   1956             genMonitor(cUnit, mir);
   1957             break;
   1958         case OP_THROW:
   1959             genInterpSingleStep(cUnit, mir);
   1960             break;
   1961         default:
   1962             return true;
   1963     }
   1964     return false;
   1965 }
   1966 
   1967 static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
   1968 {
   1969     Opcode opcode = mir->dalvikInsn.opcode;
   1970     RegLocation rlDest;
   1971     RegLocation rlSrc;
   1972     RegLocation rlResult;
   1973 
   1974     if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
   1975         return genArithOp( cUnit, mir );
   1976     }
   1977 
   1978     if (mir->ssaRep->numUses == 2)
   1979         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1980     else
   1981         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1982     if (mir->ssaRep->numDefs == 2)
   1983         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1984     else
   1985         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1986 
   1987     switch (opcode) {
   1988         case OP_DOUBLE_TO_INT:
   1989         case OP_INT_TO_FLOAT:
   1990         case OP_FLOAT_TO_INT:
   1991         case OP_DOUBLE_TO_FLOAT:
   1992         case OP_FLOAT_TO_DOUBLE:
   1993         case OP_INT_TO_DOUBLE:
   1994         case OP_FLOAT_TO_LONG:
   1995         case OP_LONG_TO_FLOAT:
   1996         case OP_DOUBLE_TO_LONG:
   1997         case OP_LONG_TO_DOUBLE:
   1998             return genConversion(cUnit, mir);
   1999         case OP_NEG_INT:
   2000         case OP_NOT_INT:
   2001             return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
   2002         case OP_NEG_LONG:
   2003         case OP_NOT_LONG:
   2004             return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
   2005         case OP_NEG_FLOAT:
   2006             return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
   2007         case OP_NEG_DOUBLE:
   2008             return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
   2009         case OP_MOVE_WIDE:
   2010             storeValueWide(cUnit, rlDest, rlSrc);
   2011             break;
   2012         case OP_INT_TO_LONG:
   2013             rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
   2014             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2015             //TUNING: shouldn't loadValueDirect already check for phys reg?
   2016             if (rlSrc.location == kLocPhysReg) {
   2017                 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2018             } else {
   2019                 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
   2020             }
   2021             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   2022                         rlResult.lowReg, 31);
   2023             storeValueWide(cUnit, rlDest, rlResult);
   2024             break;
   2025         case OP_LONG_TO_INT:
   2026             rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
   2027             rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
   2028             // Intentional fallthrough
   2029         case OP_MOVE:
   2030         case OP_MOVE_OBJECT:
   2031             storeValue(cUnit, rlDest, rlSrc);
   2032             break;
   2033         case OP_INT_TO_BYTE:
   2034             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2035             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2036             opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
   2037             storeValue(cUnit, rlDest, rlResult);
   2038             break;
   2039         case OP_INT_TO_SHORT:
   2040             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2041             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2042             opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
   2043             storeValue(cUnit, rlDest, rlResult);
   2044             break;
   2045         case OP_INT_TO_CHAR:
   2046             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2047             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2048             opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
   2049             storeValue(cUnit, rlDest, rlResult);
   2050             break;
   2051         case OP_ARRAY_LENGTH: {
   2052             int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   2053             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2054             genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
   2055                          mir->offset, NULL);
   2056             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2057             loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
   2058                          rlResult.lowReg);
   2059             storeValue(cUnit, rlDest, rlResult);
   2060             break;
   2061         }
   2062         default:
   2063             return true;
   2064     }
   2065     return false;
   2066 }
   2067 
   2068 static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
   2069 {
   2070     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2071     RegLocation rlDest;
   2072     RegLocation rlResult;
   2073     int BBBB = mir->dalvikInsn.vB;
   2074     if (dalvikOpcode == OP_CONST_WIDE_16) {
   2075         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2076         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2077         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   2078         //TUNING: do high separately to avoid load dependency
   2079         opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
   2080         storeValueWide(cUnit, rlDest, rlResult);
   2081     } else if (dalvikOpcode == OP_CONST_16) {
   2082         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2083         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   2084         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   2085         storeValue(cUnit, rlDest, rlResult);
   2086     } else
   2087         return true;
   2088     return false;
   2089 }
   2090 
   2091 /* Compare agaist zero */
   2092 static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2093                          ArmLIR *labelList)
   2094 {
   2095     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2096     ArmConditionCode cond;
   2097     /* backward branch? */
   2098     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   2099 
   2100     if (backwardBranch &&
   2101         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   2102         genSuspendPoll(cUnit, mir);
   2103     }
   2104 
   2105     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2106     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2107 
   2108     opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
   2109 
   2110 //TUNING: break this out to allow use of Thumb2 CB[N]Z
   2111     switch (dalvikOpcode) {
   2112         case OP_IF_EQZ:
   2113             cond = kArmCondEq;
   2114             break;
   2115         case OP_IF_NEZ:
   2116             cond = kArmCondNe;
   2117             break;
   2118         case OP_IF_LTZ:
   2119             cond = kArmCondLt;
   2120             break;
   2121         case OP_IF_GEZ:
   2122             cond = kArmCondGe;
   2123             break;
   2124         case OP_IF_GTZ:
   2125             cond = kArmCondGt;
   2126             break;
   2127         case OP_IF_LEZ:
   2128             cond = kArmCondLe;
   2129             break;
   2130         default:
   2131             cond = (ArmConditionCode)0;
   2132             ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
   2133             dvmCompilerAbort(cUnit);
   2134     }
   2135     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2136     /* This mostly likely will be optimized away in a later phase */
   2137     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2138     return false;
   2139 }
   2140 
   2141 static bool isPowerOfTwo(int x)
   2142 {
   2143     return (x & (x - 1)) == 0;
   2144 }
   2145 
   2146 // Returns true if no more than two bits are set in 'x'.
   2147 static bool isPopCountLE2(unsigned int x)
   2148 {
   2149     x &= x - 1;
   2150     return (x & (x - 1)) == 0;
   2151 }
   2152 
   2153 // Returns the index of the lowest set bit in 'x'.
   2154 static int lowestSetBit(unsigned int x) {
   2155     int bit_posn = 0;
   2156     while ((x & 0xf) == 0) {
   2157         bit_posn += 4;
   2158         x >>= 4;
   2159     }
   2160     while ((x & 1) == 0) {
   2161         bit_posn++;
   2162         x >>= 1;
   2163     }
   2164     return bit_posn;
   2165 }
   2166 
   2167 // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
   2168 // and store the result in 'rlDest'.
   2169 static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
   2170                              RegLocation rlSrc, RegLocation rlDest, int lit)
   2171 {
   2172     if (lit < 2 || !isPowerOfTwo(lit)) {
   2173         return false;
   2174     }
   2175     int k = lowestSetBit(lit);
   2176     if (k >= 30) {
   2177         // Avoid special cases.
   2178         return false;
   2179     }
   2180     bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
   2181     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2182     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2183     if (div) {
   2184         int tReg = dvmCompilerAllocTemp(cUnit);
   2185         if (lit == 2) {
   2186             // Division by 2 is by far the most common division by constant.
   2187             opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
   2188             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2189             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2190         } else {
   2191             opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
   2192             opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
   2193             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2194             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2195         }
   2196     } else {
   2197         int cReg = dvmCompilerAllocTemp(cUnit);
   2198         loadConstant(cUnit, cReg, lit - 1);
   2199         int tReg1 = dvmCompilerAllocTemp(cUnit);
   2200         int tReg2 = dvmCompilerAllocTemp(cUnit);
   2201         if (lit == 2) {
   2202             opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
   2203             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2204             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2205             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2206         } else {
   2207             opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
   2208             opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
   2209             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2210             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2211             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2212         }
   2213     }
   2214     storeValue(cUnit, rlDest, rlResult);
   2215     return true;
   2216 }
   2217 
   2218 // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
   2219 // and store the result in 'rlDest'.
   2220 static bool handleEasyMultiply(CompilationUnit *cUnit,
   2221                                RegLocation rlSrc, RegLocation rlDest, int lit)
   2222 {
   2223     // Can we simplify this multiplication?
   2224     bool powerOfTwo = false;
   2225     bool popCountLE2 = false;
   2226     bool powerOfTwoMinusOne = false;
   2227     if (lit < 2) {
   2228         // Avoid special cases.
   2229         return false;
   2230     } else if (isPowerOfTwo(lit)) {
   2231         powerOfTwo = true;
   2232     } else if (isPopCountLE2(lit)) {
   2233         popCountLE2 = true;
   2234     } else if (isPowerOfTwo(lit + 1)) {
   2235         powerOfTwoMinusOne = true;
   2236     } else {
   2237         return false;
   2238     }
   2239     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2240     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2241     if (powerOfTwo) {
   2242         // Shift.
   2243         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
   2244                     lowestSetBit(lit));
   2245     } else if (popCountLE2) {
   2246         // Shift and add and shift.
   2247         int firstBit = lowestSetBit(lit);
   2248         int secondBit = lowestSetBit(lit ^ (1 << firstBit));
   2249         genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
   2250                                       firstBit, secondBit);
   2251     } else {
   2252         // Reverse subtract: (src << (shift + 1)) - src.
   2253         assert(powerOfTwoMinusOne);
   2254         // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
   2255         int tReg = dvmCompilerAllocTemp(cUnit);
   2256         opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
   2257         opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
   2258     }
   2259     storeValue(cUnit, rlDest, rlResult);
   2260     return true;
   2261 }
   2262 
   2263 static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
   2264 {
   2265     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2266     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2267     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2268     RegLocation rlResult;
   2269     int lit = mir->dalvikInsn.vC;
   2270     OpKind op = (OpKind)0;      /* Make gcc happy */
   2271     int shiftOp = false;
   2272     bool isDiv = false;
   2273 
   2274     switch (dalvikOpcode) {
   2275         case OP_RSUB_INT_LIT8:
   2276         case OP_RSUB_INT: {
   2277             int tReg;
   2278             //TUNING: add support for use of Arm rsub op
   2279             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2280             tReg = dvmCompilerAllocTemp(cUnit);
   2281             loadConstant(cUnit, tReg, lit);
   2282             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2283             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
   2284                         tReg, rlSrc.lowReg);
   2285             storeValue(cUnit, rlDest, rlResult);
   2286             return false;
   2287             break;
   2288         }
   2289 
   2290         case OP_ADD_INT_LIT8:
   2291         case OP_ADD_INT_LIT16:
   2292             op = kOpAdd;
   2293             break;
   2294         case OP_MUL_INT_LIT8:
   2295         case OP_MUL_INT_LIT16: {
   2296             if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
   2297                 return false;
   2298             }
   2299             op = kOpMul;
   2300             break;
   2301         }
   2302         case OP_AND_INT_LIT8:
   2303         case OP_AND_INT_LIT16:
   2304             op = kOpAnd;
   2305             break;
   2306         case OP_OR_INT_LIT8:
   2307         case OP_OR_INT_LIT16:
   2308             op = kOpOr;
   2309             break;
   2310         case OP_XOR_INT_LIT8:
   2311         case OP_XOR_INT_LIT16:
   2312             op = kOpXor;
   2313             break;
   2314         case OP_SHL_INT_LIT8:
   2315             lit &= 31;
   2316             shiftOp = true;
   2317             op = kOpLsl;
   2318             break;
   2319         case OP_SHR_INT_LIT8:
   2320             lit &= 31;
   2321             shiftOp = true;
   2322             op = kOpAsr;
   2323             break;
   2324         case OP_USHR_INT_LIT8:
   2325             lit &= 31;
   2326             shiftOp = true;
   2327             op = kOpLsr;
   2328             break;
   2329 
   2330         case OP_DIV_INT_LIT8:
   2331         case OP_DIV_INT_LIT16:
   2332         case OP_REM_INT_LIT8:
   2333         case OP_REM_INT_LIT16:
   2334             if (lit == 0) {
   2335                 /* Let the interpreter deal with div by 0 */
   2336                 genInterpSingleStep(cUnit, mir);
   2337                 return false;
   2338             }
   2339             if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
   2340                 return false;
   2341             }
   2342             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2343             loadValueDirectFixed(cUnit, rlSrc, r0);
   2344             dvmCompilerClobber(cUnit, r0);
   2345             if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
   2346                 (dalvikOpcode == OP_DIV_INT_LIT16)) {
   2347                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
   2348                 isDiv = true;
   2349             } else {
   2350                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
   2351                 isDiv = false;
   2352             }
   2353             loadConstant(cUnit, r1, lit);
   2354             opReg(cUnit, kOpBlx, r2);
   2355             dvmCompilerClobberCallRegs(cUnit);
   2356             if (isDiv)
   2357                 rlResult = dvmCompilerGetReturn(cUnit);
   2358             else
   2359                 rlResult = dvmCompilerGetReturnAlt(cUnit);
   2360             storeValue(cUnit, rlDest, rlResult);
   2361             return false;
   2362             break;
   2363         default:
   2364             return true;
   2365     }
   2366     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2367     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2368     // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
   2369     if (shiftOp && (lit == 0)) {
   2370         genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2371     } else {
   2372         opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
   2373     }
   2374     storeValue(cUnit, rlDest, rlResult);
   2375     return false;
   2376 }
   2377 
   2378 static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
   2379 {
   2380     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2381     int fieldOffset = -1;
   2382     bool isVolatile = false;
   2383     switch (dalvikOpcode) {
   2384         /*
   2385          * Wide volatiles currently handled via single step.
   2386          * Add them here if generating in-line code.
   2387          *     case OP_IGET_WIDE_VOLATILE:
   2388          *     case OP_IPUT_WIDE_VOLATILE:
   2389          */
   2390         case OP_IGET_VOLATILE:
   2391         case OP_IGET_OBJECT_VOLATILE:
   2392         case OP_IPUT_VOLATILE:
   2393         case OP_IPUT_OBJECT_VOLATILE:
   2394 #if ANDROID_SMP != 0
   2395             isVolatile = true;
   2396         // NOTE: intentional fallthrough
   2397 #endif
   2398         case OP_IGET:
   2399         case OP_IGET_WIDE:
   2400         case OP_IGET_OBJECT:
   2401         case OP_IGET_BOOLEAN:
   2402         case OP_IGET_BYTE:
   2403         case OP_IGET_CHAR:
   2404         case OP_IGET_SHORT:
   2405         case OP_IPUT:
   2406         case OP_IPUT_WIDE:
   2407         case OP_IPUT_OBJECT:
   2408         case OP_IPUT_BOOLEAN:
   2409         case OP_IPUT_BYTE:
   2410         case OP_IPUT_CHAR:
   2411         case OP_IPUT_SHORT: {
   2412             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   2413                 mir->meta.calleeMethod : cUnit->method;
   2414             Field *fieldPtr =
   2415                 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
   2416 
   2417             if (fieldPtr == NULL) {
   2418                 BAIL_LOOP_COMPILATION();
   2419                 ALOGE("Unexpected null instance field");
   2420                 dvmAbort();
   2421             }
   2422 
   2423 #if ANDROID_SMP != 0
   2424             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   2425 #else
   2426             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   2427 #endif
   2428             fieldOffset = ((InstField *)fieldPtr)->byteOffset;
   2429             break;
   2430         }
   2431         default:
   2432             break;
   2433     }
   2434 
   2435     switch (dalvikOpcode) {
   2436         case OP_NEW_ARRAY: {
   2437             // Generates a call - use explicit registers
   2438             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2439             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2440             RegLocation rlResult;
   2441             void *classPtr = (void*)
   2442               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2443 
   2444             if (classPtr == NULL) {
   2445                 BAIL_LOOP_COMPILATION();
   2446                 ALOGE("Unexpected null class");
   2447                 dvmAbort();
   2448             }
   2449 
   2450             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2451             genExportPC(cUnit, mir);
   2452             loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
   2453             loadConstant(cUnit, r0, (int) classPtr );
   2454             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
   2455             /*
   2456              * "len < 0": bail to the interpreter to re-execute the
   2457              * instruction
   2458              */
   2459             genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
   2460             loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
   2461             opReg(cUnit, kOpBlx, r3);
   2462             dvmCompilerClobberCallRegs(cUnit);
   2463             /* generate a branch over if allocation is successful */
   2464             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   2465             /*
   2466              * OOM exception needs to be thrown here and cannot re-execute
   2467              */
   2468             loadConstant(cUnit, r0,
   2469                          (int) (cUnit->method->insns + mir->offset));
   2470             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2471             /* noreturn */
   2472 
   2473             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2474             target->defMask = ENCODE_ALL;
   2475             branchOver->generic.target = (LIR *) target;
   2476             rlResult = dvmCompilerGetReturn(cUnit);
   2477             storeValue(cUnit, rlDest, rlResult);
   2478             break;
   2479         }
   2480         case OP_INSTANCE_OF: {
   2481             // May generate a call - use explicit registers
   2482             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2483             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2484             RegLocation rlResult;
   2485             ClassObject *classPtr =
   2486               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2487             /*
   2488              * Note: It is possible that classPtr is NULL at this point,
   2489              * even though this instruction has been successfully interpreted.
   2490              * If the previous interpretation had a null source, the
   2491              * interpreter would not have bothered to resolve the clazz.
   2492              * Bail out to the interpreter in this case, and log it
   2493              * so that we can tell if it happens frequently.
   2494              */
   2495             if (classPtr == NULL) {
   2496                 BAIL_LOOP_COMPILATION();
   2497                 ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
   2498                 genInterpSingleStep(cUnit, mir);
   2499                 break;
   2500             }
   2501             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2502             loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
   2503             loadConstant(cUnit, r2, (int) classPtr );
   2504             /* When taken r0 has NULL which can be used for store directly */
   2505             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
   2506             /* r1 now contains object->clazz */
   2507             loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
   2508             /* r1 now contains object->clazz */
   2509             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
   2510             loadConstant(cUnit, r0, 1);                /* Assume true */
   2511             opRegReg(cUnit, kOpCmp, r1, r2);
   2512             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   2513             genRegCopy(cUnit, r0, r1);
   2514             genRegCopy(cUnit, r1, r2);
   2515             opReg(cUnit, kOpBlx, r3);
   2516             dvmCompilerClobberCallRegs(cUnit);
   2517             /* branch target here */
   2518             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2519             target->defMask = ENCODE_ALL;
   2520             rlResult = dvmCompilerGetReturn(cUnit);
   2521             storeValue(cUnit, rlDest, rlResult);
   2522             branch1->generic.target = (LIR *)target;
   2523             branch2->generic.target = (LIR *)target;
   2524             break;
   2525         }
   2526         case OP_IGET_WIDE:
   2527             genIGetWide(cUnit, mir, fieldOffset);
   2528             break;
   2529         case OP_IGET_VOLATILE:
   2530         case OP_IGET_OBJECT_VOLATILE:
   2531         case OP_IGET:
   2532         case OP_IGET_OBJECT:
   2533         case OP_IGET_BOOLEAN:
   2534         case OP_IGET_BYTE:
   2535         case OP_IGET_CHAR:
   2536         case OP_IGET_SHORT:
   2537             genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
   2538             break;
   2539         case OP_IPUT_WIDE:
   2540             genIPutWide(cUnit, mir, fieldOffset);
   2541             break;
   2542         case OP_IPUT_VOLATILE:
   2543         case OP_IPUT:
   2544         case OP_IPUT_BOOLEAN:
   2545         case OP_IPUT_BYTE:
   2546         case OP_IPUT_CHAR:
   2547         case OP_IPUT_SHORT:
   2548             genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
   2549             break;
   2550         case OP_IPUT_OBJECT_VOLATILE:
   2551         case OP_IPUT_OBJECT:
   2552             genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
   2553             break;
   2554         case OP_IGET_WIDE_VOLATILE:
   2555         case OP_IPUT_WIDE_VOLATILE:
   2556             genInterpSingleStep(cUnit, mir);
   2557             break;
   2558         default:
   2559             return true;
   2560     }
   2561     return false;
   2562 }
   2563 
   2564 static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
   2565 {
   2566     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2567     int fieldOffset =  mir->dalvikInsn.vC;
   2568     switch (dalvikOpcode) {
   2569         case OP_IGET_QUICK:
   2570         case OP_IGET_OBJECT_QUICK:
   2571             genIGet(cUnit, mir, kWord, fieldOffset, false);
   2572             break;
   2573         case OP_IPUT_QUICK:
   2574             genIPut(cUnit, mir, kWord, fieldOffset, false, false);
   2575             break;
   2576         case OP_IPUT_OBJECT_QUICK:
   2577             genIPut(cUnit, mir, kWord, fieldOffset, true, false);
   2578             break;
   2579         case OP_IGET_WIDE_QUICK:
   2580             genIGetWide(cUnit, mir, fieldOffset);
   2581             break;
   2582         case OP_IPUT_WIDE_QUICK:
   2583             genIPutWide(cUnit, mir, fieldOffset);
   2584             break;
   2585         default:
   2586             return true;
   2587     }
   2588     return false;
   2589 
   2590 }
   2591 
   2592 /* Compare agaist zero */
   2593 static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2594                          ArmLIR *labelList)
   2595 {
   2596     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2597     ArmConditionCode cond;
   2598     /* backward branch? */
   2599     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   2600 
   2601     if (backwardBranch &&
   2602         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   2603         genSuspendPoll(cUnit, mir);
   2604     }
   2605 
   2606     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2607     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2608 
   2609     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
   2610     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
   2611 
   2612     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
   2613 
   2614     switch (dalvikOpcode) {
   2615         case OP_IF_EQ:
   2616             cond = kArmCondEq;
   2617             break;
   2618         case OP_IF_NE:
   2619             cond = kArmCondNe;
   2620             break;
   2621         case OP_IF_LT:
   2622             cond = kArmCondLt;
   2623             break;
   2624         case OP_IF_GE:
   2625             cond = kArmCondGe;
   2626             break;
   2627         case OP_IF_GT:
   2628             cond = kArmCondGt;
   2629             break;
   2630         case OP_IF_LE:
   2631             cond = kArmCondLe;
   2632             break;
   2633         default:
   2634             cond = (ArmConditionCode)0;
   2635             ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
   2636             dvmCompilerAbort(cUnit);
   2637     }
   2638     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2639     /* This mostly likely will be optimized away in a later phase */
   2640     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2641     return false;
   2642 }
   2643 
   2644 static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
   2645 {
   2646     Opcode opcode = mir->dalvikInsn.opcode;
   2647 
   2648     switch (opcode) {
   2649         case OP_MOVE_16:
   2650         case OP_MOVE_OBJECT_16:
   2651         case OP_MOVE_FROM16:
   2652         case OP_MOVE_OBJECT_FROM16: {
   2653             storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
   2654                        dvmCompilerGetSrc(cUnit, mir, 0));
   2655             break;
   2656         }
   2657         case OP_MOVE_WIDE_16:
   2658         case OP_MOVE_WIDE_FROM16: {
   2659             storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
   2660                            dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
   2661             break;
   2662         }
   2663         default:
   2664             return true;
   2665     }
   2666     return false;
   2667 }
   2668 
   2669 static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
   2670 {
   2671     Opcode opcode = mir->dalvikInsn.opcode;
   2672     RegLocation rlSrc1;
   2673     RegLocation rlSrc2;
   2674     RegLocation rlDest;
   2675 
   2676     if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
   2677         return genArithOp( cUnit, mir );
   2678     }
   2679 
   2680     /* APUTs have 3 sources and no targets */
   2681     if (mir->ssaRep->numDefs == 0) {
   2682         if (mir->ssaRep->numUses == 3) {
   2683             rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
   2684             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
   2685             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
   2686         } else {
   2687             assert(mir->ssaRep->numUses == 4);
   2688             rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2689             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
   2690             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
   2691         }
   2692     } else {
   2693         /* Two sources and 1 dest.  Deduce the operand sizes */
   2694         if (mir->ssaRep->numUses == 4) {
   2695             rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2696             rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
   2697         } else {
   2698             assert(mir->ssaRep->numUses == 2);
   2699             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2700             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2701         }
   2702         if (mir->ssaRep->numDefs == 2) {
   2703             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2704         } else {
   2705             assert(mir->ssaRep->numDefs == 1);
   2706             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2707         }
   2708     }
   2709 
   2710 
   2711     switch (opcode) {
   2712         case OP_CMPL_FLOAT:
   2713         case OP_CMPG_FLOAT:
   2714         case OP_CMPL_DOUBLE:
   2715         case OP_CMPG_DOUBLE:
   2716             return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2717         case OP_CMP_LONG:
   2718             genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2719             break;
   2720         case OP_AGET_WIDE:
   2721             genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2722             break;
   2723         case OP_AGET:
   2724         case OP_AGET_OBJECT:
   2725             genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2726             break;
   2727         case OP_AGET_BOOLEAN:
   2728             genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2729             break;
   2730         case OP_AGET_BYTE:
   2731             genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2732             break;
   2733         case OP_AGET_CHAR:
   2734             genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2735             break;
   2736         case OP_AGET_SHORT:
   2737             genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2738             break;
   2739         case OP_APUT_WIDE:
   2740             genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2741             break;
   2742         case OP_APUT:
   2743             genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2744             break;
   2745         case OP_APUT_OBJECT:
   2746             genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
   2747             break;
   2748         case OP_APUT_SHORT:
   2749         case OP_APUT_CHAR:
   2750             genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2751             break;
   2752         case OP_APUT_BYTE:
   2753         case OP_APUT_BOOLEAN:
   2754             genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2755             break;
   2756         default:
   2757             return true;
   2758     }
   2759     return false;
   2760 }
   2761 
   2762 /*
   2763  * Find the matching case.
   2764  *
   2765  * return values:
   2766  * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
   2767  *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
   2768  * r1 (high 32-bit): the branch offset of the matching case (only for indexes
   2769  *    above MAX_CHAINED_SWITCH_CASES).
   2770  *
   2771  * Instructions around the call are:
   2772  *
   2773  * mov r2, pc
   2774  * blx &findPackedSwitchIndex
   2775  * mov pc, r0
   2776  * .align4
   2777  * chaining cell for case 0 [12 bytes]
   2778  * chaining cell for case 1 [12 bytes]
   2779  *               :
   2780  * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
   2781  * chaining cell for case default [8 bytes]
   2782  * noChain exit
   2783  */
   2784 static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
   2785 {
   2786     int size;
   2787     int firstKey;
   2788     const int *entries;
   2789     int index;
   2790     int jumpIndex;
   2791     int caseDPCOffset = 0;
   2792     /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
   2793     int chainingPC = (pc + 4) & ~3;
   2794 
   2795     /*
   2796      * Packed switch data format:
   2797      *  ushort ident = 0x0100   magic value
   2798      *  ushort size             number of entries in the table
   2799      *  int first_key           first (and lowest) switch case value
   2800      *  int targets[size]       branch targets, relative to switch opcode
   2801      *
   2802      * Total size is (4+size*2) 16-bit code units.
   2803      */
   2804     size = switchData[1];
   2805     assert(size > 0);
   2806 
   2807     firstKey = switchData[2];
   2808     firstKey |= switchData[3] << 16;
   2809 
   2810 
   2811     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2812      * we can treat them as a native int array.
   2813      */
   2814     entries = (const int*) &switchData[4];
   2815     assert(((u4)entries & 0x3) == 0);
   2816 
   2817     index = testVal - firstKey;
   2818 
   2819     /* Jump to the default cell */
   2820     if (index < 0 || index >= size) {
   2821         jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
   2822     /* Jump to the non-chaining exit point */
   2823     } else if (index >= MAX_CHAINED_SWITCH_CASES) {
   2824         jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
   2825         caseDPCOffset = entries[index];
   2826     /* Jump to the inline chaining cell */
   2827     } else {
   2828         jumpIndex = index;
   2829     }
   2830 
   2831     chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2832     return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
   2833 }
   2834 
   2835 /* See comments for findPackedSwitchIndex */
   2836 static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
   2837 {
   2838     int size;
   2839     const int *keys;
   2840     const int *entries;
   2841     int chainingPC = (pc + 4) & ~3;
   2842     int i;
   2843 
   2844     /*
   2845      * Sparse switch data format:
   2846      *  ushort ident = 0x0200   magic value
   2847      *  ushort size             number of entries in the table; > 0
   2848      *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   2849      *  int targets[size]       branch targets, relative to switch opcode
   2850      *
   2851      * Total size is (2+size*4) 16-bit code units.
   2852      */
   2853 
   2854     size = switchData[1];
   2855     assert(size > 0);
   2856 
   2857     /* The keys are guaranteed to be aligned on a 32-bit boundary;
   2858      * we can treat them as a native int array.
   2859      */
   2860     keys = (const int*) &switchData[2];
   2861     assert(((u4)keys & 0x3) == 0);
   2862 
   2863     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2864      * we can treat them as a native int array.
   2865      */
   2866     entries = keys + size;
   2867     assert(((u4)entries & 0x3) == 0);
   2868 
   2869     /*
   2870      * Run through the list of keys, which are guaranteed to
   2871      * be sorted low-to-high.
   2872      *
   2873      * Most tables have 3-4 entries.  Few have more than 10.  A binary
   2874      * search here is probably not useful.
   2875      */
   2876     for (i = 0; i < size; i++) {
   2877         int k = keys[i];
   2878         if (k == testVal) {
   2879             /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
   2880             int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
   2881                            i : MAX_CHAINED_SWITCH_CASES + 1;
   2882             chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2883             return (((s8) entries[i]) << 32) | (u8) chainingPC;
   2884         } else if (k > testVal) {
   2885             break;
   2886         }
   2887     }
   2888     return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
   2889            CHAIN_CELL_NORMAL_SIZE;
   2890 }
   2891 
   2892 static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
   2893 {
   2894     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2895     switch (dalvikOpcode) {
   2896         case OP_FILL_ARRAY_DATA: {
   2897             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2898             // Making a call - use explicit registers
   2899             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2900             genExportPC(cUnit, mir);
   2901             loadValueDirectFixed(cUnit, rlSrc, r0);
   2902             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
   2903             loadConstant(cUnit, r1,
   2904                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2905             opReg(cUnit, kOpBlx, r2);
   2906             dvmCompilerClobberCallRegs(cUnit);
   2907             /* generate a branch over if successful */
   2908             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   2909             loadConstant(cUnit, r0,
   2910                          (int) (cUnit->method->insns + mir->offset));
   2911             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2912             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2913             target->defMask = ENCODE_ALL;
   2914             branchOver->generic.target = (LIR *) target;
   2915             break;
   2916         }
   2917         /*
   2918          * Compute the goto target of up to
   2919          * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
   2920          * See the comment before findPackedSwitchIndex for the code layout.
   2921          */
   2922         case OP_PACKED_SWITCH:
   2923         case OP_SPARSE_SWITCH: {
   2924             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2925             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2926             loadValueDirectFixed(cUnit, rlSrc, r1);
   2927             dvmCompilerLockAllTemps(cUnit);
   2928             if (dalvikOpcode == OP_PACKED_SWITCH) {
   2929                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
   2930             } else {
   2931                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
   2932             }
   2933             /* r0 <- Addr of the switch data */
   2934             loadConstant(cUnit, r0,
   2935                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2936             /* r2 <- pc of the instruction following the blx */
   2937             opRegReg(cUnit, kOpMov, r2, r15pc);
   2938             opReg(cUnit, kOpBlx, r4PC);
   2939             dvmCompilerClobberCallRegs(cUnit);
   2940             /* pc <- computed goto target */
   2941             opRegReg(cUnit, kOpMov, r15pc, r0);
   2942             break;
   2943         }
   2944         default:
   2945             return true;
   2946     }
   2947     return false;
   2948 }
   2949 
   2950 /*
   2951  * See the example of predicted inlining listed before the
   2952  * genValidationForPredictedInline function. The function here takes care the
   2953  * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
   2954  */
   2955 static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
   2956                                                BasicBlock *bb,
   2957                                                ArmLIR *labelList)
   2958 {
   2959     BasicBlock *fallThrough = bb->fallThrough;
   2960 
   2961     /* Bypass the move-result block if there is one */
   2962     if (fallThrough->firstMIRInsn) {
   2963         assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
   2964         fallThrough = fallThrough->fallThrough;
   2965     }
   2966     /* Generate a branch over if the predicted inlining is correct */
   2967     genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
   2968 
   2969     /* Reset the register state */
   2970     dvmCompilerResetRegPool(cUnit);
   2971     dvmCompilerClobberAllRegs(cUnit);
   2972     dvmCompilerResetNullCheck(cUnit);
   2973 
   2974     /* Target for the slow invoke path */
   2975     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2976     target->defMask = ENCODE_ALL;
   2977     /* Hook up the target to the verification branch */
   2978     mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
   2979 }
   2980 
   2981 static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
   2982                              BasicBlock *bb, ArmLIR *labelList)
   2983 {
   2984     ArmLIR *retChainingCell = NULL;
   2985     ArmLIR *pcrLabel = NULL;
   2986 
   2987     /* An invoke with the MIR_INLINED is effectively a no-op */
   2988     if (mir->OptimizationFlags & MIR_INLINED)
   2989         return false;
   2990 
   2991     if (bb->fallThrough != NULL)
   2992         retChainingCell = &labelList[bb->fallThrough->id];
   2993 
   2994     DecodedInstruction *dInsn = &mir->dalvikInsn;
   2995     switch (mir->dalvikInsn.opcode) {
   2996         /*
   2997          * calleeMethod = this->clazz->vtable[
   2998          *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
   2999          * ]
   3000          */
   3001         case OP_INVOKE_VIRTUAL:
   3002         case OP_INVOKE_VIRTUAL_RANGE: {
   3003             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3004             int methodIndex =
   3005                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
   3006                 methodIndex;
   3007 
   3008             /*
   3009              * If the invoke has non-null misPredBranchOver, we need to generate
   3010              * the non-inlined version of the invoke here to handle the
   3011              * mispredicted case.
   3012              */
   3013             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3014                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3015             }
   3016 
   3017             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
   3018                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3019             else
   3020                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3021 
   3022             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3023                                    retChainingCell,
   3024                                    predChainingCell,
   3025                                    pcrLabel);
   3026             break;
   3027         }
   3028         /*
   3029          * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
   3030          *                ->pResMethods[BBBB]->methodIndex]
   3031          */
   3032         case OP_INVOKE_SUPER:
   3033         case OP_INVOKE_SUPER_RANGE: {
   3034             /* Grab the method ptr directly from what the interpreter sees */
   3035             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3036             assert(calleeMethod == cUnit->method->clazz->super->vtable[
   3037                                      cUnit->method->clazz->pDvmDex->
   3038                                        pResMethods[dInsn->vB]->methodIndex]);
   3039 
   3040             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
   3041                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3042             else
   3043                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3044 
   3045             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3046                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3047                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3048                 assert(calleeAddr);
   3049                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
   3050                                               retChainingCell);
   3051             } else {
   3052                 /* r0 = calleeMethod */
   3053                 loadConstant(cUnit, r0, (int) calleeMethod);
   3054 
   3055                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3056                                          calleeMethod);
   3057             }
   3058             break;
   3059         }
   3060         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   3061         case OP_INVOKE_DIRECT:
   3062         case OP_INVOKE_DIRECT_RANGE: {
   3063             /* Grab the method ptr directly from what the interpreter sees */
   3064             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3065             assert(calleeMethod ==
   3066                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   3067 
   3068             if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
   3069                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3070             else
   3071                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3072 
   3073             /* r0 = calleeMethod */
   3074             loadConstant(cUnit, r0, (int) calleeMethod);
   3075 
   3076             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3077                                      calleeMethod);
   3078             break;
   3079         }
   3080         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   3081         case OP_INVOKE_STATIC:
   3082         case OP_INVOKE_STATIC_RANGE: {
   3083             /* Grab the method ptr directly from what the interpreter sees */
   3084             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3085             assert(calleeMethod ==
   3086                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   3087 
   3088             if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
   3089                 genProcessArgsNoRange(cUnit, mir, dInsn,
   3090                                       NULL /* no null check */);
   3091             else
   3092                 genProcessArgsRange(cUnit, mir, dInsn,
   3093                                     NULL /* no null check */);
   3094 
   3095             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3096                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3097                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3098                 assert(calleeAddr);
   3099                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
   3100                                               retChainingCell);
   3101             } else {
   3102                 /* r0 = calleeMethod */
   3103                 loadConstant(cUnit, r0, (int) calleeMethod);
   3104 
   3105                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3106                                          calleeMethod);
   3107             }
   3108             break;
   3109         }
   3110         /*
   3111          * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
   3112          *                    BBBB, method, method->clazz->pDvmDex)
   3113          *
   3114          * The following is an example of generated code for
   3115          *      "invoke-interface v0"
   3116          *
   3117          * -------- dalvik offset: 0x0008 @ invoke-interface v0
   3118          * 0x47357e36 : ldr     r0, [r5, #0]   --+
   3119          * 0x47357e38 : sub     r7,r5,#24        |
   3120          * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
   3121          * 0x47357e3e : beq     0x47357e82       |
   3122          * 0x47357e40 : stmia   r7, <r0>       --+
   3123          * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
   3124          * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
   3125          * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
   3126          * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
   3127          * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
   3128          * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
   3129          * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
   3130          * 0x47357e50 : mov     r8, r1         --+
   3131          * 0x47357e52 : mov     r9, r2           |
   3132          * 0x47357e54 : ldr     r2, [pc, #96]    |
   3133          * 0x47357e56 : mov     r10, r3          |
   3134          * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
   3135          * 0x47357e5a : ldr     r3, [pc, #88]    |
   3136          * 0x47357e5c : ldr     r7, [pc, #80]    |
   3137          * 0x47357e5e : mov     r1, #1452        |
   3138          * 0x47357e62 : blx     r7             --+
   3139          * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
   3140          * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
   3141          * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
   3142          * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
   3143          * 0x47357e6c : blx_2   see above      --+     COMMON
   3144          * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
   3145          * 0x47357e70 : cmp     r1, #0         --> compare against 0
   3146          * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
   3147          * 0x47357e74 : ldr     r7, [pc, #off] --+
   3148          * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
   3149          * 0x47357e78 : mov     r3, r10          |
   3150          * 0x47357e7a : blx     r7             --+
   3151          * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
   3152          * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   3153          * 0x47357e80 : blx_2   see above      --+
   3154          * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
   3155          * 0x47357e82 : ldr     r0, [pc, #56]
   3156          * Exception_Handling:
   3157          * 0x47357e84 : ldr     r1, [r6, #92]
   3158          * 0x47357e86 : blx     r1
   3159          * 0x47357e88 : .align4
   3160          * -------- chaining cell (hot): 0x000b
   3161          * 0x47357e88 : ldr     r0, [r6, #104]
   3162          * 0x47357e8a : blx     r0
   3163          * 0x47357e8c : data    0x19e2(6626)
   3164          * 0x47357e8e : data    0x4257(16983)
   3165          * 0x47357e90 : .align4
   3166          * -------- chaining cell (predicted)
   3167          * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
   3168          * 0x47357e92 : data    0x0000(0)
   3169          * 0x47357e94 : data    0x0000(0)      --> class
   3170          * 0x47357e96 : data    0x0000(0)
   3171          * 0x47357e98 : data    0x0000(0)      --> method
   3172          * 0x47357e9a : data    0x0000(0)
   3173          * 0x47357e9c : data    0x0000(0)      --> rechain count
   3174          * 0x47357e9e : data    0x0000(0)
   3175          * -------- end of chaining cells (0x006c)
   3176          * 0x47357eb0 : .word (0xad03e369)
   3177          * 0x47357eb4 : .word (0x28a90)
   3178          * 0x47357eb8 : .word (0x41a63394)
   3179          * 0x47357ebc : .word (0x425719dc)
   3180          */
   3181         case OP_INVOKE_INTERFACE:
   3182         case OP_INVOKE_INTERFACE_RANGE: {
   3183             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3184 
   3185             /*
   3186              * If the invoke has non-null misPredBranchOver, we need to generate
   3187              * the non-inlined version of the invoke here to handle the
   3188              * mispredicted case.
   3189              */
   3190             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3191                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3192             }
   3193 
   3194             if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
   3195                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3196             else
   3197                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3198 
   3199             /* "this" is already left in r0 by genProcessArgs* */
   3200 
   3201             /* r4PC = dalvikCallsite */
   3202             loadConstant(cUnit, r4PC,
   3203                          (int) (cUnit->method->insns + mir->offset));
   3204 
   3205             /* r1 = &retChainingCell */
   3206             ArmLIR *addrRetChain =
   3207                 opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   3208             addrRetChain->generic.target = (LIR *) retChainingCell;
   3209 
   3210             /* r2 = &predictedChainingCell */
   3211             ArmLIR *predictedChainingCell =
   3212                 opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
   3213             predictedChainingCell->generic.target = (LIR *) predChainingCell;
   3214 
   3215             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   3216                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
   3217                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   3218 
   3219             /* return through lr - jump to the chaining cell */
   3220             genUnconditionalBranch(cUnit, predChainingCell);
   3221 
   3222             /*
   3223              * null-check on "this" may have been eliminated, but we still need
   3224              * a PC-reconstruction label for stack overflow bailout.
   3225              */
   3226             if (pcrLabel == NULL) {
   3227                 int dPC = (int) (cUnit->method->insns + mir->offset);
   3228                 pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   3229                 pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   3230                 pcrLabel->operands[0] = dPC;
   3231                 pcrLabel->operands[1] = mir->offset;
   3232                 /* Insert the place holder to the growable list */
   3233                 dvmInsertGrowableList(&cUnit->pcReconstructionList,
   3234                                       (intptr_t) pcrLabel);
   3235             }
   3236 
   3237             /* return through lr+2 - punt to the interpreter */
   3238             genUnconditionalBranch(cUnit, pcrLabel);
   3239 
   3240             /*
   3241              * return through lr+4 - fully resolve the callee method.
   3242              * r1 <- count
   3243              * r2 <- &predictedChainCell
   3244              * r3 <- this->class
   3245              * r4 <- dPC
   3246              * r7 <- this->class->vtable
   3247              */
   3248 
   3249             /* Save count, &predictedChainCell, and class to high regs first */
   3250             genRegCopy(cUnit, r8, r1);
   3251             genRegCopy(cUnit, r9, r2);
   3252             genRegCopy(cUnit, r10, r3);
   3253 
   3254             /* r0 now contains this->clazz */
   3255             genRegCopy(cUnit, r0, r3);
   3256 
   3257             /* r1 = BBBB */
   3258             loadConstant(cUnit, r1, dInsn->vB);
   3259 
   3260             /* r2 = method (caller) */
   3261             loadConstant(cUnit, r2, (int) cUnit->method);
   3262 
   3263             /* r3 = pDvmDex */
   3264             loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
   3265 
   3266             LOAD_FUNC_ADDR(cUnit, r7,
   3267                            (intptr_t) dvmFindInterfaceMethodInCache);
   3268             opReg(cUnit, kOpBlx, r7);
   3269             /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
   3270 
   3271             dvmCompilerClobberCallRegs(cUnit);
   3272             /* generate a branch over if the interface method is resolved */
   3273             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   3274             /*
   3275              * calleeMethod == NULL -> throw
   3276              */
   3277             loadConstant(cUnit, r0,
   3278                          (int) (cUnit->method->insns + mir->offset));
   3279             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3280             /* noreturn */
   3281 
   3282             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3283             target->defMask = ENCODE_ALL;
   3284             branchOver->generic.target = (LIR *) target;
   3285 
   3286             genRegCopy(cUnit, r1, r8);
   3287 
   3288             /* Check if rechain limit is reached */
   3289             ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
   3290                                                        r1, 0);
   3291 
   3292             LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
   3293 
   3294             genRegCopy(cUnit, r1, r6SELF);
   3295             genRegCopy(cUnit, r2, r9);
   3296             genRegCopy(cUnit, r3, r10);
   3297 
   3298             /*
   3299              * r0 = calleeMethod
   3300              * r2 = &predictedChainingCell
   3301              * r3 = class
   3302              *
   3303              * &returnChainingCell has been loaded into r1 but is not needed
   3304              * when patching the chaining cell and will be clobbered upon
   3305              * returning so it will be reconstructed again.
   3306              */
   3307             opReg(cUnit, kOpBlx, r7);
   3308 
   3309             /* r1 = &retChainingCell */
   3310             addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   3311             addrRetChain->generic.target = (LIR *) retChainingCell;
   3312 
   3313             bypassRechaining->generic.target = (LIR *) addrRetChain;
   3314 
   3315             /*
   3316              * r0 = this, r1 = calleeMethod,
   3317              * r1 = &ChainingCell,
   3318              * r4PC = callsiteDPC,
   3319              */
   3320             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   3321                 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
   3322                 TEMPLATE_INVOKE_METHOD_NO_OPT);
   3323 #if defined(WITH_JIT_TUNING)
   3324             gDvmJit.invokePolymorphic++;
   3325 #endif
   3326             /* Handle exceptions using the interpreter */
   3327             genTrap(cUnit, mir->offset, pcrLabel);
   3328             break;
   3329         }
   3330         case OP_INVOKE_OBJECT_INIT_RANGE:
   3331         case OP_FILLED_NEW_ARRAY:
   3332         case OP_FILLED_NEW_ARRAY_RANGE: {
   3333             /* Just let the interpreter deal with these */
   3334             genInterpSingleStep(cUnit, mir);
   3335             break;
   3336         }
   3337         default:
   3338             return true;
   3339     }
   3340     return false;
   3341 }
   3342 
   3343 static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
   3344                                BasicBlock *bb, ArmLIR *labelList)
   3345 {
   3346     ArmLIR *pcrLabel = NULL;
   3347 
   3348     /* An invoke with the MIR_INLINED is effectively a no-op */
   3349     if (mir->OptimizationFlags & MIR_INLINED)
   3350         return false;
   3351 
   3352     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3353     switch (mir->dalvikInsn.opcode) {
   3354         /* calleeMethod = this->clazz->vtable[BBBB] */
   3355         case OP_INVOKE_VIRTUAL_QUICK_RANGE:
   3356         case OP_INVOKE_VIRTUAL_QUICK: {
   3357             int methodIndex = dInsn->vB;
   3358             ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   3359             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3360 
   3361             /*
   3362              * If the invoke has non-null misPredBranchOver, we need to generate
   3363              * the non-inlined version of the invoke here to handle the
   3364              * mispredicted case.
   3365              */
   3366             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3367                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3368             }
   3369 
   3370             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
   3371                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3372             else
   3373                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3374 
   3375 
   3376             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3377                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3378                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3379                 assert(calleeAddr);
   3380                 genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
   3381                                             retChainingCell);
   3382             }
   3383 
   3384             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3385                                    retChainingCell,
   3386                                    predChainingCell,
   3387                                    pcrLabel);
   3388             break;
   3389         }
   3390         /* calleeMethod = method->clazz->super->vtable[BBBB] */
   3391         case OP_INVOKE_SUPER_QUICK:
   3392         case OP_INVOKE_SUPER_QUICK_RANGE: {
   3393             /* Grab the method ptr directly from what the interpreter sees */
   3394             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3395             assert(calleeMethod ==
   3396                    cUnit->method->clazz->super->vtable[dInsn->vB]);
   3397 
   3398             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
   3399                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3400             else
   3401                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3402 
   3403             /* r0 = calleeMethod */
   3404             loadConstant(cUnit, r0, (int) calleeMethod);
   3405 
   3406             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3407                                      calleeMethod);
   3408             break;
   3409         }
   3410         default:
   3411             return true;
   3412     }
   3413     return false;
   3414 }
   3415 
   3416 /*
   3417  * This operation is complex enough that we'll do it partly inline
   3418  * and partly with a handler.  NOTE: the handler uses hardcoded
   3419  * values for string object offsets and must be revisitied if the
   3420  * layout changes.
   3421  */
   3422 static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
   3423 {
   3424 #if defined(USE_GLOBAL_STRING_DEFS)
   3425     return handleExecuteInlineC(cUnit, mir);
   3426 #else
   3427     ArmLIR *rollback;
   3428     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3429     RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
   3430 
   3431     loadValueDirectFixed(cUnit, rlThis, r0);
   3432     loadValueDirectFixed(cUnit, rlComp, r1);
   3433     /* Test objects for NULL */
   3434     rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3435     genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
   3436     /*
   3437      * TUNING: we could check for object pointer equality before invoking
   3438      * handler. Unclear whether the gain would be worth the added code size
   3439      * expansion.
   3440      */
   3441     genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
   3442     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3443                dvmCompilerGetReturn(cUnit));
   3444     return false;
   3445 #endif
   3446 }
   3447 
   3448 static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
   3449 {
   3450 #if defined(USE_GLOBAL_STRING_DEFS)
   3451     return handleExecuteInlineC(cUnit, mir);
   3452 #else
   3453     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3454     RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
   3455 
   3456     loadValueDirectFixed(cUnit, rlThis, r0);
   3457     loadValueDirectFixed(cUnit, rlChar, r1);
   3458     RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
   3459     loadValueDirectFixed(cUnit, rlStart, r2);
   3460     /* Test objects for NULL */
   3461     genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3462     genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
   3463     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3464                dvmCompilerGetReturn(cUnit));
   3465     return false;
   3466 #endif
   3467 }
   3468 
   3469 // Generates an inlined String.isEmpty or String.length.
   3470 static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
   3471                                             bool isEmpty)
   3472 {
   3473     // dst = src.length();
   3474     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3475     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3476     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3477     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3478     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
   3479     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
   3480                  rlResult.lowReg);
   3481     if (isEmpty) {
   3482         // dst = (dst == 0);
   3483         int tReg = dvmCompilerAllocTemp(cUnit);
   3484         opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
   3485         opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
   3486     }
   3487     storeValue(cUnit, rlDest, rlResult);
   3488     return false;
   3489 }
   3490 
   3491 static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
   3492 {
   3493     return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
   3494 }
   3495 
   3496 static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
   3497 {
   3498     return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
   3499 }
   3500 
   3501 static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
   3502 {
   3503     int contents = OFFSETOF_MEMBER(ArrayObject, contents);
   3504     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3505     RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
   3506     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3507     RegLocation rlResult;
   3508     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3509     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3510     int regMax = dvmCompilerAllocTemp(cUnit);
   3511     int regOff = dvmCompilerAllocTemp(cUnit);
   3512     int regPtr = dvmCompilerAllocTemp(cUnit);
   3513     ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
   3514                                     mir->offset, NULL);
   3515     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
   3516     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
   3517     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
   3518     genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
   3519     dvmCompilerFreeTemp(cUnit, regMax);
   3520     opRegImm(cUnit, kOpAdd, regPtr, contents);
   3521     opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
   3522     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3523     loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
   3524     storeValue(cUnit, rlDest, rlResult);
   3525     return false;
   3526 }
   3527 
   3528 static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
   3529 {
   3530     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3531     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   3532     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3533     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3534     int signReg = dvmCompilerAllocTemp(cUnit);
   3535     /*
   3536      * abs(x) = y<=x>>31, (x+y)^y.
   3537      * Thumb2's IT block also yields 3 instructions, but imposes
   3538      * scheduling constraints.
   3539      */
   3540     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
   3541     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3542     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3543     storeValue(cUnit, rlDest, rlResult);
   3544     return false;
   3545 }
   3546 
   3547 static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
   3548 {
   3549     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3550     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3551     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
   3552     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3553     int signReg = dvmCompilerAllocTemp(cUnit);
   3554     /*
   3555      * abs(x) = y<=x>>31, (x+y)^y.
   3556      * Thumb2 IT block allows slightly shorter sequence,
   3557      * but introduces a scheduling barrier.  Stick with this
   3558      * mechanism for now.
   3559      */
   3560     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
   3561     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3562     opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
   3563     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3564     opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
   3565     storeValueWide(cUnit, rlDest, rlResult);
   3566     return false;
   3567 }
   3568 
   3569 static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
   3570 {
   3571     // Just move from source to destination...
   3572     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3573     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3574     storeValue(cUnit, rlDest, rlSrc);
   3575     return false;
   3576 }
   3577 
   3578 static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
   3579 {
   3580     // Just move from source to destination...
   3581     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3582     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3583     storeValueWide(cUnit, rlDest, rlSrc);
   3584     return false;
   3585 }
   3586 
   3587 /*
   3588  * JITs a call to a C function.
   3589  * TODO: use this for faster native method invocation for simple native
   3590  * methods (http://b/3069458).
   3591  */
   3592 static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
   3593 {
   3594     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3595     int operation = dInsn->vB;
   3596     unsigned int i;
   3597     const InlineOperation* inLineTable = dvmGetInlineOpsTable();
   3598     uintptr_t fn = (int) inLineTable[operation].func;
   3599     if (fn == 0) {
   3600         dvmCompilerAbort(cUnit);
   3601     }
   3602     dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   3603     dvmCompilerClobberCallRegs(cUnit);
   3604     dvmCompilerClobber(cUnit, r4PC);
   3605     dvmCompilerClobber(cUnit, r7);
   3606     int offset = offsetof(Thread, interpSave.retval);
   3607     opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
   3608     opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
   3609     LOAD_FUNC_ADDR(cUnit, r4PC, fn);
   3610     genExportPC(cUnit, mir);
   3611     for (i=0; i < dInsn->vA; i++) {
   3612         loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
   3613     }
   3614     opReg(cUnit, kOpBlx, r4PC);
   3615     opRegImm(cUnit, kOpAdd, r13sp, 8);
   3616     /* NULL? */
   3617     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   3618     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   3619     genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3620     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3621     target->defMask = ENCODE_ALL;
   3622     branchOver->generic.target = (LIR *) target;
   3623     return false;
   3624 }
   3625 
   3626 /*
   3627  * NOTE: Handles both range and non-range versions (arguments
   3628  * have already been normalized by this point).
   3629  */
   3630 static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
   3631 {
   3632     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3633     assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
   3634            dInsn->opcode == OP_EXECUTE_INLINE);
   3635     switch (dInsn->vB) {
   3636         case INLINE_EMPTYINLINEMETHOD:
   3637             return false;  /* Nop */
   3638 
   3639         /* These ones we potentially JIT inline. */
   3640         case INLINE_STRING_LENGTH:
   3641             return genInlinedStringLength(cUnit, mir);
   3642         case INLINE_STRING_IS_EMPTY:
   3643             return genInlinedStringIsEmpty(cUnit, mir);
   3644         case INLINE_MATH_ABS_INT:
   3645             return genInlinedAbsInt(cUnit, mir);
   3646         case INLINE_MATH_ABS_LONG:
   3647             return genInlinedAbsLong(cUnit, mir);
   3648         case INLINE_MATH_MIN_INT:
   3649             return genInlinedMinMaxInt(cUnit, mir, true);
   3650         case INLINE_MATH_MAX_INT:
   3651             return genInlinedMinMaxInt(cUnit, mir, false);
   3652         case INLINE_STRING_CHARAT:
   3653             return genInlinedStringCharAt(cUnit, mir);
   3654         case INLINE_MATH_SQRT:
   3655             return genInlineSqrt(cUnit, mir);
   3656         case INLINE_MATH_ABS_FLOAT:
   3657             return genInlinedAbsFloat(cUnit, mir);
   3658         case INLINE_MATH_ABS_DOUBLE:
   3659             return genInlinedAbsDouble(cUnit, mir);
   3660         case INLINE_STRING_COMPARETO:
   3661             return genInlinedCompareTo(cUnit, mir);
   3662         case INLINE_STRING_FASTINDEXOF_II:
   3663             return genInlinedFastIndexOf(cUnit, mir);
   3664         case INLINE_FLOAT_TO_RAW_INT_BITS:
   3665         case INLINE_INT_BITS_TO_FLOAT:
   3666             return genInlinedIntFloatConversion(cUnit, mir);
   3667         case INLINE_DOUBLE_TO_RAW_LONG_BITS:
   3668         case INLINE_LONG_BITS_TO_DOUBLE:
   3669             return genInlinedLongDoubleConversion(cUnit, mir);
   3670 
   3671         /*
   3672          * These ones we just JIT a call to a C function for.
   3673          * TODO: special-case these in the other "invoke" call paths.
   3674          */
   3675         case INLINE_STRING_EQUALS:
   3676         case INLINE_MATH_COS:
   3677         case INLINE_MATH_SIN:
   3678         case INLINE_FLOAT_TO_INT_BITS:
   3679         case INLINE_DOUBLE_TO_LONG_BITS:
   3680             return handleExecuteInlineC(cUnit, mir);
   3681     }
   3682     dvmCompilerAbort(cUnit);
   3683     return false; // Not reachable; keeps compiler happy.
   3684 }
   3685 
   3686 static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
   3687 {
   3688     //TUNING: We're using core regs here - not optimal when target is a double
   3689     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   3690     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3691     loadConstantNoClobber(cUnit, rlResult.lowReg,
   3692                           mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
   3693     loadConstantNoClobber(cUnit, rlResult.highReg,
   3694                           (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
   3695     storeValueWide(cUnit, rlDest, rlResult);
   3696     return false;
   3697 }
   3698 
   3699 /*
   3700  * The following are special processing routines that handle transfer of
   3701  * controls between compiled code and the interpreter. Certain VM states like
   3702  * Dalvik PC and special-purpose registers are reconstructed here.
   3703  */
   3704 
   3705 /*
   3706  * Insert a
   3707  *    b   .+4
   3708  *    nop
   3709  * pair at the beginning of a chaining cell.  This serves as the
   3710  * switch branch that selects between reverting to the interpreter or
   3711  * not.  Once the cell is chained to a translation, the cell will
   3712  * contain a 32-bit branch.  Subsequent chain/unchain operations will
   3713  * then only alter that first 16-bits - the "b .+4" for unchaining,
   3714  * and the restoration of the first half of the 32-bit branch for
   3715  * rechaining.
   3716  */
   3717 static void insertChainingSwitch(CompilationUnit *cUnit)
   3718 {
   3719     ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
   3720     newLIR2(cUnit, kThumbOrr, r0, r0);
   3721     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3722     target->defMask = ENCODE_ALL;
   3723     branch->generic.target = (LIR *) target;
   3724 }
   3725 
   3726 /* Chaining cell for code that may need warmup. */
   3727 static void handleNormalChainingCell(CompilationUnit *cUnit,
   3728                                      unsigned int offset)
   3729 {
   3730     /*
   3731      * Use raw instruction constructors to guarantee that the generated
   3732      * instructions fit the predefined cell size.
   3733      */
   3734     insertChainingSwitch(cUnit);
   3735     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3736             offsetof(Thread,
   3737                      jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3738     newLIR1(cUnit, kThumbBlxR, r0);
   3739     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3740 }
   3741 
   3742 /*
   3743  * Chaining cell for instructions that immediately following already translated
   3744  * code.
   3745  */
   3746 static void handleHotChainingCell(CompilationUnit *cUnit,
   3747                                   unsigned int offset)
   3748 {
   3749     /*
   3750      * Use raw instruction constructors to guarantee that the generated
   3751      * instructions fit the predefined cell size.
   3752      */
   3753     insertChainingSwitch(cUnit);
   3754     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3755             offsetof(Thread,
   3756                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3757     newLIR1(cUnit, kThumbBlxR, r0);
   3758     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3759 }
   3760 
   3761 /* Chaining cell for branches that branch back into the same basic block */
   3762 static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
   3763                                              unsigned int offset)
   3764 {
   3765     /*
   3766      * Use raw instruction constructors to guarantee that the generated
   3767      * instructions fit the predefined cell size.
   3768      */
   3769     insertChainingSwitch(cUnit);
   3770 #if defined(WITH_SELF_VERIFICATION)
   3771     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3772         offsetof(Thread,
   3773                  jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
   3774 #else
   3775     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3776         offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3777 #endif
   3778     newLIR1(cUnit, kThumbBlxR, r0);
   3779     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3780 }
   3781 
   3782 /* Chaining cell for monomorphic method invocations. */
   3783 static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
   3784                                               const Method *callee)
   3785 {
   3786     /*
   3787      * Use raw instruction constructors to guarantee that the generated
   3788      * instructions fit the predefined cell size.
   3789      */
   3790     insertChainingSwitch(cUnit);
   3791     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3792             offsetof(Thread,
   3793                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3794     newLIR1(cUnit, kThumbBlxR, r0);
   3795     addWordData(cUnit, NULL, (int) (callee->insns));
   3796 }
   3797 
   3798 /* Chaining cell for monomorphic method invocations. */
   3799 static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
   3800 {
   3801 
   3802     /* Should not be executed in the initial state */
   3803     addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
   3804     /* To be filled: class */
   3805     addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
   3806     /* To be filled: method */
   3807     addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
   3808     /*
   3809      * Rechain count. The initial value of 0 here will trigger chaining upon
   3810      * the first invocation of this callsite.
   3811      */
   3812     addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
   3813 }
   3814 
   3815 /* Load the Dalvik PC into r0 and jump to the specified target */
   3816 static void handlePCReconstruction(CompilationUnit *cUnit,
   3817                                    ArmLIR *targetLabel)
   3818 {
   3819     ArmLIR **pcrLabel =
   3820         (ArmLIR **) cUnit->pcReconstructionList.elemList;
   3821     int numElems = cUnit->pcReconstructionList.numUsed;
   3822     int i;
   3823 
   3824     /*
   3825      * We should never reach here through fall-through code, so insert
   3826      * a bomb to signal troubles immediately.
   3827      */
   3828     if (numElems) {
   3829         newLIR0(cUnit, kThumbUndefined);
   3830     }
   3831 
   3832     for (i = 0; i < numElems; i++) {
   3833         dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
   3834         /* r0 = dalvik PC */
   3835         loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
   3836         genUnconditionalBranch(cUnit, targetLabel);
   3837     }
   3838 }
   3839 
   3840 static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
   3841     "kMirOpPhi",
   3842     "kMirOpNullNRangeUpCheck",
   3843     "kMirOpNullNRangeDownCheck",
   3844     "kMirOpLowerBound",
   3845     "kMirOpPunt",
   3846     "kMirOpCheckInlinePrediction",
   3847 };
   3848 
   3849 /*
   3850  * vA = arrayReg;
   3851  * vB = idxReg;
   3852  * vC = endConditionReg;
   3853  * arg[0] = maxC
   3854  * arg[1] = minC
   3855  * arg[2] = loopBranchConditionCode
   3856  */
   3857 static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
   3858 {
   3859     /*
   3860      * NOTE: these synthesized blocks don't have ssa names assigned
   3861      * for Dalvik registers.  However, because they dominate the following
   3862      * blocks we can simply use the Dalvik name w/ subscript 0 as the
   3863      * ssa name.
   3864      */
   3865     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3866     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   3867     const int maxC = dInsn->arg[0];
   3868     int regLength;
   3869     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3870     RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
   3871 
   3872     /* regArray <- arrayRef */
   3873     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3874     rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
   3875     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3876                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3877 
   3878     /* regLength <- len(arrayRef) */
   3879     regLength = dvmCompilerAllocTemp(cUnit);
   3880     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3881 
   3882     int delta = maxC;
   3883     /*
   3884      * If the loop end condition is ">=" instead of ">", then the largest value
   3885      * of the index is "endCondition - 1".
   3886      */
   3887     if (dInsn->arg[2] == OP_IF_GE) {
   3888         delta--;
   3889     }
   3890 
   3891     if (delta) {
   3892         int tReg = dvmCompilerAllocTemp(cUnit);
   3893         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
   3894         rlIdxEnd.lowReg = tReg;
   3895         dvmCompilerFreeTemp(cUnit, tReg);
   3896     }
   3897     /* Punt if "regIdxEnd < len(Array)" is false */
   3898     genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
   3899                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3900 }
   3901 
   3902 /*
   3903  * vA = arrayReg;
   3904  * vB = idxReg;
   3905  * vC = endConditionReg;
   3906  * arg[0] = maxC
   3907  * arg[1] = minC
   3908  * arg[2] = loopBranchConditionCode
   3909  */
   3910 static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
   3911 {
   3912     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3913     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   3914     const int regLength = dvmCompilerAllocTemp(cUnit);
   3915     const int maxC = dInsn->arg[0];
   3916     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3917     RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
   3918 
   3919     /* regArray <- arrayRef */
   3920     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3921     rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
   3922     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3923                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3924 
   3925     /* regLength <- len(arrayRef) */
   3926     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3927 
   3928     if (maxC) {
   3929         int tReg = dvmCompilerAllocTemp(cUnit);
   3930         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
   3931         rlIdxInit.lowReg = tReg;
   3932         dvmCompilerFreeTemp(cUnit, tReg);
   3933     }
   3934 
   3935     /* Punt if "regIdxInit < len(Array)" is false */
   3936     genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
   3937                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3938 }
   3939 
   3940 /*
   3941  * vA = idxReg;
   3942  * vB = minC;
   3943  */
   3944 static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
   3945 {
   3946     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3947     const int minC = dInsn->vB;
   3948     RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
   3949 
   3950     /* regIdx <- initial index value */
   3951     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3952 
   3953     /* Punt if "regIdxInit + minC >= 0" is false */
   3954     genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
   3955                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3956 }
   3957 
   3958 /*
   3959  * vC = this
   3960  *
   3961  * A predicted inlining target looks like the following, where instructions
   3962  * between 0x4858de66 and 0x4858de72 are checking if the predicted class
   3963  * matches "this", and the verificaion code is generated by this routine.
   3964  *
   3965  * (C) means the instruction is inlined from the callee, and (PI) means the
   3966  * instruction is the predicted inlined invoke, whose corresponding
   3967  * instructions are still generated to handle the mispredicted case.
   3968  *
   3969  * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
   3970  * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
   3971  * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
   3972  * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
   3973  * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
   3974  * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
   3975  * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
   3976  * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
   3977  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
   3978  * v4, v17, (#8)
   3979  * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
   3980  * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
   3981  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
   3982  * +invoke-virtual-quick/range (PI) v17..v17
   3983  * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
   3984  * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
   3985  * D/dalvikvm(   86): -------- BARRIER
   3986  * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
   3987  * D/dalvikvm(   86): -------- BARRIER
   3988  * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
   3989  * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
   3990  * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
   3991  * D/dalvikvm(   86): -------- BARRIER
   3992  * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
   3993  * D/dalvikvm(   86): -------- BARRIER
   3994  * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
   3995  * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
   3996  * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
   3997  * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
   3998  * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
   3999  * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
   4000  * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
   4001  * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
   4002  * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
   4003  * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
   4004  * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
   4005  * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
   4006  * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
   4007  * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
   4008  * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
   4009  * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
   4010  * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
   4011  * D/dalvikvm(   86): 0x4858deac (0048): .align4
   4012  * D/dalvikvm(   86): L0x004f:
   4013  * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
   4014  * v4, (#0), (#0)
   4015  * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
   4016  * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
   4017  * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
   4018  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   4019  * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
   4020  * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
   4021  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   4022  * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
   4023  * D/dalvikvm(   86): Exception_Handling:
   4024  * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
   4025  * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
   4026  * D/dalvikvm(   86): 0x4858debc (0058): .align4
   4027  * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
   4028  * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
   4029  * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
   4030  * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
   4031  * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
   4032  * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
   4033  * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
   4034  * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
   4035  * D/dalvikvm(   86): -------- chaining cell (predicted)
   4036  * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
   4037  * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
   4038  * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
   4039  * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
   4040  * :
   4041  */
   4042 static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
   4043 {
   4044     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   4045     RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
   4046 
   4047     rlThis = loadValue(cUnit, rlThis, kCoreReg);
   4048     int regPredictedClass = dvmCompilerAllocTemp(cUnit);
   4049     loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
   4050     genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
   4051                  NULL);/* null object? */
   4052     int regActualClass = dvmCompilerAllocTemp(cUnit);
   4053     loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
   4054     opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
   4055     /*
   4056      * Set the misPredBranchOver target so that it will be generated when the
   4057      * code for the non-optimized invoke is generated.
   4058      */
   4059     callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
   4060 }
   4061 
   4062 /* Extended MIR instructions like PHI */
   4063 static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
   4064 {
   4065     int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
   4066     char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
   4067                                         false);
   4068     strcpy(msg, extendedMIROpNames[opOffset]);
   4069     newLIR1(cUnit, kArmPseudoExtended, (int) msg);
   4070 
   4071     switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
   4072         case kMirOpPhi: {
   4073             char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   4074             newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4075             break;
   4076         }
   4077         case kMirOpNullNRangeUpCheck: {
   4078             genHoistedChecksForCountUpLoop(cUnit, mir);
   4079             break;
   4080         }
   4081         case kMirOpNullNRangeDownCheck: {
   4082             genHoistedChecksForCountDownLoop(cUnit, mir);
   4083             break;
   4084         }
   4085         case kMirOpLowerBound: {
   4086             genHoistedLowerBoundCheck(cUnit, mir);
   4087             break;
   4088         }
   4089         case kMirOpPunt: {
   4090             genUnconditionalBranch(cUnit,
   4091                                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   4092             break;
   4093         }
   4094         case kMirOpCheckInlinePrediction: {
   4095             genValidationForPredictedInline(cUnit, mir);
   4096             break;
   4097         }
   4098         default:
   4099             break;
   4100     }
   4101 }
   4102 
   4103 /*
   4104  * Create a PC-reconstruction cell for the starting offset of this trace.
   4105  * Since the PCR cell is placed near the end of the compiled code which is
   4106  * usually out of range for a conditional branch, we put two branches (one
   4107  * branch over to the loop body and one layover branch to the actual PCR) at the
   4108  * end of the entry block.
   4109  */
   4110 static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
   4111                                 ArmLIR *bodyLabel)
   4112 {
   4113     /* Set up the place holder to reconstruct this Dalvik PC */
   4114     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4115     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   4116     pcrLabel->operands[0] =
   4117         (int) (cUnit->method->insns + entry->startOffset);
   4118     pcrLabel->operands[1] = entry->startOffset;
   4119     /* Insert the place holder to the growable list */
   4120     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
   4121 
   4122     /*
   4123      * Next, create two branches - one branch over to the loop body and the
   4124      * other branch to the PCR cell to punt.
   4125      */
   4126     ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4127     branchToBody->opcode = kThumbBUncond;
   4128     branchToBody->generic.target = (LIR *) bodyLabel;
   4129     setupResourceMasks(branchToBody);
   4130     cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
   4131 
   4132     ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4133     branchToPCR->opcode = kThumbBUncond;
   4134     branchToPCR->generic.target = (LIR *) pcrLabel;
   4135     setupResourceMasks(branchToPCR);
   4136     cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
   4137 }
   4138 
   4139 #if defined(WITH_SELF_VERIFICATION)
   4140 static bool selfVerificationPuntOps(MIR *mir)
   4141 {
   4142     DecodedInstruction *decInsn = &mir->dalvikInsn;
   4143 
   4144     /*
   4145      * All opcodes that can throw exceptions and use the
   4146      * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
   4147      * under self-verification mode.
   4148      */
   4149     switch (decInsn->opcode) {
   4150         case OP_MONITOR_ENTER:
   4151         case OP_MONITOR_EXIT:
   4152         case OP_NEW_INSTANCE:
   4153         case OP_NEW_ARRAY:
   4154         case OP_CHECK_CAST:
   4155         case OP_MOVE_EXCEPTION:
   4156         case OP_FILL_ARRAY_DATA:
   4157         case OP_EXECUTE_INLINE:
   4158         case OP_EXECUTE_INLINE_RANGE:
   4159             return true;
   4160         default:
   4161             return false;
   4162     }
   4163 }
   4164 #endif
   4165 
   4166 void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
   4167 {
   4168     /* Used to hold the labels of each block */
   4169     ArmLIR *labelList =
   4170         (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
   4171     ArmLIR *headLIR = NULL;
   4172     GrowableList chainingListByType[kChainingCellGap];
   4173     int i;
   4174 
   4175     /*
   4176      * Initialize various types chaining lists.
   4177      */
   4178     for (i = 0; i < kChainingCellGap; i++) {
   4179         dvmInitGrowableList(&chainingListByType[i], 2);
   4180     }
   4181 
   4182     /* Clear the visited flag for each block */
   4183     dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
   4184                                           kAllNodes, false /* isIterative */);
   4185 
   4186     GrowableListIterator iterator;
   4187     dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
   4188 
   4189     /* Traces start with a profiling entry point.  Generate it here */
   4190     cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
   4191 
   4192     /* Handle the content in each basic block */
   4193     for (i = 0; ; i++) {
   4194         MIR *mir;
   4195         BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
   4196         if (bb == NULL) break;
   4197         if (bb->visited == true) continue;
   4198 
   4199         labelList[i].operands[0] = bb->startOffset;
   4200 
   4201         if (bb->blockType >= kChainingCellGap) {
   4202             if (bb->isFallThroughFromInvoke == true) {
   4203                 /* Align this block first since it is a return chaining cell */
   4204                 newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4205             }
   4206             /*
   4207              * Append the label pseudo LIR first. Chaining cells will be handled
   4208              * separately afterwards.
   4209              */
   4210             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
   4211         }
   4212 
   4213         if (bb->blockType == kEntryBlock) {
   4214             labelList[i].opcode = kArmPseudoEntryBlock;
   4215             if (bb->firstMIRInsn == NULL) {
   4216                 continue;
   4217             } else {
   4218               setupLoopEntryBlock(cUnit, bb,
   4219                                   &labelList[bb->fallThrough->id]);
   4220             }
   4221         } else if (bb->blockType == kExitBlock) {
   4222             labelList[i].opcode = kArmPseudoExitBlock;
   4223             goto gen_fallthrough;
   4224         } else if (bb->blockType == kDalvikByteCode) {
   4225             if (bb->hidden == true) continue;
   4226             labelList[i].opcode = kArmPseudoNormalBlockLabel;
   4227             /* Reset the register state */
   4228             dvmCompilerResetRegPool(cUnit);
   4229             dvmCompilerClobberAllRegs(cUnit);
   4230             dvmCompilerResetNullCheck(cUnit);
   4231         } else {
   4232             switch (bb->blockType) {
   4233                 case kChainingCellNormal:
   4234                     labelList[i].opcode = kArmPseudoChainingCellNormal;
   4235                     /* handle the codegen later */
   4236                     dvmInsertGrowableList(
   4237                         &chainingListByType[kChainingCellNormal], i);
   4238                     break;
   4239                 case kChainingCellInvokeSingleton:
   4240                     labelList[i].opcode =
   4241                         kArmPseudoChainingCellInvokeSingleton;
   4242                     labelList[i].operands[0] =
   4243                         (int) bb->containingMethod;
   4244                     /* handle the codegen later */
   4245                     dvmInsertGrowableList(
   4246                         &chainingListByType[kChainingCellInvokeSingleton], i);
   4247                     break;
   4248                 case kChainingCellInvokePredicted:
   4249                     labelList[i].opcode =
   4250                         kArmPseudoChainingCellInvokePredicted;
   4251                     /*
   4252                      * Move the cached method pointer from operand 1 to 0.
   4253                      * Operand 0 was clobbered earlier in this routine to store
   4254                      * the block starting offset, which is not applicable to
   4255                      * predicted chaining cell.
   4256                      */
   4257                     labelList[i].operands[0] = labelList[i].operands[1];
   4258                     /* handle the codegen later */
   4259                     dvmInsertGrowableList(
   4260                         &chainingListByType[kChainingCellInvokePredicted], i);
   4261                     break;
   4262                 case kChainingCellHot:
   4263                     labelList[i].opcode =
   4264                         kArmPseudoChainingCellHot;
   4265                     /* handle the codegen later */
   4266                     dvmInsertGrowableList(
   4267                         &chainingListByType[kChainingCellHot], i);
   4268                     break;
   4269                 case kPCReconstruction:
   4270                     /* Make sure exception handling block is next */
   4271                     labelList[i].opcode =
   4272                         kArmPseudoPCReconstructionBlockLabel;
   4273                     handlePCReconstruction(cUnit,
   4274                                            &labelList[cUnit->puntBlock->id]);
   4275                     break;
   4276                 case kExceptionHandling:
   4277                     labelList[i].opcode = kArmPseudoEHBlockLabel;
   4278                     if (cUnit->pcReconstructionList.numUsed) {
   4279                         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   4280                                      jitToInterpEntries.dvmJitToInterpPunt),
   4281                                      r1);
   4282                         opReg(cUnit, kOpBlx, r1);
   4283                     }
   4284                     break;
   4285                 case kChainingCellBackwardBranch:
   4286                     labelList[i].opcode =
   4287                         kArmPseudoChainingCellBackwardBranch;
   4288                     /* handle the codegen later */
   4289                     dvmInsertGrowableList(
   4290                         &chainingListByType[kChainingCellBackwardBranch],
   4291                         i);
   4292                     break;
   4293                 default:
   4294                     break;
   4295             }
   4296             continue;
   4297         }
   4298 
   4299         /*
   4300          * Try to build a longer optimization unit. Currently if the previous
   4301          * block ends with a goto, we continue adding instructions and don't
   4302          * reset the register allocation pool.
   4303          */
   4304         for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
   4305             bb = nextBB;
   4306             bb->visited = true;
   4307             cUnit->nextCodegenBlock = NULL;
   4308 
   4309             for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
   4310 
   4311                 dvmCompilerResetRegPool(cUnit);
   4312                 if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
   4313                     dvmCompilerClobberAllRegs(cUnit);
   4314                 }
   4315 
   4316                 if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
   4317                     dvmCompilerResetDefTracking(cUnit);
   4318                 }
   4319 
   4320                 if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
   4321                     handleExtendedMIR(cUnit, mir);
   4322                     continue;
   4323                 }
   4324 
   4325                 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   4326                 InstructionFormat dalvikFormat =
   4327                     dexGetFormatFromOpcode(dalvikOpcode);
   4328                 const char *note;
   4329                 if (mir->OptimizationFlags & MIR_INLINED) {
   4330                     note = " (I)";
   4331                 } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
   4332                     note = " (PI)";
   4333                 } else if (mir->OptimizationFlags & MIR_CALLEE) {
   4334                     note = " (C)";
   4335                 } else {
   4336                     note = NULL;
   4337                 }
   4338 
   4339                 ArmLIR *boundaryLIR;
   4340 
   4341                 /*
   4342                  * Don't generate the boundary LIR unless we are debugging this
   4343                  * trace or we need a scheduling barrier.
   4344                  */
   4345                 if (headLIR == NULL || cUnit->printMe == true) {
   4346                     boundaryLIR =
   4347                         newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
   4348                                 mir->offset,
   4349                                 (int) dvmCompilerGetDalvikDisassembly(
   4350                                     &mir->dalvikInsn, note));
   4351                     /* Remember the first LIR for this block */
   4352                     if (headLIR == NULL) {
   4353                         headLIR = boundaryLIR;
   4354                         /* Set the first boundaryLIR as a scheduling barrier */
   4355                         headLIR->defMask = ENCODE_ALL;
   4356                     }
   4357                 }
   4358 
   4359                 /*
   4360                  * Don't generate the SSA annotation unless verbose mode is on
   4361                  */
   4362                 if (cUnit->printMe && mir->ssaRep) {
   4363                     char *ssaString = dvmCompilerGetSSAString(cUnit,
   4364                                                               mir->ssaRep);
   4365                     newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4366                 }
   4367 
   4368                 bool notHandled;
   4369                 /*
   4370                  * Debugging: screen the opcode first to see if it is in the
   4371                  * do[-not]-compile list
   4372                  */
   4373                 bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
   4374 #if defined(WITH_SELF_VERIFICATION)
   4375               if (singleStepMe == false) {
   4376                   singleStepMe = selfVerificationPuntOps(mir);
   4377               }
   4378 #endif
   4379                 if (singleStepMe || cUnit->allSingleStep) {
   4380                     notHandled = false;
   4381                     genInterpSingleStep(cUnit, mir);
   4382                 } else {
   4383                     opcodeCoverage[dalvikOpcode]++;
   4384                     switch (dalvikFormat) {
   4385                         case kFmt10t:
   4386                         case kFmt20t:
   4387                         case kFmt30t:
   4388                             notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
   4389                                       mir, bb, labelList);
   4390                             break;
   4391                         case kFmt10x:
   4392                             notHandled = handleFmt10x(cUnit, mir);
   4393                             break;
   4394                         case kFmt11n:
   4395                         case kFmt31i:
   4396                             notHandled = handleFmt11n_Fmt31i(cUnit, mir);
   4397                             break;
   4398                         case kFmt11x:
   4399                             notHandled = handleFmt11x(cUnit, mir);
   4400                             break;
   4401                         case kFmt12x:
   4402                             notHandled = handleFmt12x(cUnit, mir);
   4403                             break;
   4404                         case kFmt20bc:
   4405                             notHandled = handleFmt20bc(cUnit, mir);
   4406                             break;
   4407                         case kFmt21c:
   4408                         case kFmt31c:
   4409                             notHandled = handleFmt21c_Fmt31c(cUnit, mir);
   4410                             break;
   4411                         case kFmt21h:
   4412                             notHandled = handleFmt21h(cUnit, mir);
   4413                             break;
   4414                         case kFmt21s:
   4415                             notHandled = handleFmt21s(cUnit, mir);
   4416                             break;
   4417                         case kFmt21t:
   4418                             notHandled = handleFmt21t(cUnit, mir, bb,
   4419                                                       labelList);
   4420                             break;
   4421                         case kFmt22b:
   4422                         case kFmt22s:
   4423                             notHandled = handleFmt22b_Fmt22s(cUnit, mir);
   4424                             break;
   4425                         case kFmt22c:
   4426                             notHandled = handleFmt22c(cUnit, mir);
   4427                             break;
   4428                         case kFmt22cs:
   4429                             notHandled = handleFmt22cs(cUnit, mir);
   4430                             break;
   4431                         case kFmt22t:
   4432                             notHandled = handleFmt22t(cUnit, mir, bb,
   4433                                                       labelList);
   4434                             break;
   4435                         case kFmt22x:
   4436                         case kFmt32x:
   4437                             notHandled = handleFmt22x_Fmt32x(cUnit, mir);
   4438                             break;
   4439                         case kFmt23x:
   4440                             notHandled = handleFmt23x(cUnit, mir);
   4441                             break;
   4442                         case kFmt31t:
   4443                             notHandled = handleFmt31t(cUnit, mir);
   4444                             break;
   4445                         case kFmt3rc:
   4446                         case kFmt35c:
   4447                             notHandled = handleFmt35c_3rc(cUnit, mir, bb,
   4448                                                           labelList);
   4449                             break;
   4450                         case kFmt3rms:
   4451                         case kFmt35ms:
   4452                             notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
   4453                                                             labelList);
   4454                             break;
   4455                         case kFmt35mi:
   4456                         case kFmt3rmi:
   4457                             notHandled = handleExecuteInline(cUnit, mir);
   4458                             break;
   4459                         case kFmt51l:
   4460                             notHandled = handleFmt51l(cUnit, mir);
   4461                             break;
   4462                         default:
   4463                             notHandled = true;
   4464                             break;
   4465                     }
   4466                 }
   4467                 if (notHandled) {
   4468                     ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
   4469                          mir->offset,
   4470                          dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
   4471                          dalvikFormat);
   4472                     dvmCompilerAbort(cUnit);
   4473                     break;
   4474                 }
   4475             }
   4476         }
   4477 
   4478         if (bb->blockType == kEntryBlock) {
   4479             dvmCompilerAppendLIR(cUnit,
   4480                                  (LIR *) cUnit->loopAnalysis->branchToBody);
   4481             dvmCompilerAppendLIR(cUnit,
   4482                                  (LIR *) cUnit->loopAnalysis->branchToPCR);
   4483         }
   4484 
   4485         if (headLIR) {
   4486             /*
   4487              * Eliminate redundant loads/stores and delay stores into later
   4488              * slots
   4489              */
   4490             dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
   4491                                                cUnit->lastLIRInsn);
   4492             /* Reset headLIR which is also the optimization boundary */
   4493             headLIR = NULL;
   4494         }
   4495 
   4496 gen_fallthrough:
   4497         /*
   4498          * Check if the block is terminated due to trace length constraint -
   4499          * insert an unconditional branch to the chaining cell.
   4500          */
   4501         if (bb->needFallThroughBranch) {
   4502             genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   4503         }
   4504     }
   4505 
   4506     /* Handle the chaining cells in predefined order */
   4507     for (i = 0; i < kChainingCellGap; i++) {
   4508         size_t j;
   4509         int *blockIdList = (int *) chainingListByType[i].elemList;
   4510 
   4511         cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
   4512 
   4513         /* No chaining cells of this type */
   4514         if (cUnit->numChainingCells[i] == 0)
   4515             continue;
   4516 
   4517         /* Record the first LIR for a new type of chaining cell */
   4518         cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
   4519 
   4520         for (j = 0; j < chainingListByType[i].numUsed; j++) {
   4521             int blockId = blockIdList[j];
   4522             BasicBlock *chainingBlock =
   4523                 (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
   4524                                                          blockId);
   4525 
   4526             /* Align this chaining cell first */
   4527             newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4528 
   4529             /* Insert the pseudo chaining instruction */
   4530             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
   4531 
   4532 
   4533             switch (chainingBlock->blockType) {
   4534                 case kChainingCellNormal:
   4535                     handleNormalChainingCell(cUnit, chainingBlock->startOffset);
   4536                     break;
   4537                 case kChainingCellInvokeSingleton:
   4538                     handleInvokeSingletonChainingCell(cUnit,
   4539                         chainingBlock->containingMethod);
   4540                     break;
   4541                 case kChainingCellInvokePredicted:
   4542                     handleInvokePredictedChainingCell(cUnit);
   4543                     break;
   4544                 case kChainingCellHot:
   4545                     handleHotChainingCell(cUnit, chainingBlock->startOffset);
   4546                     break;
   4547                 case kChainingCellBackwardBranch:
   4548                     handleBackwardBranchChainingCell(cUnit,
   4549                         chainingBlock->startOffset);
   4550                     break;
   4551                 default:
   4552                     ALOGE("Bad blocktype %d", chainingBlock->blockType);
   4553                     dvmCompilerAbort(cUnit);
   4554             }
   4555         }
   4556     }
   4557 
   4558     /* Mark the bottom of chaining cells */
   4559     cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
   4560 
   4561     /*
   4562      * Generate the branch to the dvmJitToInterpNoChain entry point at the end
   4563      * of all chaining cells for the overflow cases.
   4564      */
   4565     if (cUnit->switchOverflowPad) {
   4566         loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
   4567         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   4568                      jitToInterpEntries.dvmJitToInterpNoChain), r2);
   4569         opRegReg(cUnit, kOpAdd, r1, r1);
   4570         opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
   4571 #if defined(WITH_JIT_TUNING)
   4572         loadConstant(cUnit, r0, kSwitchOverflow);
   4573 #endif
   4574         opReg(cUnit, kOpBlx, r2);
   4575     }
   4576 
   4577     dvmCompilerApplyGlobalOptimizations(cUnit);
   4578 
   4579 #if defined(WITH_SELF_VERIFICATION)
   4580     selfVerificationBranchInsertPass(cUnit);
   4581 #endif
   4582 }
   4583 
   4584 /*
   4585  * Accept the work and start compiling.  Returns true if compilation
   4586  * is attempted.
   4587  */
   4588 bool dvmCompilerDoWork(CompilerWorkOrder *work)
   4589 {
   4590     JitTraceDescription *desc;
   4591     bool isCompile;
   4592     bool success = true;
   4593 
   4594     if (gDvmJit.codeCacheFull) {
   4595         return false;
   4596     }
   4597 
   4598     switch (work->kind) {
   4599         case kWorkOrderTrace:
   4600             isCompile = true;
   4601             /* Start compilation with maximally allowed trace length */
   4602             desc = (JitTraceDescription *)work->info;
   4603             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
   4604                                         work->bailPtr, 0 /* no hints */);
   4605             break;
   4606         case kWorkOrderTraceDebug: {
   4607             bool oldPrintMe = gDvmJit.printMe;
   4608             gDvmJit.printMe = true;
   4609             isCompile = true;
   4610             /* Start compilation with maximally allowed trace length */
   4611             desc = (JitTraceDescription *)work->info;
   4612             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
   4613                                         work->bailPtr, 0 /* no hints */);
   4614             gDvmJit.printMe = oldPrintMe;
   4615             break;
   4616         }
   4617         case kWorkOrderProfileMode:
   4618             dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
   4619             isCompile = false;
   4620             break;
   4621         default:
   4622             isCompile = false;
   4623             ALOGE("Jit: unknown work order type");
   4624             assert(0);  // Bail if debug build, discard otherwise
   4625     }
   4626     if (!success)
   4627         work->result.codeAddress = NULL;
   4628     return isCompile;
   4629 }
   4630 
   4631 /* Architectural-specific debugging helpers go here */
   4632 void dvmCompilerArchDump(void)
   4633 {
   4634     /* Print compiled opcode in this VM instance */
   4635     int i, start, streak;
   4636     char buf[1024];
   4637 
   4638     streak = i = 0;
   4639     buf[0] = 0;
   4640     while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
   4641         i++;
   4642     }
   4643     if (i == kNumPackedOpcodes) {
   4644         return;
   4645     }
   4646     for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
   4647         if (opcodeCoverage[i]) {
   4648             streak++;
   4649         } else {
   4650             if (streak == 1) {
   4651                 sprintf(buf+strlen(buf), "%x,", start);
   4652             } else {
   4653                 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
   4654             }
   4655             streak = 0;
   4656             while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
   4657                 i++;
   4658             }
   4659             if (i < kNumPackedOpcodes) {
   4660                 streak = 1;
   4661                 start = i;
   4662             }
   4663         }
   4664     }
   4665     if (streak) {
   4666         if (streak == 1) {
   4667             sprintf(buf+strlen(buf), "%x", start);
   4668         } else {
   4669             sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
   4670         }
   4671     }
   4672     if (strlen(buf)) {
   4673         ALOGD("dalvik.vm.jit.op = %s", buf);
   4674     }
   4675 }
   4676 
   4677 /* Common initialization routine for an architecture family */
   4678 bool dvmCompilerArchInit()
   4679 {
   4680     int i;
   4681 
   4682     for (i = 0; i < kArmLast; i++) {
   4683         if (EncodingMap[i].opcode != i) {
   4684             ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
   4685                  EncodingMap[i].name, i, EncodingMap[i].opcode);
   4686             dvmAbort();  // OK to dvmAbort - build error
   4687         }
   4688     }
   4689 
   4690     return dvmCompilerArchVariantInit();
   4691 }
   4692 
   4693 void *dvmCompilerGetInterpretTemplate()
   4694 {
   4695       return (void*) ((int)gDvmJit.codeCache +
   4696                       templateEntryOffsets[TEMPLATE_INTERPRET]);
   4697 }
   4698 
   4699 JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
   4700 {
   4701     return DALVIK_JIT_ARM;
   4702 }
   4703 
   4704 /* Needed by the Assembler */
   4705 void dvmCompilerSetupResourceMasks(ArmLIR *lir)
   4706 {
   4707     setupResourceMasks(lir);
   4708 }
   4709 
   4710 /* Needed by the ld/st optmizatons */
   4711 ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
   4712 {
   4713     return genRegCopyNoInsert(cUnit, rDest, rSrc);
   4714 }
   4715 
   4716 /* Needed by the register allocator */
   4717 ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
   4718 {
   4719     return genRegCopy(cUnit, rDest, rSrc);
   4720 }
   4721 
   4722 /* Needed by the register allocator */
   4723 void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
   4724                             int srcLo, int srcHi)
   4725 {
   4726     genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
   4727 }
   4728 
   4729 void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
   4730                              int displacement, int rSrc, OpSize size)
   4731 {
   4732     storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
   4733 }
   4734 
   4735 void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
   4736                                  int displacement, int rSrcLo, int rSrcHi)
   4737 {
   4738     storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
   4739 }
   4740